

Correction Correction: Jin et al. Influence of the Nocturnal Effect on the Estimated Global CO₂ Flux. *Remote Sens.* 2022, 14, 3192

Rui Jin¹, Tan Yu^{1,*}, Bangyi Tao², Weizeng Shao^{1,3}, Song Hu¹ and Yongliang Wei¹

¹ College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China

- ² State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
- ³ National Satellite Ocean Application Service, Ministry of Natural Resources, Beijing 100081, China
- * Correspondence: tyu@shou.edu.cn; Tel.: +86-021-6190-0169

Text Correction

We believe that several sentences in the description of the source (sink) changes of CO_2 are prone to ambiguity and are not particularly well presented. There were errors in the original publication [1].

1. The original sentence was located in **Abstract**, **Paragraph 1**, **Penultimate sentence of the abstract**:

The mean global daily CO₂ flux estimated based on the nocturnal effect and the sub-regional pCO_{2w} algorithm (*cor_F_{com}*) was -6.86 mol m⁻² y⁻¹ (September 2020–August 2021), which was smaller by 0.75 mol m⁻² y⁻¹ than that based solely on the sub-regional pCO_{2w} algorithm (*day_F_{com}*).

A correction has been made to **Abstract**, **Paragraph 1**, **Penultimate sentence of the abstract**:

The mean global daily CO₂ flux estimated based on the nocturnal effect and the sub-regional pCO_{2w} algorithm (*cor_F_{com}*) was -6.86 mol m⁻² y⁻¹ (September 2020–August 2021), which was greater by 0.75 mol m⁻² y⁻¹ than that based solely on the sub-regional pCO_{2w} algorithm (*day_F_{com}* = -7.61 mol m⁻² y⁻¹).

2. The original sentence was located in **Abstract**, **Paragraph 1**, **Last sentence of the abstract**:

That is, compared with day_F_{com} , the global cor_F_{com} value overestimated the CO₂ sink of the global ocean by 10.89%.

A correction has been made to **Abstract**, **Paragraph 1**, **Last sentence of the abstract**:

That is, compared with cor_F_{com} , the global day_F_{com} value overestimated the CO₂ sink of the global ocean by 10.89%.

3. The original sentence was located in **Results and Discussion**, **3.5.2. Estimation of the CO₂ Flux Using the Nocturnal Effect**, **Paragraph 3**, **Last three sentences of the paragraph**:

Specifically, compared with day_F_{com} , the global cor_F_{com} value increased by 4.90×10^{-4} mmol m⁻² d⁻¹, thereby overestimating the oceanic CO₂ sink by 10.21%. The mean monthly increase was 2.50 mmol m⁻² month⁻¹, thus overestimating the mean oceanic CO₂ sink by 10.68%. The mean annual increase was 0.75 mol m⁻² y⁻¹, thereby overestimating the mean oceanic CO₂ sink by 10.89%.

A correction has been made to **Results and Discussion**, **3.5.2. Estimation of the CO₂ Flux Using the Nocturnal Effect**, **Paragraph 3**, **Last three sentences of the paragraph**:

Citation: Jin, R.; Yu, T.; Tao, B.; Shao, W.; Hu, S.; Wei, Y. Correction: Jin et al. Influence of the Nocturnal Effect on the Estimated Global CO₂ Flux. *Remote Sens.* 2022, *14*, 3192. *Remote Sens.* 2022, *14*, 6403. https:// doi.org/10.3390/rs14246403

Received: 17 August 2022 Accepted: 28 October 2022 Published: 19 December 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). **Specifically, compared with day_F_{com} , the global cor_F_{com} value increased by 0.18 mmol m⁻² d⁻¹, thereby day_F_{com} overestimating the oceanic CO₂ sink by 10.21%. The mean monthly increase was 2.50 mmol m⁻² month⁻¹, thus day_F_{com} overestimating the mean oceanic CO₂ sink by 10.68%. The mean annual increase was 0.75 mol m⁻² y⁻¹, thereby day_F_{com} overestimating the mean oceanic CO₂ sink by 10.68%.

4. The original sentence was located in **Conclusions**, **Paragraph 5**, **Last three sentences of the paragraph**:

Compared with day_F_{com} , the global cor_F_{com} value was greater by 4.90×10^{-4} mmol m⁻² d⁻¹, thereby overestimating the oceanic CO₂ sink by 10.21%. The mean monthly increase was 2.50 mmol m⁻² month⁻¹, thus overestimating the mean oceanic CO₂ sink by 10.68%. The mean annual increase was 0.75 mol m⁻² y⁻¹, thus overestimating the mean oceanic CO₂ sink by 10.89%.

A correction has been made to **Conclusions**, **Paragraph 5**, **Last three sentences of the paragraph**:

Compared with day_F_{com} , the global cor_F_{com} value was greater by 0.18 mmol m⁻² d⁻¹, thereby day_F_{com} overestimated the oceanic CO₂ sink by 10.21%. The mean monthly increase of cor_F_{com} was 2.50 mmol m⁻² month⁻¹, thus day_F_{com} overestimated the mean oceanic CO₂ sink by 10.68%. The mean annual increase of cor_F_{com} was 0.75 mol m⁻² y⁻¹, thus day_F_{com} overestimated the mean oceanic CO₂ sink by 10.89%.

5. We want to add the following two sentences on CO₂ source and sink to **Introduction**, **Paragraph 2**, after the phrase:

At present, the sea–air CO₂ flux can be measured directly using the eddy correlation method. Alternatively, the CO₂ flux is often calculated by the block method formula [4], as follows: sea–air CO₂ flux = sea–air gas transfer velocity × solubility of CO₂ in seawater × (pCO_2 in seawater– pCO_2 in air).

The added sentence is:

If the CO₂ flux is positive, it means that CO₂ enters the atmosphere from the ocean, i.e., the ocean is the source of CO₂. If the CO₂ flux is negative, it means that CO₂ enters the ocean from the atmosphere, i.e., the ocean is the sink of CO₂.

The authors apologize for any inconvenience caused and state that the scientific conclusions are unaffected. This correction was approved by the Academic Editor. The original publication has also been updated.

Reference

 Jin, R.; Yu, T.; Tao, B.; Shao, W.; Hu, S.; Wei, Y. Influence of the Nocturnal Effect on the Estimated Global CO₂ Flux. *Remote Sens.* 2022, 14, 3192. [CrossRef]