
 

 
 

 

 
Remote Sens. 2022, 14, 6386. https://doi.org/10.3390/rs14246386 www.mdpi.com/journal/remotesensing 

Article 

Ore-Waste Discrimination Using Supervised and Unsupervised 

Classification of Hyperspectral Images 

Mehdi Abdolmaleki 1, Mariano Consens 2 and Kamran Esmaeili 1,* 

1 Lassonde Institute of Mining, University of Toronto, Toronto, ON M5S 1A4, Canada 
2 Department of Mechanical and Industrial Engineering, University of Toronto,  

Toronto, ON M5S 3G8, Canada 

* Correspondence: kamran.esmaeili@utoronto.ca 

Abstract: Ore and waste discrimination is essential for optimizing exploitation and minimizing ore 

dilution in a mining operation. The conventional ore/waste discrimination approach relies on the 

interpretation of ore control by geologists, which is subjective, time-consuming, and can cause safety 

hazards. Hyperspectral remote sensing can be used as an alternative approach for ore/waste dis-

crimination. The focus of this study is to investigate the application of hyperspectral remote sensing 

and deep learning (DL) for real-time ore and waste classification. Hyperspectral images of several 

meters of drill core samples from a silver ore deposit labeled by a site geologist as ore and waste 

material were used to train and test the models. A DL model was trained on the labels generated by 

a spectral angle mapper (SAM) machine learning technique. The performance on ore/waste discrim-

ination of three classifiers (supervised DL and SAM, and unsupervised k-means clustering) was 

evaluated using Rand Error and Pixel Error as disagreement analysis and accuracy assessment in-

dices. The results showed that the DL method outperformed the other two techniques. The perfor-

mance of the DL model reached 0.89, 0.95, 0.89, and 0.91, respectively, on overall accuracy, precision, 

recall, and F1 score, which indicate the strong capability of the DL model in ore and waste discrim-

ination. An integrated hyperspectral imaging and DL technique has strong potential to be used for 

practical and efficient discrimination of ore and waste in a near real-time manner. 

Keywords: ore and waste discrimination; hyperspectral imaging system; deep learning;  

spectral angle mapper; k-means clustering 

 

1. Introduction 

In a mining operation, identification and characterization of the geological features 

that control the distribution of ore grades and discrimination between ore and waste are 

essential for optimizing the exploitation process and for production planning. It is essen-

tial that any variation in lithology, alteration, and mineralogy exposed to the mine faces 

be identified and mapped, as it can significantly influence not only the mine’s production 

performance and its efficiency in terms of produced ore quantity and quality, but also the 

cost, time, and method of mineral processing. Therefore, using an efficient, rapid, and 

accurate geological data acquisition approach along with a precise and automated deci-

sion-making system is crucial for the mining industry [1,2]. 

During the extraction of an ore deposit, blasting can dilute the ore grade due to mix-

ing ore and waste in the blasted muckpile. This can be attributed to deposits’ heterogene-

ities, non-regular mineralization shapes, and contact between ore and waste material. The 

misclassification of ore/waste can have a significant economic impact on a mining opera-

tion [3]. Precise knowledge of ore and waste discrimination at the excavation point is im-

portant for minimizing dilution and ore loss. In the conventional approach, the ore zone 

in the blasted muckpile is subjectively identified by ore-control geologists, based on visual 

observations and by using blast-induced rock movement data. This process is time-
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consuming, inaccurate, and can cause safety hazards for mine personnel when walking 

on a blasted muckpile. 

Hyperspectral remote sensing is commonly used in geology for mineral mapping 

and retrieving surface compositional information for mineral exploration purposes, as 

well as for lithologic mapping and mine tailings with a focus on acid-generating minerals 

[4]. Hyperspectral technology is a prime and well-proven phenomenon that characterizes 

the mineral composition and chemical bonding present in a material and is used to map 

the characteristics of rocks and minerals. Hyperspectral sensors collect image data simul-

taneously in hundreds of narrow, adjacent spectral bands. Many materials can be recog-

nized by this method, because the absorption features in their spectra act as unique spec-

tral signatures. Hyperspectral imaging, as a powerful means to discriminate different ma-

terials, is an active area of research in mineral identification [5,6]. Hyperspectral ore/waste 

discrimination based on determining specific spectral features and real-time process mon-

itoring can be a more precise alternative for control of dilution in active mine faces. Pre-

concentrating mined ore with hyperspectral-based sorting can reduce mineral processing 

costs [7–9]. 

Machine learning (ML) and deep learning (DL) techniques provide robust and relia-

ble decision-making tools for analyzing large amounts of sensing data. These techniques 

have been widely used in different fields of mining [10–12]. Using ML and DL, the features 

of the hyperspectral data can be extracted and learned, which allows different objects to 

be classified based on their characteristics [13,14]. There are different types of ML tech-

niques that perform well in some specific applications of mineral image classification. 

Spectral Angle Mapper (SAM) [15,16], a well-known classification mapping technique for 

remote sensing images, is used in this research. SAM, when used on calibrated reflectance 

data, is relatively robust against illumination differences and albedo effects and is highly 

applicable in multitudes of real-life field observations [17]. In n-dimensional hyperspec-

tral space, a pixel vector has both magnitude (length) and angle, measured with respect 

to the axes that define the coordinate system of the space. SAM identifies pixel spectra 

only based on angular information [18]. In recent years, DL technology has made out-

standing achievements in many fields. Compared with traditional ML image-classifica-

tion techniques, DL classification reduces the dependence on image resolution, automati-

cally extracts the most effective features by using deep convolution layers in large da-

tasets, and improves the classification speed, which is crucial for ore-waste discrimination 

[19]. Model structure plays an important role in the training efficiency of a DL model 

which can lead to high accuracy rates and remarkable performance improvements [20]. 

U-net [20–22] is one such structure used in this study. One of the benefits of a DL model 

compared to SAM is that when training a DL model, it can be applied multiple times to 

other spatially and spectrally similar images. In SAM, the whole process should be re-

peated for every image classification, which can be time-consuming. The k-means [23,24] 

algorithm is the third classification technique used in this study; it is the most-used unsu-

pervised classification method in the remote sensing field, and is highly efficient. The al-

gorithm is simple and quick to implement, previous knowledge is not required, and un-

known classes or patterns in the dataset can be identified. However, the method is com-

putationally intensive; in some cases, accuracy is insufficient, and outliers might get their 

own cluster. This study compares the application of these three classification algorithms 

for ore and waste discrimination using hyperspectral image analysis. 

A comprehensive review of the strengths and weaknesses of applying DL models to 

his classification was provided by Paoletti et al. [25]. Some challenges and limitations in-

clude dimension, lack of labeled data, and optimization of training parameters. Rangne-

kar et al. [26] introduced AeroRIT as one of the first large-scale aerial hyperspectral scenes 

with pixel-wise annotations, and compared the performance of three DL architectures—

SegNet, U-Net, and Res-U-Net—for scene understanding and object identification. They 

concluded that the proposed aerial hyperspectral image would help advance the research 

in the field with a more complex object distribution. 



Remote Sens. 2022, 14, 6386 3 of 23 
 

 

A limited number of studies have shown the potential of using hyperspectral remote 

sensing techniques to estimate ore grade classification and to separate ore and waste. 

Dalm et al. [9] attempted to discriminate between ore and waste samples from an epither-

mal gold–silver deposit using PLS-DA classifications on hyperspectral imagery of drill 

core samples. The results were satisfactory with respect to identifying a subset of the 

waste or sub-economic grade samples, but failed to determine a metric that correctly clas-

sified both ore and waste. Natsuo et al. [27] presented mineral-type and grain-size identi-

fication using hyperspectral imaging and DL techniques. The hyperspectral data analysis 

using deep learning identified the mineral species with a high accuracy of over 90%, as 

compared to RGB data analysis using DL, which had an accuracy of around 30%. Samanta 

et al. [5] investigated the correlation between copper grade concentrations and mineral 

spectra absorption parameters using a hyperspectral imaging system. Results showed that 

the ore grade correlated well with the band depth spectral property. Lypaczewski et al. 

[28] studied the variability of biotite and white mica mineral chemistry at a gold deposit 

using hyperspectral data. Results demonstrated that waste could be easily distinguished, 

but that it would not be possible to determine the exact Au content with this metric. 

Choros et al. [16] researched the potential of using hyperspectral data for ore grade dis-

crimination using SAM and CNN techniques in a gold deposit. Two approaches were 

used: ore and waste discrimination as binary classification, and grade classification in four 

classes from low to high gold grade. In binary classification, CNN (77% overall accuracy) 

outperformed SAM (60% overall accuracy), but in gold grade classification, the results of 

both techniques were unsatisfactory, at 22% and 37% for CNN and SAM, respectively. 

The main goal of the current study is to compare the performance of the proposed 

method (a combination of machine learning and deep learning) with two well-known su-

pervised (SAM) and unsupervised (k-means) classification techniques in mineral classifi-

cation. The focus is to propose an innovative and automated approach to real-time map-

ping of ore and waste classification with high accuracy. 

Our study represents an original contribution to the design and evaluation of ma-

chine learning techniques for ore and waste discrimination using hyperspectral images 

taken from drill core samples. Several of the methods presented here have been reported 

in the literature, but the combination of the methods adopted and evaluated in this paper, 

using data from a silver deposit, are novel. Our dataset is an original hyperspectral image 

of significant size taken from multiple core samples from a silver mine that were labeled 

by geologists as ore material and waste material. Our approach addresses the challenge 

presented by the mismatch between the core-level resolution of the ground truth provided 

by geologists, and the pixel-wise resolution needed to train an established image segmen-

tation deep neural network (specifically, the ENVI implementation of U-Net). Our work 

includes a detailed evaluation (considering core- and pixel-level resolutions) of the ENVI 

deep learning module results obtained after training with SAM generated labels against 

both supervised (SAM) and unsupervised (k-means) machine learning techniques. Fi-

nally, our study takes care to avoid data leaks between training and test data (see [29] and 

our discussion in Section 3.2.1). 

In this study, a silver deposit is used as a case study where silver mineralization is 

related to the hydrothermal system. As strong absorption features of hydrothermal alter-

ation minerals appear in the shortwave near-infrared region, SWIR (900–2500 nm). Em-

ploying the SWIR data for geological mapping applications has been demonstrated in dif-

ferent studies [30–32]. In this paper, 256 SWIR spectral bands of hyperspectral data, ob-

tained from drill cores, were used as labeled data for the deep learning model. 

  

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/hydrothermal-alteration
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/hydrothermal-alteration
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2. Materials and Methods 

2.1. Dataset 

The dataset used in this study includes several meters of drill cores (~16 m in total) 

from a silver deposit labeled by geologists as ore material and waste material. Samples 

were collected from five drill holes. Three holes were classified as ore, and samples from 

these holes were placed into 14 ore core boxes; two holes were classified as waste, and the 

samples from these holes were put into 5 waste core boxes. The ore drill core samples 

show silicic and propylitic alterations, while the waste core samples are mostly unaltered 

igneous porphyry cut by minor veins of epidote and chlorite. 

Waste and ore cores were scanned by a hyperspectral scanner capturing range of 

reflectance from the visible near-infrared to the shortwave infrared. The scanner had an 

integration time of 2 ms with a spectral resolution of 6 nm and spatial resolution of 3 

pixels/mm. As strong absorption features of hydrothermal alteration minerals appear in 

the shortwave infrared region, and hydrothermal alteration includes the main minerali-

zation in the deposit, only the SWIR data were processed, in order to avoid complicated 

processing. The size of the dataset is 6,494,400 pixels (10,560 by 6150), and each pixel con-

tains 256 bands. Note that the size of the dataset in this study is significantly larger than 

all the popular hyperspectral image segmentation benchmark datasets, including the larg-

est benchmark that we referenced earlier, AeroRIT [26], which has 7,842,675 pixels (1973 

by 3975). Figure 1 shows the hyperspectral near-infrared image of the scanned drill core 

samples. The blue rectangle indicates the area used for deep learning training, which will 

be discussed below in the section on deep learning classification. The scanner had an in-

tegration band color as follows: red, 2163 nm; green, 2200 nm; and blue, 2350 nm. 

 

Figure 1. Hyperspectral near-infrared image of scanned drill core samples. The blue rectangle indi-

cates the training area for deep learning analysis. 

Samples were geochemically and petrographically analyzed to acquire more infor-

mation about sample content. Silver content and whole-rock geochemistry were acquired 

from aliquots of the ore material (ore portion of Figure 1) and sent to a laboratory for 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/hydrothermal-alteration
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assay. Geochemical analyses of elemental abundances were acquired using X-ray Fluores-

cence (XRF) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS); fire assay was 

used to measure silver concentrations. Petrographic analyses using both transmitted and 

reflected light microscopy were also performed. Petrography of the samples shows chlo-

rite and epidote alteration within the ore material, with calcite and quartz stockwork 

veins. Sulfide mineralization of pyrite, chalcopyrite, sphalerite, and galena were also ob-

served. Sulfide textures were found as blebby and disseminated. Silver mineralization 

was identified as hosted within sulfur-bearing minerals. Native silver was not observed 

within any samples. Results of the silver assay display a wide distribution of silver con-

tent, ranging from <1 ppm to 3630 ppm. The ICP analysis showed that silver content is 

correlated to zinc, lead, and silica content. This is likely a result of the silver forming in an 

epithermal-style deposit. The overall trend shows increasing silver content with increas-

ing silica content, as well as with increasing zinc content. 

2.2. Methodology 

In this study, the ability to use hyperspectral data to discriminate between ore and 

waste rock samples was investigated using the deep learning method (DL) and Spectral 

Angle Mapper (SAM) as supervised classification techniques, and k-means as a well-

known unsupervised classification technique, as shown in the workflow illustrated in Fig-

ure 2. The elbow method was used to find the optimum number of classes for classifica-

tion. In the SAM model, the hyperspectral data were processed using spectral hourglass 

workflow. The ENVINet5 architecture was used as the DL classification model in this 

study. A ground truth image of ore and waste of the same size was produced from HS 

data to evaluate the mentioned techniques’ performance. This image was based on the 

field geologist’s interpretation in which each box containing core samples was labeled as 

ore or waste. To avoid background effects in evaluation analysis, classification results 

were decomposed for each core sample by numbering the samples. Accuracy assessment 

and disagreement evaluation on all three classification techniques were calculated for 

each core beyond the training area (52 cores). 

 

Figure 2. Workflow for ore and waste classification based on SAM, the ENVINet5 model, and k-

means clustering. 

2.2.1. Spectral Angle Mapper 

Spectral Angle Mapper (SAM) is the exclusive spectral similarity measure used in 

remote sensing. It is a whole-pixel technique that is primarily used for target detection. 

SAM, a supervised classification method, uses an n-dimensional angle to match pixels to 

reference spectra. The reference spectra can be either laboratory or field spectra, or ex-

tracted from the image. The spectral similarity between two spectra will be determined 
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by calculating the angle between a spectral pixel in the image and a reference spectrum. 

Smaller angles represent closer matches to the reference spectrum [33]. 

2.2.2. Deep Learning 

As mentioned in the introduction, the current study aims to accelerate real-time map-

ping of ore and waste classification with high accuracy. Past studies have shown that the 

deep learning method is useful for achieving image-based classification. This study uses 

ENVI-Net5 as a deep learning module for classification. The ENVI deep learning module 

used in this paper is considered more convenient compared to other approaches. ENVI 

deep learning requires no programming, is simple to apply, and has a low error rate. In 

addition, it can be applied to the identification of ore and waste in large areas with com-

plex conditions. Programming-based deep learning provides a more flexible yet complex 

approach to mapping than the software-based approach, which is rigid, fast, and does not 

require coding [34]. 

The architecture that ENVI deep learning uses, called ENVI-Net, is an encoder-de-

coder convolutional network that classifies every pixel in the image, based on the U-Net 

architecture developed by Ronneberger et al. [35]. The input of ENVI-Net is a patch with 

the entire extent of the training data, and the model can learn based on the pixels specified 

in the patch. The output is an activation image where the pixel values range from 0 to 1, 

and a classification image with labels as values. Based on an initial guess in the first train-

ing pass, the model generates a class activation raster and compares it to the label raster. 

The model learns to optimize its weights through a loss function to improve its accuracy. 

However, data are not passed through training all at once. Instead, square patches of a 

given size are extracted from the label raster and are used for training a few at a time [36]. 

The architecture of the model is characteristic of U-Net, which has 5 levels and 27 

convolutional layers. Figure 3 shows standard architecture using in the ENVI package. 

Modified parts based on our dataset are highlighted by red rectangles. Each level repre-

sents a different pixel resolution in the model, and the image is downsampled and up-

sampled four times. Downsampling (Encoder) gradually reduces the image size while the 

depth gradually increases. Upsampling, in which the expansion path (Decoder) applies 

transposed convolutions along with regular convolutions, gradually increases the size of 

the image, while the depth gradually decreases. The Encoder path follows the typical ar-

chitecture of two 3 × 3 convolutions each, followed by a rectified linear unit (ReLU) and a 

2 × 2 max pooling operation with stride 2 for downsampling. The number of feature chan-

nels is doubled for each downsampling step. The Decoder path is the mirror of the En-

coder path. Concatenation (merging) of feature maps helps give localization information. 

The last layer contains a 1 × 1 convolution used to map each component feature vector to 

the desired number of classes (three in this study). Training involves repeatedly exposing 

the label raster to a model. Over time, the model will learn to translate the spectral and 

spatial information in the label raster into a class-activation raster that highlights the fea-

tures it was shown during training [35]. The architecture of the model is described in detail 

in [36,37]. ENVI deep learning, using the TensorFlow pixel classification tool, allows one 

to train a model once and apply it multiple times elsewhere on the same image, or on 

others that are spatially and spectrally similar [35]. 
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Figure 3. Diagram of the ENVI-Net architecture which presents how the model processes a single 

patch. Modified parts highlighted by red rectangles (modified from [36]). 

2.2.3. k-Means 

k-means is the most widely used unsupervised learning algorithm in remote sensing 

fields. It partitions data into k clusters such that data points in the same cluster have the 

most similarities with each other and the most differences from data points in the other 

clusters. Initial cluster centers are randomly chosen for each cluster, and then each pixel 

is assigned to the nearest centroid based on the Euclidean distance. The k-means algo-

rithm is an iterative process. After assigning pixels to clusters, it tries to recalculate each 

centroid as the arithmetic mean of all samples in the cluster. The procedure is repeated 

until the convergence criterion is met [38]. 

The weakness of the k-means algorithm is the determination of the number of clus-

ters. There are some methods to deal with this issue; the elbow method is the most popu-

lar. The elbow method is a visual method which plots the variance (within-cluster sum of 

squared errors, SSE) against the number of clusters. The most extreme difference-forming 

point in the trend of the plot (the angle of the elbow) shows an optimum number of clus-

ters [39,40]. 

2.2.4. Accuracy Assessment and Disagreement Analysis 

Deep learning models were monitored for loss and accuracy during the training pro-

cess. To maximize the efficiency of the model, the loss should be minimized. ENVI-Net5 

refers to the energy function, which is a combination of pixel-wise softmax over the final 

feature map with the cross-entropy loss function. Detailed information can be found in 

[35]. 

There are different methods to evaluate the performance of classifiers. Pixel Error 

(PE), a type of disagreement analysis, is the simplest way of evaluating a segmentation. It 

counts the number of pixels where the classified (predicted) image disagrees with (is not 

the same as) the labeled image. This can also be written as the squared Euclidean distance 

|L − L*|, where L is a binary classified image and L* is a binary labeled image. A distance 

greater than 0 is a pixel with disagreement. Rand Error (RE), another measure of disagree-

ment, is the frequency of pixel pairs belonging to the same region (label) in one 
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segmentation but no other (Equations (1) and (2)). Rand error is expressed with the fol-

lowing equations: 

RE = 1 − RI (1) 

RI =  
a + b

(n
2
)

 (2) 

where RI is Rand Index, a well-known measure of the similarity between two data clus-

ters. 

Given two segmentations, A and B, of an image L with n pixels, there are: 

• a, the number of pairs of pixels in L that are in the same object in A and in the same 

object in B (i.e., they have the same label) 

• b, the number of pairs of pixels in L that are in different objects in A and in different 

objects in B (i.e., they have different labels) [41]. 

The evaluation indices include loss, accuracy, precision, recall, and F1 score, and are 

used to verify the test dataset. The loss is a unitless number, which indicates the degree of 

matching between the classifier and the verification training data; a value of 0 indicates a 

perfect fit. Overall accuracy is the sum of the percentages of pixels correctly identified in 

different classes. The precision indicates the proportion of correctly predicted pixels to all 

positive predictions. The recall refers to correctly predicting the proportion of positive 

pixels to all actual positive pixels. The F1 score is a harmonic combination between preci-

sion and recall. Further information on the evaluation indices can be found at [34,42,43]. 

In this study, disagreement analysis (PE and RE) and assessment indices are used to 

evaluate the performance of classifiers. The assessment indices include overall accuracy, 

precision, recall, and F1 score. 

3. Results 

3.1. Spectral Angle Mapper Classification 

As mentioned earlier, the shortwave infrared data were imported into ENVI and pro-

cessed using ENVI’s spectral hourglass workflow [44]. The dimensionality of the data was 

reduced using a forward Minimum Noise Function (MNF) as a transformation function. 

This transformation reduced the full range of spectral data from 256 bands to 40. A Pixel 

Purity Index (PPI) was then run on the resultant MNF transformation, due to the large 

amount of hyperspectral data, to avoid complicated processing. The PPI allows for deter-

mining pixels that are the most spectrally unique or pure. About 30,000 iterations were 

run, with a threshold value of 2.5. A total of 2092 pixels were selected by the PPI. These 

2092 pixels were then plotted in n-dimensional space to select spectral endmembers. 

Forty-one spectral endmembers were retrieved from the n-dimensional visualizer. The 41 

selected endmembers were mapped across the data frame using a Spectra Angle Mapper 

(SAM). The SAM maximum angle was 0.10. These endmember spectra were spatially an-

alyzed to determine their concentration in the ore or waste core boxes (Figure 1). 

A sub-section of 10 spectra which were the most representative of the ore and waste 

fractions were selected as ore- and waste-representative spectra (Figure 4). The remaining 

31 spectra were classified as background, since they did not contribute to the discrimina-

tion of ore and waste. Ore spectra have been shown in green, and waste spectra in red. In 

Figure 3, spectra have been vertically exaggerated by a factor of two to enhance their ab-

sorption features, and have been shown without a vertical intensity scale for ease of view-

ing. The seven ore spectra show several strong absorption features at approximately 1200, 

1900, 2200, and 2350 nanometers. In contrast, the three waste spectra show weak absorp-

tion features at 1200, 1400, 1700, and 1900 nanometers. 
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Figure 4. Spectral plot showing the 10 ore and waste spectra selected from the 41 endmembers clas-

sified from the n-dimensional visualization step. Ore: green, Waste: red. 

Using three selected representative spectra for waste and seven representative spec-

tra for ore as reference spectra, SAM was applied to the dataset to classify ore and waste 

in each pixel of the core samples. Figure 5 shows the classified image using the SAM 

method, where waste was labeled red, and ore was labeled green. The pixels not classified 

as ore or waste in the core samples were labeled as background. 

 

Figure 5. Classified image showing spectral classes identified by the SAM. Ore is shown in green, 

and waste is shown in red. Blue rectangle: training area for DL analysis. 
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3.2. Deep Learning Classification 

3.2.1. Model Training and Validation 

Training samples in the DL model were created based on the mapped reference spec-

tra in Figure 4 (representative spectra for waste and ore mapped using SAM). The output 

is a map with two classes, ore and waste. Then, pixels with high values for each class are 

selected as labeled pixels and used for the DL training model. Thresholding is based on 

the Standard Deviation (SD) method in which values above mean +2 SD are selected as 

high values for each separated class. SAM was used to select accurate training data at the 

pixel level, to reduce the impact of the ground truth data labeled in the field. 

Nalepa et al. [29] studied the validation of hyperspectral image segmentation. They 

concluded that conventional methods for splitting samples into training and testing sets 

could lead to an over-optimistic conclusion about segmentation performance, because of 

data leaks between the training and testing sets. To avoid this problem, and due to the 

large size of hyperspectral data, a subset of the hyperspectral image was used for training 

in this study. 

Different numbers of subsets with differences in size, location, and training/valida-

tion split were used to train the model. The search area to find the best training subset was 

limited to the first two rows of the cores, which contain core samples from both the ore 

and waste boxes, and the third row is completely held out. Then, the curves for validation 

loss and validation F1 score were provided for some of the mentioned subsets with the 

same parameters at different locations delineated in Figure 6. These areas are labeled as T 

series (T stands for the number of the subset). A subset based on a low loss and a high F1 

score was selected as the optimum subset for the final model training and classification 

(T-selected). This subset is indicated in Figure 1 using the blue rectangle. In this subset, 

there is a balance between ore and waste cores, located in the center of the image and 

covering around 40% of the total image. To avoid contamination (leaking data) of the 

whole dataset, the area beyond the selected optimum subset was held out during training 

of the model, and was used to test the model’s performance (around 60% of the total im-

age). 
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Figure 6. Line chart of the loss and F1 score in the validation dataset for different subsets (red line 

with yellow diamond dots indicates the selected subset). T: tested subset used for selecting optimum 

training area. 

The training time of the model was 1 h 13 min and 50 s, equal to 4430 s for the single 

run. The training image size is 13,198,374 pixels (3906 columns by 3379 rows) with a spa-

tial resolution of 3 pixels/mm; each pixel contains 256 band values. All experiments with 

ENVI Deep Learning were performed on an Intel(R) Core (TM) i9-7920x CPU @ 2.90 GHz 

and with NVIDIA GeForce RTX 2080 Ti GPU and 64 GB of RAM. ENVI uses the HDF5 

(h5) format to save the model and the trained weights. Table 1 indicates the training pa-

rameters used in the deep learning model for this study. 

Table 1. Training parameters used in the deep learning model. 

Training/Validation Split 80% 

Patch size 256 × 256 Pixels 

Number of Epochs 25 

Patches per Image 100 

Class Weight 0–3 

Loss Weight 0.5 

Optimizer Stochastic Gradient Descent (SGD) 

Momentum Coefficient 0.99 

Patch Sampling Rate 16 

3.2.2. Image Classification 

After a model learns what a specific feature looks like from the training samples, it 

can look for similar features in other images by classifying them. The trained model can 

be used to classify the whole image (Figure 1) and can also be applied to other images 

with a similar format and spatial and spectral properties. The end result of applying the 

trained model on the whole core image (training area included) was a classified raster 

with ore, waste, and background classes. The result of the DL classification is presented 

in Figure 7. 
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Figure 7. Classified image showing ore and waste classes identified by ENVI deep learning. (Red: 

waste, Green: ore, Blue rectangle: training area). 

3.3. K-Means Clustering and Determining the Number of Clusters 

Figure 8 illustrates the unsupervised classification using the k-means clustering tech-

nique with k = 3 and 10 iterations. One of the main classes is the image’s background, and 

the real number of core data classes is k − 1. So, in this classification, there are only two 

classes of core data which discriminate between ore and waste. The results of the unsu-

pervised learning classification were compared with those of the SAM and DL models 

and verified with the ground reference image labeled based on field geologist’s reports, 

represented in Figure 1. The green class indicates the ore class based on its best represen-

tation in ore core boxes, and red indicates the waste class. 

 

Figure 8. k-means clustering (with k = 3) applied to the hyperspectral dataset. (Red: waste, Green: 

ore). 
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Figure 9 shows the output of elbow method applied to the hyperspectral dataset. 

From the elbow region (corresponding to k values from 2 to 4), the graph moves almost 

parallel to the x-axis. Based on this result, three major classes for the hyperspectral data 

were selected (corresponding to background, ore, and waste). 

 

Figure 9. The elbow method for determining the number of clusters. 

3.4. Comparing Model Performance 

To compare the performance of supervised and unsupervised models (SAM, DL, and 

k-means) with respect to discriminating ore and waste in hyperspectral images, disagree-

ment analysis and accuracy assessment were carried out for each separate core sample. 

First, an image (that we refer to as the GT-reference image) based on ore and waste 

core boxes (Figure 1) was created as a reference image, representing the ground truth im-

age. The image shows how these cores were initially labeled as ore and waste by the field 

geologist, based on assay analysis. Then, the classified images generated by each classifier 

were decomposed into 75 separate images corresponding to 75 core samples (21 waste 

and 54 ore samples, Figure 10). Twenty-three cores (highlighted in the blue rectangles in 

Figure 10b) were used for training and validation of the DL model (11 waste and 12 ore 

samples), and the 52 remaining cores were used to compare the performance of the mod-

els (test set), using the corresponding reference image (Figure 10d). There is a spatial con-

sistency between the SAM- and DL-classified images. In the DL classification, nearby pix-

els often have the same class. That is due to an overlapping patch of pixels, as the patches 

of adjacent pixels will contain overlapping information [16]. 

  

(a)  (b)  
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(c)  (d)  

Figure 10. Core sample images were labeled by different classifiers (23 cores for training and vali-

dation highlighted in blue rectangles, 52 cores for testing). (a): SAM classification; (b): deep learning 

classification; (c): k-means classification; (d): GT-reference image. Red: waste, Green: ore. 

Figure 11 illustrates the output image of Pixel Error (PE) disagreement analysis for 

each classifier, compared to the reference data (GT-reference image). The red color shows 

pixels which are in disagreement with the GT-reference image. The cores covered by blue 

rectangles (cores 1–11 and 33–44) were used in the training of the DL model, so they were 

removed for the purposes of model comparison. Visually it is clear that the deep learning 

approach generally has a better performance based on this disagreement analysis. 

  
(a) (b) 

 

 

(c)  

Figure 11. Pixel error disagreement analysis (23 cores used for training, highlighted in blue rectan-

gles, and 52 cores for testing). (a): SAM vs. GT-reference; (b): deep learning vs. GT-reference; (c): k-

means vs. GT-reference. Red: pixels with disagreement, Blue rectangles: cores removed from disa-

greement analysis comparison. 
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Tables 2 and 3 indicate PE and RE disagreement analysis in numeric values. Blue cells 

indicate disagreement for cores which participated in the DL model training. These cores 

were removed from all three models for the purposes of performance comparison in the 

same condition. The minimum PE for the DL classifier with respect to waste core samples 

was 0.044 for core number 17, and the minimum PE for core samples was 0.035 for sample 

58. In the SAM technique, the minimum PE values were 0.185 for waste core samples (core 

number 18) and 0.041 for ore core samples (core number 58). The lowest PE values from 

the k-means classification occurred in waste core sample 19 with 0.162, and in ore core 

number 62 with 0.090. The minimum RE values for the DL technique were 0.084 for waste 

core 17 and 0.0066 for ore core 58. With the SAM classifier, the minimum RE values for 

waste and ore cores were 0.270 and 0.074, from core numbers 19 and 58, respectively. Us-

ing the k-means technique, the minimum RE values were 0.197 and 0.069, for waste core 

sample 21 and ore core sample 27, respectively. In the DL and SAM techniques, the mini-

mum PE and RE values for the ore core samples were both obtained from the same core 

(number 58). 

Table 2. Pixel Error analysis of each classifier compared with the GT-reference image on a core-by-

core basis. DL: deep learning. SAM: spectral angle mapper. KM: k-means. Blue cells were removed 

from the models’ comparisons. 

PE 25 24 23 22 21 20 19 18 17 16 15 14 13 12 (11) (10) (9) (8) (7) (6) (5) (4) (3) (2) (1) 

DL_GT-ref 

0.10 

0.35 

0.13 

0.04 

0.06 

0.10 

0.06 

0.05 

0.04 

0.06 

0.12 

0.05 

0.11 

0.07 

0.05 

0.10 

0.06 

0.09 

0.07 

0.10 

0.07 

0.07 

0.23 

0.29 

0.27 

SAM_GT-

ref 

0.09 

0.10 

0.09 

0.13 

0.35 

0.22 

0.19 

0.18 

0.41 

0.30 

0.33 

0.31 

0.38 

0.21 

0.28 

0.31 

0.23 

0.17 

0.22 

0.21 

0.20 

0.12 

0.30 

0.37 

0.35 

KM_GT-ref 

0.30 

0.49 

0.50 

0.52 

0.16 

0.30 

0.16 

0.19 

0.31 

0.18 

0.32 

0.32 

0.43 

0.26 

0.22 

0.41 

0.26 

0.07 

0.08 

0.08 

0.07 

0.04 

0.16 

0.20 

0.24 

 50 49 48 47 46 45 (44) (43) (42) (41) (40) (39) (38) (37) (36) (35) (34) (33) 32 31 30 29 28 27 26 

DL_GT-ref 

0.04 

0.06 

0.08 

0.05 

0.13 

0.08 

0.06 

0.08 

0.19 

0.05 

0.18 

0.04 

0.14 

0.07 

0.28 

0.15 

0.05 

0.12 

0.32 

0.05 

0.16 

0.05 

0.41 

0.48 

0.06 

SAM_GT-

ref 

0.16 

0.13 

0.10 

0.10 

0.13 

0.13 

0.13 

0.16 

0.14 

0.09 

0.21 

0.15 

0.20 

0.18 

0.15 

0.17 

0.16 

0.11 

0.12 

0.13 

0.09 

0.12 

0.11 

0.07 

0.12 

KM_GT-ref 

0.40 

0.33 

0.45 

0.40 

0.45 

0.39 

0.33 

0.46 

0.50 

0.18 

0.33 

0.09 

0.25 

0.17 

0.51 

0.56 

0.45 

0.53 

0.42 

0.55 

0.46 

0.30 

0.58 

0.49 

0.35 

 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 

DL_GT-ref 

0.05 

0.18 

0.13 

0.07 

0.08 

0.12 

0.08 

0.14 

0.13 

0.07 

0.14 

0.04 

0.05 

0.04 

0.08 

0.04 

0.05 

0.03 

0.10 

0.25 

0.17 

0.07 

0.04 

0.07 

0.10 

SAM_GT-

ref 

0.21 

0.31 

0.31 

0.25 

0.28 

0.34 

0.29 

0.33 

0.34 

0.46 

0.33 

0.27 

0.21 

0.10 

0.12 

0.09 

0.10 

0.04 

0.16 

0.17 

0.12 

0.09 

0.17 

0.13 

0.13 

KM_GT-ref 

0.13 

0.37 

0.27 

0.20 

0.23 

0.34 

0.23 

0.33 

0.25 

0.26 

0.38 

0.21 

0.15 

0.09 

0.21 

0.26 

0.23 

0.14 

0.43 

0.55 

0.45 

0.48 

0.35 

0.42 

0.34 

Table 3. Rand Error analysis of each classifier compared with the GT-reference image on a core-by-

core basis. DL: deep learning. SAM: spectral angle mapper. KM: k-means. Blue cells were removed 

from the models’ comparisons. 

RE 25 24 23 22 21 20 19 18 17 16 15 14 13 12 (11) (10) (9) (8) (7) (6) (5) (4) (3) (2) (1) 

DL_G

T-ref 

0.15 

0.23 

0.16 

0.07 

0.11 

0.15 

0.11 

0.09 

0.08 

0.11 

0.17 

0.09 

0.18 

0.12 

0.09 

0.16 

0.10 

0.13 

0.12 

0.15 

0.12 

0.12 

0.27 

0.26 

0.30 

SAM_

GT-ref 

0.16 

0.17 

0.15 

0.23 

0.37 

0.31 

0.27 

0.27 

0.50 

0.37 

0.40 

0.43 

0.49 

0.30 

0.36 

0.43 

0.35 

0.19 

0.26 

0.24 

0.21 

0.17 

0.30 

0.27 

0.36 

KM_G

T-ref 

0.16 

0.13 

0.17 

0.33 

0.20 

0.25 

0.20 

0.22 

0.32 

0.21 

0.24 

0.30 

0.36 

0.28 

0.23 

0.34 

0.29 

0.08 

0.11 

0.11 

0.09 

0.06 

0.20 

0.19 

0.26 

 50 49 48 47 46 45 (44) (43) (42) (41) (40) (39) (38) (37) (36) (35) (34) (33) 32 31 30 29 28 27 26 

DL_G

T-ref 

0.08 

0.11 

0.12 

0.09 

0.17 

0.13 

0.10 

0.12 

0.23 

0.09 

0.23 

0.08 

0.18 

0.11 

0.27 

0.21 

0.10 

0.18 

0.24 

0.09 

0.18 

0.10 

0.33 

0.18 

0.10 

SAM_

GT-ref 

0.27 

0.22 

0.18 

0.18 

0.22 

0.21 

0.22 

0.26 

0.22 

0.14 

0.30 

0.24 

0.29 

0.27 

0.22 

0.27 

0.26 

0.20 

0.21 

0.22 

0.16 

0.22 

0.19 

0.12 

0.20 

KM_G

T-ref 

0.35 

0.35 

0.30 

0.28 

0.27 

0.30 

0.21 

0.32 

0.25 

0.19 

0.29 

0.14 

0.25 

0.19 

0.25 

0.35 

0.37 

0.34 

0.20 

0.33 

0.12 

0.27 

0.20 

0.07 

0.25 
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 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 

DL_G

T-ref 

0.07 

0.23 

0.20 

0.12 

0.13 

0.19 

0.13 

0.21 

0.21 

0.13 

0.20 

0.07 

0.10 

0.08 

0.12 

0.07 

0.08 

0.07 

0.14 

0.26 

0.19 

0.11 

0.08 

0.10 

0.14 

SAM_

GT-ref 

0.23 

0.39 

0.39 

0.35 

0.36 

0.44 

0.35 

0.42 

0.43 

0.48 

0.40 

0.40 

0.33 

0.16 

0.20 

0.16 

0.17 

0.07 

0.24 

0.23 

0.17 

0.15 

0.29 

0.21 

0.22 

KM_G

T-ref 

0.13 

0.35 

0.32 

0.27 

0.30 

0.41 

0.27 

0.38 

0.34 

0.35 

0.37 

0.32 

0.24 

0.10 

0.20 

0.29 

0.24 

0.16 

0.26 

0.21 

0.18 

0.30 

0.40 

0.28 

0.24 

Figure 12 illustrates the sorted scatter plot of the PE method to show the trend of ore 

and waste disagreement results separately. The x-axis indicates cores sorted based on the 

PE analysis values presented in Table 2. Waste and ore cores are sorted separately in red 

and green, but are shown in tandem in the single plot. The sorted samples belong to dif-

ferent core numbers and are related by different classification techniques. For example, 

the first core in the graph (border highlighted by blue) with the lowest PE among the 

waste samples for each of the three classification techniques is core number 17 for DL, 19 

for k-means, and 18 for SAM. In the same way, Figure 13 shows the sorted scatter plot of 

the RE analysis based on Table 3. 

These two plots indicate that SAM and k-means have more or less similar trends in 

both disagreement methods. However, the trends of the DL technique in both disagree-

ment methods are different. In the PE_DL method, the R2 value is low (0.65) due to the 

high amount of PE in some cores, such as core numbers 24, 28, 32, and 56 in the ore sam-

ples (Table 2). 

 

Figure 12. Pixel Error disagreement analysis. D: deep learning. S: SAM. K: k-means. Red: Waste. 

Green: Ore. The x-axis indicates cores sorted based on PE analysis values presented in Table 2. 

 

Figure 13. Rand Error disagreement analysis. D: deep learning. S: SAM. K: k-means. Red: Waste. 

Green: Ore. The x-axis indicates cores sorted based on RE analysis values presented in Table 3. 
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Figure 14 shows the average disagreement analysis for total test cores (52 cores). Re-

sults indicate that based on both disagreement methods, the deep learning model per-

forms better at discriminating between ore and waste. The best performance was by the 

DL method in identifying waste cores, with a PE of 0.073. k-means, an unsupervised tech-

nique, performed better than SAM, a supervised technique, for waste discrimination, in 

terms of having lower PE and RE values. At the same time, SAM outperformed k-means 

on ore discrimination based on both PE and RE values. 

 

Figure 14. The averages of PE and RE analyses for all cores without training data. AVE: the average 

value of disagreement analysis. 

After creating a confusion matrix for each separate core (52 cores in total) using Py-

thon programming, a classification report was produced, including overall accuracy, pre-

cision, recall, and F1 scores for all cores in all classification techniques. Table 4 reveals a 

sample of the produced classification reports for each classifier technique, using the cores 

with maximum overall accuracy in the waste and ore classes. Similar to the results of the 

disagreement analysis, k-means had a slightly better performance than SAM when iden-

tifying waste cores, with an OA of 0.84 compared to 0.82 for SAM.  

Comparing classification techniques for all testing cores (52 cores) is difficult, so the 

weighted average of each accuracy index (weighted based on the number of pixels for 

each separate core) was calculated for total cores, waste cores, and ore cores. Precision for 

all three techniques was high, ranging above 90% (0.982, 0.975, and 0.954 for SAM, k-

means, and DL, respectively). Results of the weighted averages of other indexes are pre-

sented in Figure 15, and indicate that the DL method outperformed the two other tech-

niques. The F1 score, recall, and overall accuracy for DL are all much higher than for SAM 

and k-means. The precision of SAM is slightly better than that of DL and k-means, which 

means that the SAM method correctly identified a higher percentage of relevant results. 

Comparing k-means and SAM indicates that recall, F1 score, and overall accuracy with 

respect to the waste class are better for k-means than for SAM. So, it can be concluded, 

based on both the accuracy assessment matrix and disagreement analysis, that k-means 

performs better at waste classification than SAM. 
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Table 4. Classification report for each technique based on the cores with maximum overall accuracy 

in the waste and ore groups. B: background. # indicates the core sample number. Red: waste, Green: 

ore. 

Classification Report SAM Classification Report k-Means Classification Report DL 
 Precision Recall F1-Score Accuracy  Precision Recall F1-Score Accuracy  Precision Recall F1-Score Accuracy 

#18 

Class 

Waste 

0.99 0.76 0.86 0.82 

#19 

Class 

Waste 

0.98 0.8 0.88 0.84 

#17 

Class 

Waste 

0.95 1 0.97 0.96 

#58 

Class 

Ore 

0.98 0.96 0.97 0.96 

#62 

Class 

Ore 

0.97 0.86 0.91 0.91 

#58 

Class 

Ore 

0.95 0.99 0.97 0.97 

 

Figure 15. The weighted averages of classification reports for each technique (applied to 52 cores). 

3.5. Ensemble Image 

As mentioned in the previous section, labeled images for ore and waste core boxes 

were created as a reference image, based on a field geologist’s interpretation of whether 

each box containing core samples should be labeled as ore or waste. This labeling was 

based solely on assay analysis for every meter of the core sample, and on the local geolog-

ical information. By contrast, the labeling in the three classification methods was based on 

the ore and waste spectra, measured from the core samples at the pixel level (a signifi-

cantly smaller scale than core level). It is recognized that there is a scale difference between 

the generated ground truth and the three classification methods. A core sample can con-

tain both ore and waste spectra, but it can be classified as ore only if the grade of silver 

measured per meter of the core is above a cut-off grade. In order to deal with this scale 

difference problem, as well as to provide feedback regarding potential errors (noise) in 

the geologist-labelled ground truth image, a new ensemble image was created based on 

the results of the three classification techniques (SAM, DL, k-means). All three classifica-

tion techniques were selected for creating the ensemble image because the results are gen-

erally close. SAM and k-means are the common techniques in remote sensing classifica-

tion, and their results in this study are acceptable. There is a spatial consistency between 

the SAM- and DL-classified images. This consistency can be important in pixel labeling. 

In the DL classification, nearby pixels often have the same class because of an overlapping 

patch of pixels, but in SAM, pixels are more independent. k-means finds possible mixtures 

of the different classes without restriction to the reference data. In the ensemble image, 

we looked at the data from three different perspectives, so the output can be more accurate 

than the initial labeling. 

In the ensemble image, for each pixel, the majority vote of ore vs. waste from the 

three classifiers was selected as the pixel’s label. As an example, if for one pixel two clas-

sifiers reported the pixel as ore and one as waste, this pixel was ultimately labeled as ore. 

Pixels with no majority vote for ore or waste were labeled as background (e.g., one tech-

nique labeled it as ore, the second technique as waste, and the last as background). 

Table 5 displays the percentage of each core labeled as ore, waste, and background, 

after applying the voting system to generate the new ensemble image (depicted in Figure 

16). 
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Table 5. The percentage of each core labeled as ore, waste, and background based on the voting 

system. 

 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

Ore 

0.44 

0.26 

0.52 

0.72 

0.03 

0.05 

0.02 

0.01 

0.01 

0.03 

0.08 

0.02 

0.08 

0.03 

0.02 

0.04 

0.02 

0.04 

0.03 

0.05 

0.03 

0.01 

0.16 

0.23 

0.21 

Waste 

0.03 

0.30 

0.09 

0.01 

0.64 

0.51 

0.67 

0.65 

0.57 

0.61 

0.44 

0.55 

0.53 

0.64 

0.59 

0.55 

0.65 

0.52 

0.62 

0.62 

0.56 

0.70 

0.52 

0.38 

0.49 

Backgrou

nd 

0.53 

0.44 

0.39 

0.26 

0.33 

0.43 

0.31 

0.34 

0.42 

0.36 

0.49 

0.43 

0.39 

0.33 

0.39 

0.41 

0.33 

0.44 

0.34 

0.32 

0.41 

0.29 

0.31 

0.39 

0.29 

 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 

Ore 

0.67 

0.63 

0.63 

0.65 

0.56 

0.62 

0.52 

0.65 

0.55 

0.57 

0.51 

0.59 

0.52 

0.56 

0.42 

0.65 

0.75 

0.70 

0.31 

0.77 

0.42 

0.68 

0.34 

0.09 

0.63 

Waste 

0.01 

0.02 

0.03 

0.01 

0.11 

0.05 

0.02 

0.06 

0.14 

0.01 

0.14 

0.00 

0.09 

0.03 

0.24 

0.12 

0.03 

0.09 

0.25 

0.00 

0.12 

0.00 

0.34 

0.43 

0.00 

Backgrou

nd 

0.32 

0.34 

0.33 

0.34 

0.33 

0.33 

0.46 

0.29 

0.31 

0.42 

0.35 

0.41 

0.39 

0.40 

0.33 

0.23 

0.22 

0.21 

0.44 

0.23 

0.46 

0.32 

0.32 

0.48 

0.37 

 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 

Ore 

0.46 

0.55 

0.54 

0.61 

0.60 

0.58 

0.60 

0.60 

0.57 

0.66 

0.58 

0.85 

0.74 

0.51 

0.52 

0.73 

0.68 

0.67 

0.58 

0.45 

0.43 

0.67 

0.73 

0.56 

0.54 

Waste 

0.03 

0.17 

0.08 

0.01 

0.03 

0.06 

0.05 

0.10 

0.05 

0.02 

0.13 

0.03 

0.00 

0.00 

0.02 

0.00 

0.01 

0.00 

0.08 

0.24 

0.16 

0.04 

0.00 

0.04 

0.06 

Backgrou

nd 

0.51 

0.29 

0.38 

0.37 

0.37 

0.35 

0.35 

0.30 

0.38 

0.33 

0.29 

0.13 

0.25 

0.49 

0.46 

0.26 

0.31 

0.33 

0.34 

0.31 

0.42 

0.29 

0.26 

0.40 

0.40 

 

Figure 16. New ensemble image based on the voting system. Red: Waste, Green: Ore. 

4. Discussion 

Deep learning, a relatively new research area in hyperspectral image classification, 

offers great potential for ore and waste discrimination. This research is one of the first 

attempts to use ENVI deep learning modules to discriminate ore and waste based on hy-

perspectral data collected from core samples. The results show that the DL method trained 

on labels generated by SAM has a better performance, based on disagreement analysis 

and accuracy assessment, than the two other classifiers (SAM and k-means). The model 

input for the DL model is the label raster that can automatically generate semantic features 

to identify classes. The training of the deep learning model involves some random process 

due to how this algorithm attempts to converge [34,43]. This random splitting between 

test and training data leads to over-optimistic segmentation performance [29]. To avoid 

data contamination in the comparison process, the cores that participated in the training 

of the DL model were removed. 
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In the DL training model, the value of training loss rapidly decreases in the first few 

epochs and continues decreasing until the end epoch (Figure 5). The minimum validation 

loss happened on the last epoch, so the model did not lose the ability to generalize predic-

tions for the test datasets during the training. 

In this study, the overall accuracy, F1 score, and recall of ore and waste discrimina-

tion using DL were high compared to SAM and k-means. However, the precision was 

slightly lower than SAM and k-means (around 0.03 difference). This means that in addi-

tion to increasing the true positives, there were more false positives in the DL method 

than in the SAM and k-means techniques. This can be attributed to the fact that in the DL 

classification, nearby pixels often have the same class, so the patches of adjacent pixels 

will contain overlapping information. 

The trend of RE (Figure 12) indicates that the three classification techniques are sim-

ilar in topological view with respect to classifing pixels or detecting object boundaries in 

the image, particularly for the ore cores. RE disagreement focuses on class boundaries and 

evaluates structures’ completeness for nearby pixels belonging to the same class. The RE 

increases slightly when there are minor differences in the location of class boundaries, but 

a large amount of RE occurs by merging or splitting pixel classes. The average amount of 

RE for all models (Figure 14) indicates a significant difference for the SAM technique, 

which has a high RE, particularly in waste core samples, compared to the two other mod-

els, and signifies the poor performance of SAM in the discrimination of waste samples. 

Contrary to RE, PE evaluates the classification performance pixel by pixel, and the result 

is not affected by nearby pixels. The PE trend (Figure 11) signifies that SAM and DL are 

similar with respect to ore cores, but that SAM and k-means are very close regarding 

waste cores. Overall, based on PE, k-means is far from the other two classification tech-

niques for identifying ore cores and has poor performance in this regard. 

Figures 14 and 15 show that k-means performs better than SAM for waste cores, 

based on disagreement analysis and accuracy assessment. These results indicate that k-

means, as an unsupervised technique, can produce a simple classification of ore and waste 

based on hyperspectral data. 

The initial ground truth reference model (GT-reference image) was generated for 

each core box based on the field geology interpretation. However, due to a mixture of both 

ore and waste spectra measured in each core sample, the ore/waste classification based on 

hyperspectral imaging occurs at the pixel-by-pixel scale. Given this scale discrepancy, a 

new ensemble image was created based on a voting system incorporating the (generally 

close) results from the three classifiers. The new ensemble image can be used to identify 

core samples with high disagreements (i.e., samples #2, #27, #28, #56) as samples with po-

tential noise (prompting further testing to ascertain that they have been well classified as 

either ore or waste based on the geological interpretation). 

5. Conclusions 

Ore and waste discrimination is an essential step in mining operations. Hyperspec-

tral imaging is an effective method for discriminating between ore and waste. In this 

study, hyperspectral analysis of core samples was used to compare the performance of 

the ENVI deep learning module against the Spectral Angle Mapper and k-means tech-

niques, well-known supervised and unsupervised machine learning methods for 

ore/waste discrimination. Disagreement analysis, namely Rand Error and Pixel Error, as 

well as accuracy assessment indices, including loss, accuracy, precision, recall, and F1 

score, were used to evaluate the performance of the three classifier methods. The results 

demonstrated that the DL method outperformed the other two techniques. The overall 

accuracy of the DL model was 0.89, the F1 score was 0.91, the recall was 0.89, and the 

precision was 0.95, which indicates good agreement in the discrimination of the ore and 

waste dataset. A comparison with the k-means and SAM classification techniques showed 

that in the waste part of the dataset, k-means classification had better performance than 

SAM. The Rand Error for SAM in the waste part is high, indicating that from a topological 
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view, there are big differences between the boundaries of predicted classes and those of 

the reference image. 

When using the DL technique, the initial classification and class activation rasters 

may not be entirely accurate, depending on the quality of the input training samples. An 

optional step would be to refine the label rasters by creating regions of interest (ROIs) of 

the highest pixel values, then editing the ROIs to remove false positives. The refined ROIs 

can be combined with the original ROIs to train a new model or refine the trained model 

and improve classification results. In general, the results presented showed that the ENVI 

deep learning techniques can effectively discriminate ore and waste in a near real-time 

manner. 

The evaluation of the models in this study was based on available information, with 

a focus on only ore/waste discrimination in the core samples, and the results in the scope 

of the research are acceptable. The core samples were scanned in a laboratory under ideal 

lighting conditions. The illumination conditions in the field might cause major issues in 

the acquisition and analysis of hyperspectral data. No attempt was made to use the hy-

perspectral data to classify the ore samples based on their grade. This is an ongoing study, 

and these additional challenges will be addressed in future work. 
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