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Abstract: Due to anthropogenic and natural activities, the land surface continuously changes over
time. The accurate and timely detection of changes is greatly important for environmental monitoring,
resource management and planning activities. In this study, a novel deep learning-based change
detection algorithm is proposed for bi-temporal polarimetric synthetic aperture radar (PolSAR)
imagery using a transfer learning (TL) method. In particular, this method has been designed to
automatically extract changes by applying three main steps as follows: (1) pre-processing, (2) parallel
pseudo-label training sample generation based on a pre-trained model and fuzzy c-means (FCM)
clustering algorithm, and (3) classification. Moreover, a new end-to-end three-channel deep neural
network, called TCD-Net, has been introduced in this study. TCD-Net can learn more strong and
abstract representations for the spatial information of a certain pixel. In addition, by adding an
adaptive multi-scale shallow block and an adaptive multi-scale residual block to the TCD-Net archi-
tecture, this model with much lower parameters is sensitive to objects of various sizes. Experimental
results on two Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) bi-temporal datasets
demonstrated the effectiveness of the proposed algorithm compared to other well-known methods
with an overall accuracy of 96.71% and a kappa coefficient of 0.82.

Keywords: unsupervised change detection; polarimetric synthetic aperture radar (PolSAR); UAVSAR;
multi-scale shallow block; multi-scale residual block

1. Introduction

The proliferation of remote sensing (RS) images at different temporal and spatial reso-
lutions have increased its use in a wide range of global environmental and management
applications, including change detection [1–5], target detection [6,7], wetland classifica-
tion [8–10], oil spill detection [11–13], disaster monitoring [14,15] and so on. Detection
of change is one of the most important applications of RS, which is essential for better
resource management.

Change detection (CD) is the process of identifying changes, caused by manmade
or natural factors, in multi-temporal Earth Observation (EO) data [16]. CD algorithms
are commonly employed to monitor changes in different applications, including land use
and land cover (LULC) [17,18], deforestation [19], urban development [20] and natural
disaster [20].

In recent years, Synthetic Aperture Radar (SAR) sensors have become one of the
most popular alternatives to other RS techniques because they can provide imaging in
all weather conditions, day or night. In addition, SAR sensors are capable of penetrating
through clouds, rain, smoke, snow, dust and so on. Therefore, these factors cannot affect
the ability of SAR sensors. In addition, SAR sensors use their source of illumination to
detect the target. Therefore, the light conditions of the area do not affect their imaging [21].
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In general, SAR systems have more advantages than optical sensors in CD applications,
because of their ability to acquire periodic images, regardless of weather or daylight [22].

Polarisation is one of the properties of an electromagnetic wave described as a function
of time on a plane perpendicular to the direction of propagation based on the geometric
location of the electric field vector [22]. PolSAR systems can transmit and receive waves
in a variety of linear polarization or circular polarization. This characteristic will provide
more scattering information from different aspects of a target. To send waves in linear
polarization, two common base polarizations, horizontal linear polarization (H) and ver-
tical linear polarization (V), are used. To send waves in circular polarization, the basic
polarizations of right-handed and left-handed circles are used. In PolSAR systems, the
transmitted and received waves can be sent and received both in the cross-polarizations
(e.g., HV or VH polarization) and in the co-polarizations (e.g., HH or VV polarisation) [23].
Using fully PolSAR data, polarization information can be significantly extracted because it
allows phase measurements between different polarization channels [22]. Nevertheless,
the microwave imaging mechanism used in PolSAR images makes the background more
complicated and the features of the region are mixed up. This is reflected in the structural
sensitivity, the geometric distortion of the image, the interference of the imaging systems,
and the speckle noise. Therefore, compared to other types of EO data, detecting changes in
SAR data is more challenging and thus has been less investigated.

Three main steps for unsupervised CD methods in a SAR image can be summarized as
(1) pre-processing, (2) difference image (DI) generation, and (3) analysis of DI to generate
the change map [24,25]. In SAR image pre-processing, multi-looking, co-registration of
images [26] and speckle filtering [27] are the main techniques. Additionally, DI quality has
a significant impact on the final change map. Two common methods for DI production are
image difference and image ratio. The main advantage of these methods is simplicity, but
they do not consider the edge and neighboring information, and thus have low sensitivity
to the speckle noise level [28]. However, the mean operator [29] considers neighboring
information and has an excellent inhibitory effect on independent points. To extract more
robust features and to improve detection performance, the transformation-based models
have been proposed in SAR CD [30]. These approaches transform raw feature vectors to
a new feature representation, to reduce the impact of noise, suppress no-change areas and
highlight the changes in a new feature space [31]. For instance, principal component analysis
(PCA), multivariate alteration detection (MAD) and iterative reweighted multivariate
alteration detection (IR-MAD) were utilized in PolSAR CD [31]. Based on recent studies,
transformation-based models have a high ability to extract information [31,32]. However, in
these methods, manual feature extraction and identification of information-rich components
is an important challenge. Furthermore, these algorithms are pixel-based and do not
consider spatial features (e.g., texture).

After DI generation, the analysis of DI is usually done through thresholding or clus-
tering strategies. The key point in the thresholding method is to opt for the threshold
value. Several popular methods, such as the Kittler and Illingworth (KI) algorithm [33]
and the expectation maximization (EM) algorithm [34], are used in SAR data. In these
methods, a model must be established to fit the no-changed and changed class condition
distributions. These methods have weak consequences when the change and no-change
features overlap, or when their statistical distributions are mistakenly modeled and in some
cases require frustrating trials and errors. In addition, a generalized KI (GKI) threshold se-
lection algorithm [35], a histogram optimization method [36], and a semi-EM algorithm [37]
are used to automatically generate a threshold value in SAR data. Since SAR images are
extremely influenced by speckle noise, methods that determine thresholds automatically
cannot eliminate it, because noise affects the estimation of parameters of the statistical
model. Moreover, choosing a global threshold does not make sense for the entire image and
may not cover all sections. Another method for analysis of DI is clustering. This is often
based on the k-means [38], multiple kernel k-means [39], and fuzzy c-means (FCM) [40].
Although these algorithms are widely used in SAR CD, there are substantial disadvan-
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tages [38–40]. On the one hand, these algorithms are distance-based (Euclidean distance,
Mahalanobis distance and so on), which is very sensitive to speckle noise and on the other,
these algorithms are presented assuming a balance between change and no-change classes.
In many cases, the change pixels are far less than the no-change pixels, i.e., the imbalance
between the two classes. Traditional clustering methods led to extreme false alarms when
challenged with unbalanced data. There are other clustering methods for SAR CD, such as
the fuzzy local information C-means algorithm (FLICM) [41] and the reformulated FLICM
algorithm (RFLICM) [42], which adds local information to the fuzzy method. Clustering
methods have greater flexibility than thresholding methods because there is no need to
construct a model. However, they are sensitive to noise because of inadequate attention to
spatial information.

Recently, several deep learning (DL) algorithms, such as stacked auto-encoders
(SAEs) [43], deep belief networks (DBNs) [44], convolutional neural networks (CNNs) [2],
recurrent neural networks (RNNs) [45], pulse coupled neural networks (PCNNs) [46] and
generative adversarial networks (GANs) [47] have been proposed for detection changes in
EO data. Among these DL methods, the CNN model is commonly employed as a feature
extractor for solving visual tasks. One of the most important advantages of CNNs is the
automatic extraction of low- to high-level features. Therefore, unlike PCA, MAD and
IRMAD algorithms, CNNs do not require manual feature selection and extraction.

1.1. Related Works

The various DL approaches can be divided into several categories. In this study,
the DL approaches used to CD are classified into three categories based on the learn-
ing technique and the accessibility of labeled or unlabeled training datasets, including
(1) supervised, (2) unsupervised, and (3) semi-supervised methods. The first category is
supervised methods which train the network by using labeled training datasets. The second
category, unsupervised methods that learn from unlabeled datasets. The third category,
semi-supervised methods that learn from both labeled and unlabeled datasets.

1.1.1. DL Supervised Methods for EO Data

There are many challenges in training deep supervised neural networks. The most
important of which is the need for a large training dataset. The need for large training data,
especially in RS applications that sometimes do not have access to the area, remains one
of the most substantial challenges. Numerous studies have examined the performance of
monitored networks in CD applications. Accordingly, it has been shown that deep neural
networks can properly generate change maps if large amounts of labeled training datasets
are available.

Mou et al. [48] have proposed a supervised dual-branch end-to-end neural network
method for CD. In this network, a CNN and an RNN are joined, therefore developing
a Recurrent Convolutional Neural Network (ReCNN) deep architecture. This algorithm
was implemented in three main steps: (1) initially, convolutional layers construct feature
maps automatically from each image in two separate branches; (2) second, after extracting
the feature from both images, a recurrent sub-network is embedded to preserve temporal
dependence in the bi-temporal images; and (3) finally, the output of recurrent sub-network
is entered as a fully connected layer and a change map is extracted. More specifically, they
used three types of the recurrent sub-network, i.e., fully connected RNN, long short-time
memory (LSTM) and gated recurrent unit (GRU) to compute the hidden state informa-
tion for the current input and restore information [48]. Liu, Jiao, Tang, Yang, Ma and
Hou [18] have presented a local restricted CNN (LRCNN), which is a new version of
CNN, in two main steps: (1) first, they proposed a similarity measure for PolSAR data and
produced several Layered Difference Images (LDIs) of PolSAR images. Then, LDIs are
improved to Discriminative Enhanced LDIs (DELDIs) for CNN training, and (2) second,
the CNN/LRCNN was trained for CD tuning hyperparameters. Finally, based on the
optimized trained model [18], a change map was obtained. Jaturapitpornchai et al. [49]
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have proposed a supervised method to identify novel building structures in three main
steps: (1) first, each 256 × 256-pixel patch at time1 and time2 are concatenated and fed to
a U-Net-based network. They used HH polarization ALOS-PALSAR over the same area
at different times. (2) Second, a prediction map is derived from the U-Net-based trained
model, and (3) at last, by applying a threshold of 0.5, a binary map that indicates the
position of newly built constructions is produced [49]. Sun et al. [50] have proposed an
end-to-end LU-Net architecture to leverage both spatiality and temporality characteristics
simultaneously. This CD method was implemented in two steps: (1) first, they combined
the convolution and recurrent structure in a layer and introduced a Conv-LSTM layer, and
(2) second, they substituted the standard convolutional layer of U-Net with Conv-LSTM
and formed a new architecture, L-UNet [50]. Cao et al. [51] have proposed a CD method
for bi-temporal SAR images and introduced a deep denoising network to eliminate the
SAR image noise in three main steps: (1) first, a deep denoising model is trained efficiently
by using plenty simulated SAR images to estimate the noise constituent. Then, the original
SAR image can be cleaned up by removing this noise constituent. (2) Secondly, a denoised
DI has been generated from the new image pair after denoising, and (3) finally, using a
three-layer CNN, denoised DI has been classified into changed and no-changed regions [51].
Wang et al. [52] have designed a new deformable residual CNN (DRNet) for SAR images
CD. The DRNet was used to adjust the sampling location. Additionally, prior to regular
convolution, two stages were added: (1) offset field generation, and (2) deformable feature
map generation. Moreover, a new pooling module called residual pooling was designed by
replacing the conventional pooling with a set of smaller pooling kernels to discover the
multi-scale information of the ground objects.

1.1.2. DL Unsupervised Methods for EO Data

Various supervised DL methods, including CNNs, have demonstrated satisfactory
results in computer vision tasks when accompanied by a large labeled dataset [18]. In
the case of CD tasks, the training datasets often are insufficient to construct such models.
Additionally, constructing a ground truth (GT) map based on real-time change information
of terrestrial objects takes a lot of time and effort [17]. Consequently, in many cases, it is
more effective to learn change features from an unsupervised approach.

For instance, Kiana et al. [53] have proposed an unsupervised CD method for SAR
images using the Gaussian mixture model (GMM). The CD framework in this study was
implemented in two main steps: (1) first, using GMM, three Gaussian distributions were
modeled (i.e., positive change, negative change and no-change distribution); (2) then, two
thresholds were calculated as injection points of distributions. Before the first threshold,
pixels are negative changes, between the two thresholds, they are no-changes, and after the
second threshold, pixels are positive changes [53]. Thresholding methods in which the
statistical distribution is modeled may be difficult to estimate the statistical parameters
when change and no-change pixels overlap. Moreover, in PolSAR data, this problem can
be more pronounced because of the strong effect of speckle noise. Liu et al. [54] proposed
an unsupervised symmetric convolutional coupling network (SCCN) for CD based on
heterogeneous SAR and optical images. They have defined a coupling function to determine
network parameters. This CD method was implemented in two steps: (1) first, each
of the two images is fed to one side of the SCCN and transferred to a feature space.
In the new feature space, the two input images have more harmonious features and
(2) second, a difference map was straight computed through pixel-wise Euclidean distances
in feature space [54]. Bergamasco et al. [55] have proposed an unsupervised CD based on
convolutional auto-encoder (CAE) feature extraction in two steps: (1) first, to train the CAE,
the reconstruction error between the reconstructed output and the input from unlabeled
single-time image patches Sentinel 1 was minimized, and (2) second, the trained CAE
was used to extract multi-scale features from both the bi-temporal images and extract a
change map [55]. Huang et al. [56] have developed a DL unsupervised algorithm that can
detect changes in buildings from RS images in two steps: (1) first, a convolutional layer
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is employed to extract the spatial, texture and spectral features and produce a low-level
feature vector for each pixel, and (2) second, a model based on deep belief network and
extreme learning machine (DBN-ELM) was applied: a DBN was pre-trained by introducing
unlabeled samples and they were then jointly optimized through the use of an ELM
classifier [56].

In some cases, first, a pre-train step is performed and the pixels with the greatest
likelihood to belong to the change and no-change classes are extracted. Then, these pixels
are utilized to train the model. For instance, Gao et al. [57] proposed a pre-train scheme
in two main steps: (1) first, they used a logarithmic ratio operator and a hierarchical FCM
classifier to generate pseudo-label training samples, and (2) next, by integrating a CNN
model and a dual-tree Complex Wavelet transform, called CWNN, pixels were classified
into change and no-change classes [57]. In addition, Zhang et al. [58] proposed an automated
method to detect changes in bi-temporal SAR images based on a pre-train scheme and the
PCANet algorithm in two main steps: (1) first, a parameterized pooling algorithm is used
to develop a deep difference image (DDI). Following this, Sigmoid nonlinear mapping
with two different parameters is applied to DDIs to give two mapped DDIs. Then, the
parallel FCM is applied to produce three types of pseudo-label training pixels: changed,
no-changed and intermediate pixels. (2) Next, a support vector machine (SVM) was trained
using the changed and no-changed pixels. Finally, the trained model was used to classify
intermediate pixels and generate a change map [58]. In such methods, the accuracy of the
pre-train step is very important. Accordingly, if the pixels are extracted with little precision,
the network will not be properly trained. Therefore, training pixels must be extracted with
high accuracy.

In a few cases, a fake-GT is generated with unsupervised methods and is used to
minimize the DL method’s loss function. For instance, Liu et al. [59] developed a CNN-
based CD approach. This network was trained based on a two-part loss function. The
CD framework in this study was implemented in three main steps: (1) first, a U-Net
model was pre-trained using an open-source dataset. Then, the Euclidean distance (ED)
is computed between two feature vectors extracted for each pair of pixels in bi-temporal
images. (2) Second, based on a fake-GT, the ED is minimized for no-changed pixels and
maximized for changed pixels in the first part of the loss function. The second part of the
loss function is designed to transfer the pre-trained model to the target dataset. (3) Finally,
after the training is complete, the k-nearest neighbors clustering is applied to extract a
change map [59].

1.1.3. DL Semi-Supervised Methods for EO Data

In semi-supervised learning, the little labeled dataset is coupled with large quantities of
an unlabeled dataset to form a model. Semi-supervised learning falls between unsupervised
learning and supervised learning. One of the most common approaches in semi-supervised
is TL fine-tuning [60]. In the case of not enough samples, TL can be used to adapt the
features learned in previous tasks, which involves fine-tuning the network pretrained in
general images. To achieve this, the final layers of the pre-trained network are usually
retrained based on the little data available. Following this approach, Kutlu and Avcı [61]
have been proposed a method based on AlexNet fine-tuning. They employed CNN, discrete
wavelet transforms (DWT) and LSTM, aiming to obtain the feature vector, translate and
strengthen the feature vector and classify the signal, respectively. The framework in this
study was implemented in three main steps: (1) first, they used fine-tuning for AlexNet
architecture to extract useful features; (2) then, they applied one-dimensional DWT on each
feature vector to obtain the approximation coefficients by convolving the signals with the
low-pass filter; and (3) finally, the LSTM was used for classification [61]. Venugopal [62] has
introduced a semi-supervised CD method based on Resnet-101 fine-tuning in three steps:
(1) firstly, two bi-temporal SAR images were converted to grayscale images to compute
the similarity between the two images; (2) secondly, a Resnet-101 based multiple dilated
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deep neural network was fine-tuned to extract the feature sets; and (3) finally, semantic
segmentation is applied to detect changes in the two SAR images [62].

Some networks are made up of several sub-networks. In such networks, each of
the sub-networks has specific purposes. However, they may cause a large increase in
network parameters. To overcome this, some of these sub-networks use the parameters
of pre-trained models with zero learning rates. Following this approach, Zhang and
Shi [1] proposed an approach based on a deep feature difference CNN (FDCNN) based on
two sub-networks named FD-Net and FF-Net, where FD-Net is trained based on sharing
parameter from VGG16 and FF-Net is trained based on a few pixel-level samples. The
CD framework in this study was implemented in three main steps: (1) first, VGG16 is
trained on RS datasets to learn deep features; (2) second, FDCNN is trained based on
the proposed change magnitude guided loss function by using a few pixel-level training
samples; and (3) third, a binary change map is derived using a threshold value from the
change magnitude map inferred using FDCNN [1]. Peng, Bruzzone, Zhang, Guan, Ding
and Huang [4] have proposed a new SemiCDNet based on a GAN in two main steps:
(1) first, they used both the labeled data and unlabeled data to generate initial predictions
(segmentation maps) and entropy maps based on an adopted UNet++ model as a generator.
Then, they optimized UNet++ in a supervised manner using a binary cross-entropy loss
and (2) second, in the discriminator phase, they introduced two discriminators to apply
the distribution compatibility feature of segmentation maps and entropy maps between
labeled data and unlabeled data [4]. Although semi-supervised algorithms reduce the need
for training data, they can still be challenging in RS applications because they still require
high-quality training data.

1.2. Problem Statements and Contribution

As mentioned earlier, the performance of deep learning-based CD methods is highly
dependent on the quality and quantity of the training data. Therefore, one of the main
challenges of applying DL for CD applications is to provide enough training samples. On
the other hand, most of the deep networks that have been developed to detect changes are
single-channel or dual-channel. In single-channel architectures, the network only takes
one input. Therefore, two images must be converted into one input. This is usually done
by differentiating or stacking images. As a result, information is lost. In dual-channel
architectures, first, each image has separately entered a channel. Next, the features of each
image are extracted. Then, like single-channel architectures, the two feature vectors are
converted to a feature vector and entered into a fully connected layer. Because there is
usually no information transition and connection between channels, the information is lost.

To overcome these challenges, we proposed a parallel pseudo-label training sample
generation method. This method is based on a pre-trained CNN-based model that was
trained carefully on two UAVSAR datasets and an FCM algorithm. First, we used a pre-
trained model and the TL technique to calculate the probability change map for our datasets.
Then, to improve and increase the reliability of the model, it was combined in parallel with
the FCM algorithm to select samples that can most likely belong to the change and no-change
classes. Additionally, we introduce a novel end-to-end three-channel deep neural network,
called TCD-Net. The three channels of TCD-Net are designed so that the first and third
channels independently extract features from each image and identify the objects in each
image well, while the second channel identifies distractions and transfers information from
the low- to the high levels. Compared with the use of a single- or dual-channel architecture,
this three-channel architecture not only provides a feature representation of each image
but also identifies changes at various levels. In addition, there are connections between
the three channels that prevent data loss. Therefore, the proposed method can learn more
strong and abstract representations for the spatial information of a certain pixel. We also
utilize an adaptive multi-scale shallow block and an adaptive multi-scale residual block
in the TCD-Net architecture to make the network resistant to objects of various sizes with
much fewer parameters and to transfer information to the final layer.
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In particular, our proposed algorithm consists of three parts: (1) parallel pseudo-label
training sample generation, (2) model optimization for TCD-Net, and (3) binary change
map generation. Therefore, the main contribution of this study can be summarized as:

1. Developing a new unsupervised DL-based model with three channels for deep feature
extraction and evaluating the effectiveness of an intermediate channel by comparing
this algorithm with a dual-channel deep network;

2. Introducing an adaptive formula for determining the number of filters in the multi-
scale block due to the dependence of the deep features on the kernel size;

3. Proposing high confidence automatic pseudo-label training sample generation frame-
work using a probabilistic parallel scheme based on a pre-trained neural network
model and FCM algorithm;

4. Providing highly robust results for PolSAR CD compared with the state-of-the-art
(SOTA) unsupervised methods.

The rest of the paper is organized as follows. The methodology is described in Section 2.
Section 3 presents the case study. Section 4 presents the experimental results and analyses.
Section 5 provides the discussion. Finally, the conclusions and future work is presented
in Section 6.

2. Methodology

In this section, we describe the details of the proposed method for CD. According
to Figure 1, the general scheme of the proposed method consists of three main steps,
including (1) pre-processing, (2) automatic training sample generation, and (3) end-to-end
CD learning. We describe these three steps in detail in the following three sub-sections.

Figure 1. General scheme of the proposed unsupervised binary change detection (CD) method. CNN
is convolutional neural network.



Remote Sens. 2022, 14, 438 8 of 26

2.1. Pre-Processing

Data pre-processing is greatly important in PolSAR CD methods. Multi-looking, co-
registration of images [26] and speckle filtering [27] are the main techniques in PolSAR
image processing. PolSAR images are always affected by speckle noise, which makes the
CD process more challenging. Therefore, there are several methods for speckle filtering; we
used the refined Lee filter with a kernel size of 5 [63]. Moreover, geometric correction is
used for co-registration of images for comparison and matching. Several GCP points were
selected for modeling and a second-order polynomial was used to resample gray values.
The final geometric correction accuracy (i.e., RMSE) was approximately 0.4 pixels.

2.2. Automatic Training Sample Generation

The purpose of this section is to produce pseudo-label training samples automatically
and without human interference. We use a pre-trained model, which has been trained on
large and open-source UAVSAR datasets and extracts a probabilistic change map (PCHM).
In fact, we use the TL technique because we apply a pre-trained model instead of training a
model. In addition, to improve the reliability and robustness of the results, we use a parallel
combination of the results of the pre-trained model and the results of the FCM algorithm.
As shown in Figure 2, the proposed method consists of the following main steps:

1. First, we use the CNN-based CD network in [2]. Since this network has previously
been trained on UAVSAR data, we call it the pre-trained model. We then calculate
the output of the pre-trained model for our datasets. The output of the last softmax
layer of the pre-trained model gives a PCHM in two classes: change and no-change
classes (i.e., pCNN

c and pCNN
n ). Then, by applying a knowledge-based threshold

(0.95) on two classes, the pixels that most probably belong to the change (wCNN
c ) and

no-change (wCNN
n ) classes are separated, i.e.,: (i, j) ∈ wCNN

c f or pCNN
c > 0.95 and (i, j) ∈

wCNN
n f or pCNN

n > 0.95. By selecting a higher threshold value, fewer training samples
are generated, but they are more reliable. The remaining pixels are placed in the
ambiguous class and are not used in this section.

2. Second, we utilize the log-ratio operator to generate the log-ration image ID = log(I2/I1).
Using the FCM algorithm, we obtain a PCHM in two classes: change and no-change
classes (i.e., pFCM

c and pFCM
n ). Similar to the previous approach, by applying a

threshold of 0.95, the pixels that most probably belong to the change (wFCM
c ) and

no-change (wFCM
n ) classes are separated, similarly: ((i, j) ∈ wFCM

c f or pFCM
c > 0.95

and (i, j) ∈ wFCM
n f or pFCM

n > 0.95).
3. Although we use PCHMs and reliable threshold values, because of the noisy con-

ditions of the SAR images, there may still be pixels that are incorrectly classified.
Therefore, to improve accuracy, we aggregate the results of the two methods men-
tioned in 1 and 2 in parallel, i.e., pixels that both methods labeled as change and
no-change are selected using Equation (1).{

(i, j) ∈ wc f or (i, j) ∈ wCNN
c and (i, j) ∈ wFCM

c
(i, j) ∈ wn f or (i, j) ∈ wCNN

n and (i, j) ∈ wFCM
n

, (1)
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Figure 2. Flowchart of the proposed parallel pseudo-label training sample generation. FCM is fuzzy
c-means, PCHM is probabilistic change map, and TL is transfer learning.

2.3. End-to-End Change Detection Learning
2.3.1. Convolutional Layer

The convolutional layer is the core of CNNs. Each layer of convolution in CNNs
contains a set of filters and the output of the network is derived from the convolution
between the filters and the input layer. Each filter can contain a specific pattern, followed by
a specific pattern in the image. In the network training process, these filters are supposed to
extract meaningful patterns from each image. Since finding only one pattern does not lead
to good results and makes the network limited in terms of performance, the convolutional
layer needs to have multiple filters. Therefore, the output of the convolutional layer is a set
of different patterns that are called feature maps. The output of a convolutional layer in the
nth layer is expressed using Equation (2).

Fn = g
(

wnFn−1 + bn
)

(2)

where Fn−1 represents the neuron input from the previous layer, n−1; g represents the
activation function; bn represents the bias vector for the current layer; and wn represents
the weighted template for the current layer.

A 2D convolution equation can be used to compute the output of the j th feature map
(v) within the i th layer at spatial location (x, y), according to Equation (3).

vxy
i,j = g

(
bi,j + ∑

m

R−1

∑
r=0

S−1

∑
s=0

Wr,s
i,j,mv(x+r)(y+s)

i−1,m

)
(3)
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where g is activation function, b is bias, m is the feature cube connected to the current
feature cube in the previous layer and W is the (r, s) th value of the kernel connected to the
m th feature cube in the previous layer. Moreover, R and S are the length and width of the
convolution kernel size, respectively.

2.3.2. Multi-Scale Block

In RS imagery with meter and sub-meter-level spatial resolution, there are many
objects in different sizes. In addition, there are large structures and details in the texture
of the objects and ground scenes that need to be extracted. Since small-scale features,
like short building edges, typically respond to smaller-sized convolutional filters, but
large-scale structures respond better to larger convolutional filters, we use the multi-scale
convolutional block. The multi-scale convolutional block extracts helpful dynamic features
and improves feature extraction. Using this multi-scale convolutional block, the network
can continuously learn a set of features and the related scales at which these features occur
with a minimum increase in parameters.

According to Figure 3, in the n th layer of the multi-scale block, three sizes of convo-
lutional filters are set: 1 × 1, 3 × 3 and 5 × 5. With a 1 × 1 convolutional kernel, features
are extracted from pixels themselves. A 3 × 3 convolutional kernel extracts features from
a small neighborhood. Additionally, a 5 × 5 convolutional kernel extracts features of a
larger range, which is suitable for some continuous large-scale images. In the traditional
multi-scale approach, the number of filters is the same for each kernel size, N and the
output feature maps have a 3N spectral dimension. Therefore, large kernel size (i.e., 3 × 3
and 5 × 5) require more processing time and have high parameters. Therefore, it is better
to change the number of filters for each kernel size in the multi-scale block. To achieve
this, this research develops an adaptive formula for determining the number of filters
(NoFs) in a multi-scale block. To keep a constant total number of filters in each block and to
preserve a large increase in the number of parameters, we consider the number of filters
that have smaller length and width dimensions more than filters with larger length and
width. According to Equation (4), NoFs is the total number of filters of a multi-scale block
and is divided into NoF1, NoF2 and NoF3, which are the number of filters for 1 × 1, 3 × 3
and 5 × 5 kernels, respectively: 

NoF1 = α× NoF
NoF2 = β× NoF
NoF3 = γ× NoF

s.t : α + β + γ = 1

(4)

where α, β, γ are coefficients that determine the number of filters for 1 × 1, 3 × 3 and
5 × 5 kernels, respectively. To reduce the network parameters, we consider these coeffi-
cients in such a way that α > β > γ.

Figure 3. A multi-scale shallow block.

2.3.3. Residual Block

CNNs with deeper layers can generally model more complex patterns and have higher
nonlinearity. Visual representation of feature maps shows that a deeper network can lead
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to the extraction of more robust and abstract features [64]. However, there is a substantial
problem in the training process of a deep CNN. As the number of layers’ increases, the
gradient vanishing problem during back-propagation increases. Therefore, updating the
convolutional kernels and bias vectors to achieve optimal allocation of all parameters is
very slow. Additionally, it has been seen that as the number of layers gradually increases,
the accuracy first increases, then at a point it starts to saturate and finally decreases [64].
For this reason, residual learning has now become one of the most effective solutions
available for training deep CNNs. It involves replacing the convolutional filtering process
Fn = Gn(Fn−1) by Fn = Fn−1 + Gn(Fn−1), which is called a “skip connection”, using
the residual Fn−1 − Fn as a prediction process. This research uses a combination of the
multi-scale block and the residual block, called the multi-scale residual block (Figure 4).

Figure 4. A multi-scale residual block.

2.3.4. TCD-Net for CD

Considering two images It1 and It2 taken over the same area at different times t1 and
t2, the goal is to recognize areas that have changed between the images. Assume that ˆCM is
the binary change map derived from It1 and It2 and ˆCMi,j is the change values at location
(i, j). Generally, ˆCMi,j ∈ {0, 1}, ˆCMi,j = 1 indicates (i, j) is changed and otherwise, it
indicates (i, j) is no-changed. We propose the TCD-Net architecture to generate the binary
change map.

• Architecture

As shown in Figure 5, the proposed TCD-Net architecture includes three channels,
each of which is a sub-network that extracts feature. The traditional method of DL-based
CD requires the conversion of two images to one input for the single-channel networks,
leading to missing information. Dual-channel networks extract features from two images
and, in the last layer, convert these features into a vector that is then fed to a fully connected
layer. Since there is no intermediate channel and there is no information transfer and
connection between the channels at different levels, the information is lost. To prevent
information loss, we use a three-channel network. Additionally, a multi-channel network
converges faster than a single- or dual-channel. In TCD-Net, the first and third channels
take bi-temporal images, It1 and It2 , separately, and the second channel can learn change
information from the features extracted from the first and third channels to obtain DI. In the
first and third channels, which are symmetric, there is an adaptive multi-scale shallow block,
three adaptive multi-scale residual blocks and two max-pooling layers. The second channel
consists of an adaptive multi-scale shallow block, two adaptive multi-scale residual blocks
and two max-pooling layers. An adaptive multi-scale shallow/residual block contains
one 1 × 1, one 3 × 3 and one 5 × 5 convolutional block, as mentioned before, where the
number of their filters for each kernel size is considered adaptive. In multi-scale blocks,
after connecting the output of these three convolutional blocks, a 3 × 3 convolutional
block has been installed to adjust the third dimension, allowing the layer input to be
added with the output of this section. This no longer requires the number of features
extracted from the multi-scale shallow/residual block to be fixed throughout the network.
Moreover, each convolutional block includes an activation function (rectified linear unit
(ReLU)), batch normalization and many convolutional filters that extract deep features.
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We use f t1
l , f t2

l and l = {1, . . . , L} to represent features in the lth layer of the first and
third channels, respectively, corresponding to t1 and t2. For instance, the f t1

1 represents the
features extracted from the multi-scale shallow block in the first layer of the first channel
(corresponding to t1). Finally, we obtain the features f t1

L and f t2
L for It1 and It2 , respectively.

In the second channel, which we call the intermediate channel, new features are also
extracted, which we call intermediate features and represent with f m

l . At the first layer, the

features extracted in the first and third channels are subtracted,
(

f t1
1 − f t2

1

)
and fed to the

second channel. In the second channel,
(

f t1
1 − f t2

1

)
enters the multi-scale shallow block and

f m
1 is extracted. In the next layers, change information is inferred from

(
f t1
2 − f t2

2

)
+ f m

1 ,(
f t1
3 − f t2

3

)
+ f m

2 , . . . ,
(

f t1
L − f t2

L

)
+ f m

L−1. That is, at each layer, the features extracted in
the first and third channels are subtracted then added to the features extracted in the second
channel from the previous layer, thus making our algorithm very powerful in detecting
changes. In the last layer,

(
f t1
L − f t2

L

)
+ f m

L−1 is extracted, flattened and fed into a fully
connected layer with ReLU activation function. Moreover, we use the ReLU after each
convolutional layer as a piecewise linear activation function. The ReLU function can be
formulated using Equation (5).

f (x)= max (0, x) (5)

Figure 5. The proposed TCD-Net architecture for CD of remote sensing (RS) datasets.

The latest fully-connected layer is a softmax layer. In general, this layer is used to model
categorical probability distributions and calculate the probability that each pixel belongs
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to the change and no-change classes. Finally, the pixels are divided into two categories of
change and no-change. The softmax function is expressed in Equation (6).

f (xi) =
exi

∑i exi
(6)

• Model Optimization

As shown in Figure 1, after the automatic training sample generation phase, the sam-
ples generated are divided into three categories: training, testing and validation datasets.

The TCD-Net is trained based on the training dataset. Additionally, the loss value
was calculated by the loss function based on the validation dataset. There is no analytical
method for optimizing CNN parameters. Thus, optimization is used to adjust the model
parameters iteratively. In this research, an Adam optimizer is used to adjust CNN parame-
ters. As a result, the model is trained based on the initial values of the parameters, then the
output of the model is compared with the actual value. The error of the training model is
fed to the optimizer and is updated the parameters. In an iterative process, the gradient is
reduced at this point to minimize the total output error. This process continues until the
stop condition is reached, i.e., a certain number of repetitions or a certain error (minimum
error). Due to back-propagation, the parameters are updated at each step to decrease the
error of comparing the results obtained from the network with the training/validation
dataset. Finally, test data is used to evaluate network performance.

In this research, cross-entropy was used to calculate the loss function of the proposed
architectures. The performance of the network given the inputs and the labels with optional
performance weights and other parameters is calculated by cross-entropy function for
inputs (y) and outputs (t) using the following Equation (7):

E =
1
n

n

∑
j=1

k

∑
i=1

tijlnyij +
(
1− tij

)
ln
(
1− yij

)
(7)

where n is the number of training samples and k is the number of classes. Additionally, tij
is the ij th entry of the target matrix and yij is the ij th entry of the training sample matrix.

2.3.5. Accuracy Assessment

Accuracy assessment is an integral part of any RS task and is done in two ways. In
the first approach, the results of the proposed method are compared with GT data and
in the second approach with sample data. In this study, the final results of the proposed
CD method are compared quantitatively as well as qualitatively with the GT data and the
results of other SOTA CD methods. The quantitative comparison is based on the metrics
described subsequently. Based on the CD results and the GT data, there are four modes:
(1) if both the GT data and result are positive, it is considered as True Positive (TP); (2) if
the GT data is positive and the result is negative, it is considered as False Negative (FN);
(3) if both the GT data and the results are negative, it is considered as True Negative (TN);
and (4) if the GT data is negative but the result is positive, it is considered as False Positive
(FP). With the help of these four values, the essential criteria such as false-positive rate
(FPR) (also called false alarm rate), true-positive rate (TPR) (also called hit rate and recall),
false-negative rate (FNR), overall accuracy (OA), precision, detection rate (DR), F1-score,
overall error rate (OER), Prevalence (PRE) and kappa coefficient (KC) are calculated by the
following relationships shown in Table 1.
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Table 1. Formulas for accuracy assessment criteria.

Accuracy Index Formula

FNR FN
FN+TP

TPR TP
TP+FN

FPR FP
TN+FP

OA TN+TP
TP+TN+FP+FN

Precision TP
TP+FP

F1-Score TP
TP+ 1

2 (FP+FN)

OER FN+FP
TP+TN+FP+FN

PRE (TP+FP)×(TP+FN)+(FN+TN)×(FP+TN)

TP+TN+FP×FN2

KC OA−PRE
1−PRE

2.3.6. Comparative Methods

To compare the effectiveness of the intermediate layer of TCD-Net, this research
compares the TCD-Net algorithm with a dual-channel deep network. This dual-channel
network is similar to TCD-Net, except that the intermediate layer is removed. To make
the comparison fair, the dual-channel network is trained with the same training samples
extracted from the pseudo-label sample generation phase. In addition, the following
unsupervised SOTA CD methods are compared and analyzed to confirm the efficiency of
TCD-Net. These approaches are PCA_kmeans [65], NR_ELM [66], Gabor_PCANet [67],
CWNN [57] and DP_PCANet [58], which are described in brief below:

• PCA_kmeans: Initially, the DI is calculated by using the absolute-value difference
between two SAR images. Additionally, the DI is separated into non-overlapping
h × h blocks. Then, using PCA, all blocks are projected into the eigenvector space to
obtain representation properties. Finally, each pixel is assigned to a cluster based on
the minimum Euclidean distance between its feature vector and the cluster’s mean
feature vector, using the k-means clustering.

• NR_ELM: Initially, a neighborhood-based ratio operator and the hierarchical FCM
algorithm are used for generating a DI and identifying pixels of interest in it. Secondly,
the ELM classifier is trained using pixel-wise patch features centered on the pixels
of interest.

• Gabor_PCANet: Initially, a pre-train step is performed using the Gabor wavelet and
the FCM classifier. Secondly, by considering a neighborhood with specific dimensions
for each training pixel in the two images and juxtaposing the two image patches, PCA
features are extracted from the training patches. Then, the SVM algorithm is used to
build a model on PCA features. After completing the training phase, the remaining
pixels are divided into two categories: changed and no-changed pixels.

• CWNN: A convolutional-wavelet neural network (CWNN) method has been applied
in bi-temporal SAR images. Firstly, a virtual sample generation scheme is utilized to
generate pseudo-label training samples that are likely changed or no-changed. Secondly,
the pseudo-label samples obtained in the previous step are used to train the CWNN
network and create a change map.

• DP_PCANet: Firstly, inspired by the convolutional and pooling layers in the CNN,
a DDI based on a weighted-pooling kernel has been extracted. Then, using sigmoid
nonlinear mapping and parallel FCM, two mapped DDIs are generated. Then, the
mapped DDIs are classified into three types of pseudo-label samples, i.e., changed,
no-changed and ambiguous samples. Finally, with the SVM model that is trained based
on the PCA features, ambiguous samples are classified as changed or no-changed.
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These methods are also parameterized using references to the corresponding publications.

3. Case Study

Two co-registered L-band UAVSAR full polarimetric images are utilized to assess the
performance of the proposed method. These two images belong to the city of Los Angeles,
California, acquired on 23 April 2009 and 11 May 2015, by the JAV Propulsion Labora-
tory/National Aeronautics and Space Administration UAVSAR. There are 786 × 300 pixels
in the first dataset and 766 × 300 pixels in the second dataset. Figure 6a–e shows the RGB
(Red: |HH–VV|; Green: 2|HV|; Blue: |HH+VV|) Pauli images of the two subsets of the
PolSAR scenes. The GT images connected with these subsets, shown in Figure 6c,f, were pre-
pared for the numerical analysis of CD results by using Google Earth images. Actually, the
image of GT is a binary image in which the black pixels are no-change and the white pixels
are change. The first and second datasets are called dataset#1 and dataset#2, respectively.

Figure 6. Pauli decomposition of UAVSAR images taken over Los Angeles, California on (a,d) 23
April 2009; (b,e) 11 May 2015; (c,f) ground truths, where white means change area and black means
no-change area. Top: dataset#1. Bottom: dataset#2.

4. Experimental Results and Analysis
4.1. Parameter Setting

In NR_ELM and CWNN, parameters are neighborhood size r = 3× 3 and patch size
w = 7, respectively. The PCANet parameters are the image patch size k = 5, the number of
filters L1 = L2 = 8 and training samples 30% of the total data. In PCA_kmeans, patch size
h = 5 is used. In Gabor feature extraction, the orientation of Gabor kernel U = 8, the scale
of Gabor kernel V = 5, the maximum frequency kmax = 2π and the spacing factor between
kernels in the frequency domain f =

√
2 are used. To generate DDI and parallel clustering

in DP_PCANet, the center bias b in the Sigmoid function b = 0.1 and the number of pooled
images that are accumulated to generate the DDI, T = 7 are used. For TCD-Net, Table 2 lists
the details of the configuration settings for each channel. Additionally, Table 3 shows the
total number of filters in each multi-scale block. The model parameters are trained based
on the mini-batch back-propagation algorithm with a size of 150. The error in 250 epochs
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is calculated based on the determined objective function and then the parameters are
updated. Adam optimizer, with an initial learning rate of 10 × 10−3 with an epsilon value
of 10 × 10−10, is used as the optimization algorithm.

Table 2. TCD-Net configurations of each channel and block.

Channel 1 Channel 2 Channel 3

Inputs (shape) 11× 11× 4 11× 11× 4 11× 11× 4

Block 1

Multi-Scale Shallow Block:
1× 1 Conv1 + BN +

RELU
(

NoF11
1 ) 1

3× 3Conv2 + BN +
RELU

(
NoF11

2 ) 5× 5Conv3 +
BN + RELU

(
NoF11

3 )
Channel Concat.

3 × 3 Conv4 + BN + RELU(256)

Multi-Scale Shallow Block:
1× 1Conv1 + BN +

RELU
(

NoF21
1 )

3× 3Conv2 + BN +
RELU

(
NoF21

2 )
5× 5Conv3 + BN +

RELU
(

NoF21
3 )

Channel Concat.
3 × 3 Conv4 + BN + RELU (256)

Multi-Scale Shallow Block:
1× 1Conv1 + BN +

RELU
(

NoF31
1 )

3× 3Conv2 + BN +
RELU

(
NoF31

2 )
5× 5Conv3 + BN +

RELU
(

NoF31
3 )

Channel Concat.
3 × 3 Conv4 + BN + RELU(256)

2 × 2 Max-Pooling 2 × 2 Max-Pooling 2 × 2 Max-Pooling
Output 7× 7× 256 7× 7× 256 7× 7× 256

Block 2

Multi-Scale Residual Block:
1× 1Conv1 + BN +

RELU
(

NoF12
1 )

3× 3Conv2 + BN +
RELU

(
NoF12

2 )
5× 5Conv3 + BN +

RELU
(

NoF12
3 )

Channel Concat.
3 × 3 Conv4 + BN + RELU(256)

Multi-Scale Residual Block:
1× 1Conv1 + BN +

RELU
(

NoF22
1 )

3× 3Conv2 + BN +
RELU

(
NoF22

2 )
5× 5Conv3 + BN +

RELU
(

NoF22
3 )

Channel Concat.
3 × 3 Conv4 + BN + RELU(256)

Multi-Scale Residual Block:
1× 1Conv1 + BN +

RELU
(

NoF32
1 )

3× 3Conv2 + BN +
RELU

(
NoF32

2 )
5× 5Conv3 + BN +

RELU
(

NoF32
3 )

Channel Concat.
3 × 3 Conv4 + BN + RELU(256)

Output 7× 7× 256 7× 7× 256 7× 7× 256

Block 3

Multi-Scale Residual Block:
1× 1Conv1 + BN +

RELU
(

NoF13
1 )

3× 3Conv2 + BN +
RELU

(
NoF13

2 )
5× 5Conv3 + BN +

RELU
(

NoF13
3 )

Channel Concat.
3 × 3 Conv4 + BN + RELU(256)

Multi-Scale Residual Block:
1× 1Conv1 + BN +

RELU
(

NoF23
1 )

3× 3Conv2 + BN +
RELU

(
NoF23

2 )
5× 5Conv3 + BN +

RELU
(

NoF23
3 )

Channel Concat.
3 × 3 Conv4 + BN + RELU(256)

Multi-Scale Residual Block:
1 1× 1Conv1 + BN +

RELU
(

NoF33
1 )

3 3× 3Conv2 + BN +
RELU

(
NoF33

2 )
5 5× 5Conv3 + BN +

RELU
(

NoF33
3 )

Channel Concat.
3 × 3 Conv4 + BN + RELU(256)

2 × 2 Max-Pooling 2 × 2 Max-Pooling 2 × 2 Max-Pooling
Output 5× 5× 256 5× 5× 256 5× 5× 256

Block 4

Multi-Scale Residual
Block: 1× 1Conv1 + BN +

RELU
(

NoF14
1 ) 3× 3Conv2 +

BN + RELU
(

NoF14
2 ) 5 Conv3 +

BN + RELU
(

NoF14
3 )

Channel Concat.
3 × 3 Conv4 + BN + RELU(256)

Multi-Scale Residual Block: 1×
1Conv1 + BN + RELU

(
NoF34

1 )
3× 3Conv2 + BN +

RELU
(

NoF34
2 ) 5× 5Conv3 +

BN + RELU
(

NoF34
3 )

Channel Concat.
3 × 3 Conv4 + BN + RELU(256)

Output 5× 5× 256 5× 5× 256
Flatten

Classifier RELU Fully Connected (350)
Softmax Fully Connected (2)

NoFij
k is the number of filters for kth convolutional layer of multi-scale block in ith channel of jth block.



Remote Sens. 2022, 14, 438 17 of 26

Table 3. The total number of filters in each multi-scale block.

Block
Channel

1 2 3

1 NoF11
1 + NoF11

2 + NoF11
3 = 16 NoF21

1 + NoF21
2 + NoF21

3 = 64 NoF31
1 + NoF31

2 + NoF31
3 = 16

2 NoF12
1 + NoF12

2 + NoF12
3 = 32 NoF22

1 + NoF22
2 + NoF22

3 = 128 NoF32
1 + NoF32

2 + NoF32
3 = 32

3 NoF13
1 + NoF13

2 + NoF13
3 = 64 NoF23

1 + NoF23
2 + NoF23

3 = 256 NoF33
1 + NoF33

2 + NoF33
3 = 64

4 NoF14
1 + NoF14

2 + NoF14
3 = 128 NoF34

1 + NoF34
2 + NoF34

3 = 128

4.2. Pseudo-Label Training Sample Generation

As previously mentioned, we first use the pre-trained model introduced in [2]. Based
on Table 4, which shows the results of the CD framework proposed in [2] for our case
study, it can be seen that this model is not robust for all case studies. On other hand, the
performance of this model is dependent on the objects of the study area. For this reason, we
generate PCHM using the pre-trained model. Then, by applying a reliable threshold, we
extract the pixels that most likely belong to the change and no-change classes. Quantitative
results show that this increases the performance significantly. In addition, we obtain
PCHM with the FCM clustering. Finally, we extract the pixels that have been identified
in both algorithms as change and no-change pixels. The quantitative results show that the
aggregation of these two algorithms greatly increases accuracy. For dataset#1, the OA and
KC in the FCM clustering is 94.10% and 0.66, in the TL-based classification is 93.85% and
0.75 and in the aggregation is 97.58% and 0.84. For dataset#2, the OA and KC in the FCM
clustering is 95.84% and 0.52, in the TL-based classification is 97.64% and 0.82, and in the
aggregation of these two methods is 99.52% and 0.91. Therefore, the quantitative results
show that the aggregation of these two methods improves the pseudo-label generation
accuracy. We considered 5% of the total data as the reference data and divided the reference
data into 65% for training, 15% for validation, and 20% for testing (Table 5).

Table 4. The accuracy of the CD framework proposed in [2] for dataset#1 and dataset#2.

Method
Result

TN TP FP FN TPR
(%)

FPR
(%)

FNR
(%) Precision OA

(%)
F1-

Score
DR
(%) KC OER

(%)

[2] dataset#1 187,570 27,606 11,581 9043 75.33 5.82 24.67 70.45 91.25 72.86 74.02 0.68 8.76
[2] dataset#2 202,423 10,710 4188 12,479 46.19 2.03 53.81 71.89 92.75 56.24 29.22 0.52 7.25

Table 5. The number of change and no-change pixels extracted from the parallel pseudo-label genera-
tion framework and the number of training, testing and validation pixels used in the training process
of TCD-Net.

Dataset
Value

Class Total Number
of Pixels

Number
of Samples Percentage (%) Training Validation Testing

dataset#1 change
no-change

36,649
199,151

12,717
165,308

34.70
83.01

1191
6472

357
1493

366
1991

dataset#2 change
no-change

23,189
206,611

11,156
81,650

48.11
39.52

753
6714

173
1549

231
2066

4.3. Comparison of Results for Dataset#1

Figure 7 illustrates the result of CD for dataset#1. As seen, Figure 7a,c,d show the
results CD for PCA_kmeans, Gabor_PCANet and DP_PCANet that have many noisy pixels,
while other methods provide the low noisy pixels. Furthermore, the NR_ELM, Figure 7b
and CWNN, Figure 7e, have miss detection pixels that are evident in the top and bottom of
the study areas (red circles). In Figure 7, the red circles show the no-changed pixels that have
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been detected as changed pixels by all of the methods except the TCD-Net and dual-channel
deep network. The TCD-Net and dual-channel deep network provide significant results
compared to other methods in the detection of no-changed pixels. However, the TCD-Net
(Figure 7g), in detail, discovers subtle change pixels better than the dual-channel deep
network (Figure 7f). Therefore, the TCD-Net provides a promising result in the detection of
both change and no-change pixels.

Figure 7. Visualized results of various CD methods on dataset#1; (a) PCA_kmeans, (b) NR_ELM,
(c) Gabor_PCANet, (d) DP_PCANet, (e) CWNN, (f) dual-channel deep network, (g) TCD-Net, and
(h) ground truth. The red circles highlight different output performances in no-change pixels.

In Table 6, CD quantitative results show that the TCD-Net algorithm performed better
than other methods in terms of OA, KC, precision and DR indicators. In particular, the
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TCD-Net algorithm has the OA of 95.01% and the KC of 0.80, which is 6.35% and 0.37
more than PCA_kmeans, 2.75% and 0.14 more than NR_ELM, 3.29% and 0.15 more than
Gabor_PCANet, 2.43% and 0.11 more than DP_PCANet, 2.24% and 0.10 more than CWNN,
and 0.76% and 0.04 more than the dual-channel deep network. Furthermore, the TCD-Net
algorithm has a much higher F1-score. Additionally, the OER is much lower in TCD-Net.
These results show that TCD-Net is more effective in CD than other algorithms.

Table 6. The accuracy of different change detection methods for dataset#1.

Method
Result

TN TP FP FN TPR
(%)

FPR
(%)

FNR
(%) Precision OA

(%) F1-Score DR
(%) KC OER

(%)

PCA_kmeans 196,839 12,223 2312 24,426 33.35 1.16 66.65 84.09 88.66 47.76 33.35 0.43 11.34
NR_ELM 195,411 22,066 3740 14,583 60.21 1.88 39.79 85.51 92.26 70.66 60.21 0.66 7.74

Gabor_PCANet 192,837 23,449 6314 13,200 63.98 3.17 36.02 78.79 91.72 70.62 63.98 0.65 8.28
DP_PCANet 192,994 25,298 6157 11,351 69.03 3.09 30.97 80.43 92.58 74.29 69.03 0.69 7.42

CWNN 193,141 25,603 6010 11,046 69.86 3.02 30.14 80.99 92.77 75.01 69.86 0.70 7.23
Dual-channel

Net 195,818 26,424 3333 10,225 72.10 1.67 27.90 88.80 94.25 79.58 72.10 0.76 5.75

TCD-Net 196,646 27,390 2505 9259 74.74 1.26 25.26 91.62 95.01 82.32 74.74 0.80 4.99

4.4. Comparison of Results for Dataset#2

The results of CD for dataset#2 are shown in Figure 8. Similarly, the Gabor_PCANet,
NR_ELM and DP_PCANet provide many noisy changed pixels while these pixels are no-
change. Furthermore, most methods have many miss detection pixels in the no-change areas,
which are more evident at the top and middle of the region of interest. This theme can be
seen in the CD results, which are illustrated by red circles in Figure 8. As compared to
dataset#1, CD methods perform a little differently. In change areas, there are differences
among the CD methods, a sample of which is illustrated by green circles in Figure 8. The
green circles show that the dual-channel deep network with good performance in no-change
pixels cannot detect change pixels well. However, the TCD-Net has considerable results
compared with other methods in both classes. Additionally, the TCD-Net is more sensitive
to the subtly changed pixels, while other methods did not detect these in much detail.

In Table 7, we display the values of the mentioned criteria to evaluate the performance
of CD methods. The results of dataset#2 also confirm the efficiency of the TCD-Net
algorithm. As seen, the TCD-Net has the highest OA, KC, F1-score, precision and DR
indicators. The OA and KC are 96.71% and 0.82 of TCD-Net, which is 4.68% and 0.47
higher than PCA_kmeans, 2.59% and 0.16 higher than NR_ELM, 2.31% and 0.15 higher
than Gabor_PCANet, 2.11% and 0.14 higher than DP_PCANet, 2.17% and 0.17 higher than
CWNN, and 1.26% and 0.1 higher than the dual-channel deep network. The TCD-Net
algorithm has a much higher TPR and much lower FNR. In addition, TCD-Net has a much
higher KC and DR (approximately 15–60% in DR and 0.1–0.5 in KC). This shows that the
proposed methods perform better than the other methods implemented in this paper.
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Figure 8. Visualized results of various CD methods on dataset#2; (a) PCA_kmeans, (b) NR_ELM,
(c) Gabor_PCANet, (d) DP_PCANet, (e) CWNN, (f) dual-channel deep network, (g) TCD-Net and
(h) ground truth. The red circles highlight different output performances in no-change pixels. The
green circles highlight different output performances in change pixels.

Table 7. The accuracy of different change detection methods for dataset#2.

Method
Result

TN TP FP FN TPR
(%)

FPR
(%)

FNR
(%) Precision OA

(%) F1-Score DR
(%) KC OER

(%)

PCA_kmeans 205,826 5653 785 17,536 24.38 0.38 75.62 87.81 92.03 57.16 24.38 0.35 7.97
NR_ELM 200,774 15,525 837 7664 66.95 2.83 33.05 72.68 94.12 83.85 66.95 0.66 3.70

Gabor_PCANet 202,050 14,884 4511 8355 64.05 2.18 35.95 76.74 94.40 78.47 64.19 0.67 5.60
DP_PCANet 202,383 15,019 4228 8170 64.77 2.05 35.23 78.03 94.60 80.32 64.77 0.68 5.40

CWNN 204,199 13,060 2412 10,129 56.32 1.17 43.68 84.41 94.54 80.33 56.32 0.65 5.46
Dual-channel

Net 203,880 15,460 2731 7729 66.67 1.32 33.33 84.99 95.45 74.72 66.67 0.72 4.55

TCD-Net 203,284 18,949 3327 4240 81.72 1.61 18.28 85.06 96.71 87.86 81.72 0.82 3.29
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5. Discussion

In this section, we first compare the TCD-Net in terms of accuracy to other CD methods
implemented in this article. Then we compare the TCD-Net with the results of other studies
implemented on the UAVSAR datasets. Finally, we mention some of the challenges that the
TCD-Net algorithm has resolved.

Most of the CD methods have low efficiency in detecting change pixels. In other
words, the low value of some indices such as precision, TPR and KC instigated from the
low efficiency of the CD algorithms in detecting change pixels. However, the TCD-Net
simultaneously has high precision, TPR and KC values in two datasets, which indicates
high efficiency in detecting change pixels. Most algorithms have a reasonable value of OA
which indicates that they have been successful in detecting no-change pixels. Therefore, the
FPR is very low for most CD algorithms. For better evaluation, change and no-change pixels
should be considered together. For this purpose, we consider both the TPR and FPR criteria.
The TPR is a criterion defined based on change pixels. Therefore, its low value indicates
that the algorithm is weak in detecting change pixels. Although the PCA_kmeans algorithm
has low FPR and detects no-change pixels well, its TPR is very low, indicating that it has
performed poorly in detecting change pixels. The NR_ELM algorithm has a higher TPR than
the PCA_kmeans algorithm. It may be because the NR_ELM algorithm uses neighborhood
information, but still has higher FPR than TCD-Net. The Gabor_PCANet, DP_PCANet
and CWNN algorithms have a much lower TPR for dataset#2 and much higher FPR for
dataset#1 than TCD-Net. The dual-channel deep network can discover the no-changed
pixels well, but there are changed pixels, especially in edges in dataset#1 and another area
in dataset#2, that the dual-channel deep network cannot detect. However, the TCD-Net
detects both the changed and no-changed pixels well. Comparison of the dual-channel deep
network and the TCD-Net shows that the intermediate channel plays a key role in detecting
change pixels and can improve network performance. These differences are because of
the robust and strong architecture of the proposed algorithm (e.g., feature extraction at
different levels, separate extraction of features of two images, intermediate connection,
sensitivity to different object sizes, and extraction of high-precision training data).

In the following, we quantitatively compare the TCD-Net with the results of other
researches applied on the UAVSAR data according to Table 8. Ratha et al. [68] proposed
a method based on geodesic distance (GD), which is the distance between an observed
Kennaugh matrix and the Kennaugh matrix associated with an elementary target. This al-
gorithm achieved the FPR and KC values equal to 6.9% and 0.73, respectively, for dataset#1,
the FPR value of 3.9% and the KC value of 0.75 for dataset#2. By comparing the FPR values
between the GD and TCD-Net, it can be found that the TCD-Net performed better than the
GD in accurately identifying pixels as change or no-change. Bouhlel, Akbari and Méric [3]
have proposed a determinant ratio test (DRT) statistic for automatic CD in bi-temporal
PolSAR images, assuming that the multi-look complex covariance matrix follows the scaled
complex Wishart distribution. The DRT algorithm obtained the FPR and DR values of
10.58% and 63.38%, respectively, for dataset#1, and the FPR value of 8.39% and the DR value
of 51.49% for dataset#2. The quantitative results demonstrate that the TCD-Net provides
an average of 20% higher DR and 8% lower FPR compared to the DRT, which indicates the
superiority of TCD-Net. Nascimento et al. [69] have proposed a comparison between the
likelihood ratio, Kullback–Leibler (KL) distance, Shannon entropy and Rényi entropy. The
results of this research demonstrated that entropy-based algorithms may perform better
than algorithms based on the KL distance and probability ratio statistics. Comparison of the
TCD-Net algorithm with the best entropy-based algorithms in [69] shows that the TCD-Net
algorithm has much higher DR (about 30% in dataset#1 and 20% in dataset#2). In addi-
tion, the KC in the TCD-Net algorithm is much higher than the entropy-based algorithm
(0.18 in dataset#1 and 0.26 in dataset#2). [68] and [69] are statistical methods and these
methods operate in unsupervised manners. Moreover, the TCD-Net acts unsupervised.
Nevertheless, the TCD-Net is more effective. One of the important factors in improving the
accuracy of the proposed method is the use of deep features while other methods operate
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on the main polarization channels (i.e., HH, HV, VH and VV). The limited polarization
channels and noise conditions cause statistics-based methods to not perform well. In terms
of processing time, statistical-based algorithms have less processing time than DL-based
algorithms. The training phase of DL-based algorithms is time-consuming, but in general,
DL-based algorithms are more accurate than statistical-based algorithms.

Table 8. Comparison of TCD-Net results with other methods developed on UAVSAR images.

Dataset Indices

Result
Ratha, De,
Celik and

Bhattacharya [68]

Bouhlel, Akbari
and Méric [3]

Nascimento,
Frery and
Cintra [69]

TCD-Net

dataset#1
KC

FPR (%)
DR (%)

0.73
6.9

N/A

N/A
10.58
63.38

0.62
4.14
42.98

0.80
1.26
74.74

dataset#2
KC

FPR (%)
DR (%)

0.75
3.9

N/A

N/A
8.39
51.49

0.56
2.17

62.52

0.82
1.61

81.72

As mentioned earlier, one of the main challenges of applying DL-based algorithms for
CD applications is finding enough training data. Several studies have proposed methods
for automatically extracting pseudo-label training samples, which have been employed in
this study. In [67], Gabor wavelet features were used to exploit the changed information.
In addition, the FCM algorithm was implemented in a coarse-to-fine procedure to obtain
enough pseudo-label training samples. In [58], a parallel FCM clustering was developed for
SAR images based on combining nonlinear sigmoid mapping, Gabor wavelets and parallel
FCM to provide pseudo-label training pixels. These methods are pixel-based and do not
take into account spatial information, which may produce isolated pixels as an output.
In [66], a pre-classification step was implemented by using a neighborhood-based ratio
operator and hierarchical FCM clustering. In addition, some studies have also used trained
neural networks and TL techniques. In these methods, pixels are classified based on a
global threshold, which can lead to mistakes and less reliability in some cases. In contrast,
our pseudo-label sample generation framework is based on probability, it extracts the pixels
from the pre-trained model with a probability of more than 95%, and also aggregates with
the results of the FCM algorithm for more reliability. In addition, the process of detecting
changes in PolSAR images has many challenges. For instance, the process of extracting
polarimetric decomposition parameters, which is a common step in conventional PolSAR
CD methods, is time-consuming and challenging, especially when dealing with time-series
data. In addition, selecting appropriate decompositions with high information content
requires optimization algorithms that are also time-consuming. Furthermore, previous
studies showed that adding spatial features to scattering information significantly increases
the accuracy of CD methods. However, extracting spatial features, such as texture, is
challenging because of hardware limitations and long processing time. To overcome these
problems, we present the TCD-Net algorithm, which can extract deep features only with
four bands and does not require any additional processing (e.g., feature extraction, feature
selection and target decomposition). Additionally, DL-based CD methods automatically
employ both spatial and spectral features, and because of the simultaneous use of spatial
and spectral information, this method is more accurate and robust than other CD methods.
In addition, the TCD-Net architecture uses residual and multi-scale blocks. The residual
blocks allow information to flow from the initial layers to the final layers, preventing the
network depth from increasing too much. Moreover, the multi-scale blocks increase the
network sensitivity to objects of different sizes.
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6. Conclusions and Future Work

In this study, a novel end-to-end framework based on DL is proposed for detect-
ing changes in the polarimetry UAVSAR datasets. The proposed method can solve the
challenges of conventional CD methods (i.e., thresholding, manual feature extraction meth-
ods and training data limitation in DL-based CD methods). First, we propose a parallel
pseudo-label training sample generation framework, which can generate high-reliability
samples for TCD-Net training using a parallel combination of the result of the pre-trained
model and FCM algorithm. Numerical analysis shows that the generated samples have
provided the OA of 99.52% and KC of 0.91. Second, we construct a TCD-Net architec-
ture with three-channels based on an adaptive multi-scale shallow block and an adaptive
multi-scale residual block that are sensitive to objects of different sizes and maintain funda-
mental information through the transfer of information to higher layers. Therefore, our
proposed method has high efficiency in the extraction of deep features. The performance
of our proposed method is evaluated using two different UAVSAR datasets. Moreover,
the results of our proposed method are compared to other SOTA PolSAR CD methods
and a dual-channel deep network to evaluate the effectiveness of an intermediate channel
embedded on TCD-Net. The result of CD is evaluated by visual and numerical accuracy
assessments indices. Experimental results show that the highest OA of 96.71% and the
best KC of 0.82 belong to TCD-Net. In summary, compared to other CD algorithms, the
proposed method has several advantages: (1) it is more accurate than other SOTA CD
methods; (2) it provides robust results compared with a dual-channel deep network; (3) it is
unsupervised and produces appropriate quality and quantity training data; (4) it is strong
against noise and complicated and multi-size objects; and (5), its end-to-end framework
requires no pre-processing (e.g., manual feature extraction, feature selection and PolSAR
target decomposition).

One of the limitations of SAR CD is the complexity and noise conditions of SAR data.
The issue can affect the CD and weaken the result of the CD. In this regard, the fusion
of multimodal datasets can improve the result of CD and enhance accuracy. The digital
elevation model (DEM) is one of the most important datasets that can provide the CD in
more detail. In addition, we intend to evaluate the performance of TCD-Net across all
single-, dual- and fully-polarized modes in the future.
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