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Abstract: The estimation of characteristic parameters such as diameter at breast height (DBH),
aboveground biomass (AGB) and stem volume (V) is an important part of urban forest resource
monitoring and the most direct manifestation of the ecosystem functions of forests; therefore, the
accurate estimation of urban forest characteristic parameters is valuable for evaluating urban ecological
functions. In this study, the height and density characteristic variables of canopy point clouds were
extracted as Scheme 1 and combined with the canopy structure variables as Scheme 2 based on
unmanned aerial vehicle lidar (UAV-Lidar). We analyzed the spatial distribution characteristics of
the canopies of different tree species, and multiple linear regression (MLR), support vector regression
(SVR), and random forest (RF) models were used to estimate the DBH, AGB, and V of urban single
trees. The estimation accuracy of different models was evaluated based on the field-measured data.
The results indicated that the model accuracy of coupling canopy structure variables (R2 = 0.69–0.85,
rRMSE = 9.87–24.67%) was higher than that of using only point-cloud-based height and density
characteristic variables. The comparison of the results of different models shows that the RF model
had the highest estimation accuracy (R2 = 0.76–0.85, rRMSE = 9.87–22.51%), which was better than
that of the SVR and MLR models. In the RF model, the estimation accuracy of AGB was the highest
(R2 = 0.85, rRMSE = 22.51%), followed by V, with an accuracy of R2 = 0.83, rRMSE = 18.51%, and the
accuracy of DBH was the lowest (R2 = 0.76, rRMSE = 9.87%). The results of the study provide an
important reference for the estimation of single-tree characteristic parameters in urban forests based
on UAV-Lidar.

Keywords: urban forest; UAV-Lidar; canopy volume; diameter at breast height (DBH); aboveground
biomass (AGB); stem volume (V)

1. Introduction

Urban forests are an important part of urban ecosystems, and they are the foundation
and guarantee of urban sustainable development [1,2]. They can effectively reduce the
urban heat island effect and improve air quality and other environmental conditions as
well as ecosystem services [3,4]. The single tree is the basic unit of the forests [5]; their
characteristic parameters such as tree height (H), diameter at breast height (DBH), crown
width, aboveground biomass (AGB), and tree volume (V) can effectively reflect the growth
status, spatial distribution, and structural characteristics of forest resources, which are
important elements of forest resource investigation and reliable diversity indicators of
forest succession stages [6], as well as being the focus of research on urban ecosystems and
their functions [7].
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Single trees in cities are highly fragmented and unevenly distributed in urbanized areas
with high population densities and high concentrations of artificial landscapes [8], so it is
time-consuming and labor-intensive to obtain information on the characteristic parameters
of urban single trees through traditional forest resource investigation methods [9]. Remote
sensing technology has rapidly developed and can be used to quickly and accurately obtain
multiscale and multitemporal information on forest structure characteristics, effectively
making up for the shortcomings of traditional forest resource monitoring methods and
greatly improving the work efficiency [10]. However, passive remote sensing technology
only provides spectral and textural information of the forest canopy surface, which is
susceptible to atmospheric conditions and other factors, and it is difficult to obtain the
three-dimensional structure of the vegetation canopy [11,12].

Light detection and ranging (LiDAR) is an active remote sensing technology that
obtains the distance between a sensor and a target by calculating the time difference
between the laser pulse emitted by the sensor and the received echo pulse. Because
LiDAR has strong penetration into the forest, it can accurately obtain the three-dimensional
structure information of forest tree height and canopy [13–15], thus realizing the leap from
two-dimensional to three-dimensional forest canopy structure information, resulting in
the emergence of canopy parameters extracted from lidar data as a hot research topic
globally. Previous studies have shown that LiDAR-based estimation of diameter at breast
height, biomass, stock volume, and forest distribution mapping can be effective [16–19]. For
example, Cao et al. [20] used full-waveform unmanned aerial vehicle (UAV) lidar data to
extract point cloud metrics and waveform metrics calculated based on voxel-based methods
to estimate the single tree AGB of plantation forests in the coastal region of east China. The
results indicated that full-waveform lidar data can effectively estimate the AGB of single
trees. Liu et al. [21] used the constant allometric ratio model to estimate the forest single
tree biomass based on UAV lidar data to obtain single tree canopy characteristic parameters
(tree height, crown width, canopy projection area, and canopy volume) and achieved a good
fit and high prediction accuracy. Qin et al. [22] used UAV lidar to estimate the subtropical
single tree carbon stock in Shenzhen, southern China, and the results indicated that the
height variable can explain the variation of tree carbon stock and estimate the single tree
carbon stock well. Therefore, it is important to examine the application of UAV lidar for
estimating single tree characteristic parameters in urban areas.

Forest canopy structure includes the horizontal and vertical directions of branches
and leaves, canopy width and height, and canopy light transmission [23,24]. The canopy
width and cross-sectional area can be used to measure the horizontal extension size of
the canopy. The vertical structure of the canopy is mainly the spatial distribution and
hierarchical characteristics of the forest vegetation, and the performance is comparatively
complex [25–27]. To quantify the three-dimensional structure of the forest canopy, Lefsky
et al. proposed a voxel-based canopy volume model (CVM) to characterize the differences
in the volume and vertical spatial distribution of the canopy [28]. The basic principle of the
CVM model is reflecting the spatial heterogeneity of the forest structure arising from the
difference in the light environment within the canopy by dividing the canopy into two parts,
the photosynthetically active zone and the inactive zone, to realize the spatial arrangement
of elements within the canopy structure and the distinction of volume structure [29–32].
Therefore, the CVM model is an important method for obtaining the parameters of tree
canopy structure.

In summary, the estimation of DBH, AGB, and stem volume of trees is an important
element of urban forest resource monitoring and the most direct manifestation of the
ecosystem functions of forests, and lidar is an advanced technical tool for detecting the
three-dimensional structure of forests. Therefore, in this study, three urban tree species,
Ginkgo (Ginkgo biloba L.), Cinnamomum camphora (Cinnamomum camphora (Linn.) Presl),
and Metasequoia glyptostroboides (Metasequoia glyptostroboides Hu et Cheng) were used
as examples. UAV-Lidar data were used to obtain the canopy point clouds of the three
kinds of single trees, coupled with point clouds and canopy structure variables, and three
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methods, multiple linear regression (MLR), support vector regression (SVR) and random
forest (RF), were used to establish models for estimating the DBH, AGB, and V of single
trees in urban forests based on UAV-Lidar data. The model and estimation results were
validated using ground-measured data. This provides an important technical tool for rapid
and accurate monitoring of single tree parameters in urban forests.

2. Materials and Methods
2.1. Study Area

The study area is in Lin’an (29◦56′ to 30◦23′N latitude and 118◦51′ to 119◦52′E longitude)
(Figure 1), Hangzhou City, Zhejiang Province. Lin’an belongs to the subtropical monsoon
climate with warm and humid conditions, abundant light and rainfall, and four distinct
seasons. The average annual temperature is 16.4 ◦C, the frost-free period is 237 days,
the sunshine time is 1847.3 h, and the annual precipitation is 1613.9 mm. The area is
dominated by hills and mountains, the terrain inclines from northwest to southeast, and
the three-dimensional climate is obvious. The climax vegetation is subtropical evergreen
broad-leaved forest, and the main tree species planted in the urban area of Lin’an City include
Metasequoia glyptostroboides (M. glyptostroboides), Ginkgo biloba (G. biloba), Cinnamomum camphora
(C. camphora), etc.
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Figure 1. Overview of the study area: (a) location of Lin’an, (b) location of the study area, (c) UAV-
Lidar point clouds of the study area, (d) Metasequoia glyptostroboides point cloud profile, (e) Ginkgo
biloba point cloud profile, (f) Cinnamomum camphora point cloud profile.

2.2. Field Measurements

In July 2021, the DBH, tree height, crown height, and crown width of 64 stems of
G. biloba, 74 stems of C. camphora, and 55 stems of M. glyptostroboides in the study area
were measured in detail, as shown in Figure 1. The single trees were positioned with
Huace Smart Real Time Kinematic. The AGB consisted of stem biomass (WS), branch
biomass (WB), and foliage biomass (WF). In this study, the biomass of each component
was calculated according to the biomass allometric equations of different tree species and
summed to obtain the AGB of a single tree [33–35], as shown in Table 1. The stem volume
was calculated according to the single-entry stem volume table of Zhejiang Province and
the measured single tree DBH data [36]. Table 2 shows the statistical characteristics of the
parameters of the three tree species.
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Table 1. Biomass allometric equations for each biomass component of the three tree species.

Tree Species Biomass Components Biomass Allometric Equations Reference

G. biloba
Stem biomass (WS) ln(WS) = −3.84 + 0.95 × ln(DBH2H)

[34]Branch biomass (WB) ln(WB) = −9.38 + 1.46 × ln(DBH2H)
Foliage biomass (WF) ln(WF) = −6.95 + 1.03 × ln(DBH2H)

C. camphora
Stem biomass (WS) ln(WS) = −3.175 + 0.948 × ln(DBH2H)

[33]Branch biomass (WB) ln(WB) = −6.690 + 1.195 × ln(DBH2H)
Foliage biomass (WF) ln(WF) = −7.601 + 1.287 × ln(DBH2H)

M. glyptostroboides
Stem biomass (WS) WS = 0.01749 × (DBH2H)0.9608

[35]Branch biomass (WB) WB = 0.03037 × (DBH2H)0.7082

Foliage biomass (WF) WF = 0.11079 × (DBH2H)0.4607

Note: H is tree height (m), DBH is diameter at breast height (cm).

Table 2. Summary of information on measured characteristics parameters of the three tree species.

Parameters
G. biloba (n = 64) C. camphora (n = 74) M. glyptostroboides (n = 55)

Range Mean SD Range Mean SD Range Mean SD

H/m 8–14.3 11.01 1.78 6.9–11 8.58 0.84 7.8–18.8 11.63 2.70
DBH/cm 14.8–23.9 18.76 2.29 16.3–29.3 22.88 2.65 11.8–33.9 19.94 5.60
AGB/kg 31.4–154.6 75.26 29.31 73.72–345.43 186.84 59.54 21.87–231.29 77.51 50.77

V/m3 0.074–0.25 0.138 0.041 0.077–0.355 0.183 0.054 0.047–0.688 0.206 0.154

2.3. Lidar Data

The DJI Matrice 600 Pro six-rotor UAV with a lightweight Velodyne Puck LITE™ laser
scanner was used to acquire the original lidar point clouds in the study area (Figure 2). The
flight height of the UAV is 60 m above ground level, with a flight speed of 8 m/s, a route
spacing of 25 m, and a lateral overlap rate of data sampling of 50%. The sensor records the
first echo information of the laser pulse with a wavelength of 903 nm, a maximum scanning
angle of ±15◦, a scanning frequency of 20 Hz, and a scanning speed of 300,000 points/s.
The final average point cloud density obtained is approximately 230 points/m2.
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2.3.1. Lidar Data Preprocessing

The original lidar point cloud data were denoised using the height thresholding
method, and the point cloud data after noise removal were filtered and separated into
ground points and nonground points. First, the ground points were extracted by filtering
with the improved progressive TIN densification algorithm [37]. Then, the height average
of the laser points within a cell was calculated via the inverse distance weighting method
to obtain a digital elevation model (DEM) with a spatial resolution of 0.5 m. Finally, the
DEM was used to normalize the point cloud data to obtain the normalized point cloud
data. In this study, the point cloud segmentation algorithm was used to segment individual
trees based on normalized point cloud data [38,39]. This algorithm identified single trees
via region growing combined with thresholding, and then identified the top of the tree to
determine the distance between the surrounding points and the vertex, and expanded the
region to segment the first tree. Successive iterations were made on this basis until all trees
were segmented. The characteristic variables of a single tree were extracted based on the
segmented single tree point cloud.

2.3.2. Lidar Metrics

The characteristic variables based on the lidar data can be used to estimate the forest
characteristic parameters, and the point cloud characteristics extracted from the first returns
have a remarkable correlation with the height, which is more suitable for estimating the
forest characteristic parameters [13,40]. Of course, to reduce the influence of low ground
vegetation on the data, the data after filtering the point clouds below 2 m were used as the
crown point clouds, and characteristic variables were extracted from the first returns of
the lidar point cloud [41,42]. In this study, the lidar data characteristic variables included:
height-based metrics (HB) describing the parameters related to the lidar point cloud height;
density-based metrics (DB) describing the canopy return density variable, which is the
ratio of the number of height percentile point clouds to the total number of point clouds;
the canopy area (S), which is the projected area of the canopy point cloud calculated based
on the two-dimensional convex packet algorithm; the crown diameter (CD), which is the
average of the east–west and north–south crown diameters of the point clouds. The canopy
volume variables include OG, CG, EV, and OV. The metrics and descriptions are shown in
Table 3.

2.3.3. Calculation of the Volume of Single Tree Canopy

Urban trees are frequently pruned and truncated, [43], making the crown of the
pruned single tree change, often with a special crown shape. Therefore, canopy volume
was extracted as a metric for single tree characteristic parameter estimation, as shown in
Table 3. As shown in Figure 3, in this study, the voxel-based canopy volume method was
used to calculate the canopy volume metrics for lidar point clouds of tree crowns:
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The space where the canopy point clouds was located was divided into 0.5× 0.5× 0.5 m
voxels [44], which were divided into vertical columns, and each column was further layered
into four canopy structures. First, each voxel was classified as “filled” or “empty” according
to whether there was a point cloud in the voxel, that is, the volume in unit area (m3/m2).

Table 3. Description of metrics derived from lidar data.

Metrics Description Reference

Height-based metrics(HB)

Height percentiles (H5, H25, H50,
H75, H95, and H99)

The percentiles of the canopy height
distribution (5th, 25th, 50th, 75th,
95th, and 99th) of first returns

[25,45,46]

The coefficient of variation of
height (Hcv)

The coefficient of variation of
heights of all first returns

Maximum height (Hmax) Maximum height above ground of
all first returns

Variance of height (Hva) The variation in heights of all
first returns

Standard deviation of height (Hstd) The standard deviation of heights
of all first returns

Median height (Hmed) Median height above ground of all
first returns

Mean height (Hmean) Mean height above ground of all
first returns

Interquartile distance of
height (HIQ)

The interquartile distance of height
of all first returns

Root mean square of height (Hsq) The root mean square of height of
all first returns

Cube mean of height (Hcm) The cube mean of height of all
first returns

Density-based metrics(DB) Canopy return density
(D3, D5, D7, D9)

The proportion of points above the
quantiles (30th, 50th, 70th and 90th)
to total number of points

[47]

Canopy structure metrics(CS)

Canopy projection area (S)
Canopy projection area calculated
using two-dimensional convex
hull algorithm [21]

Crown diameter (CD)
Average diameter of crown point
cloud (Xmax−Xmin)+(Ymax−Ymin)

2

Open gap volume (OG) and closed
gap volume (CG) of CVM

The volume of empty voxels
located above and below the filled
canopy, respectively [32]

Euphotic volume (EV) and
oligophotic volume (OV) of CVM

The volume of filled voxels located
65% above and 35% below of all
filled grid cells of that column

Then, according to the distribution of the filled position, the upper 65% of the filled
zone was defined as “euphotic”, in every column of voxels, and the remaining 35% was
defined as “oligophotic”. According to the spatial distribution and location of the empty
voxel, in each voxel column, the empty voxels between the top of the canopy and the first
filled voxels were defined as the “open gap”, and the empty voxels between the filled
voxels and the ground were called the “closed gap”. The three-dimensional canopy volume
distribution was converted into a two-dimensional canopy volume profile (CVP) according
to the percentage of the volume of the four classified canopy volume characteristics in each
height interval. The canopy volume distribution indicated the distribution of elements
arranged in the vertical spatial extent of the canopy [30].
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2.4. Model Construction Methods and Scheme

In this study, three modeling methods, MLR, SVR and RF, were used to construct the
estimation models of urban single tree characteristic parameters based on the obtained lidar
data characteristic variables. To study the influence of canopy structure on the accuracy
of single tree characteristic parameters, the models were constructed in two schemes. The
model excluding canopy structure variables is referred to as “Scheme 1”, and the model
including canopy structure variables is referred to “Scheme 2”.

2.4.1. MLR Model

MLR is the most commonly used parameterization method for estimating forest
characteristic parameters from remote sensing information, and can quickly establish a
linear relationship between two or more independent variables and dependent variables to
achieve parameter estimation. The MLR is generally expressed as follows:

Y = a0 + a1x1 + a2x2 + . . . + anxn (1)

where a0 is the constant term; a1, a2, . . . , an are regression coefficients representing the degree
of contribution of the respective variables to the dependent variable; and x1, x2, . . . , xn are
the independent variables, which are the characteristic variables shown in Table 3. Y is the
dependent variable, which is the estimated characteristic parameter of this study. In this
study, all possible combinations of variables were evaluated using “all subsets” regression,
and the best combination of variables was selected to build the MLR model to estimate the
three characteristic parameters [48].

2.4.2. SVR Model

SVR is a machine learning model that uses support vector machines to perform regression
analysis [49,50]. It applies classification methods to solve regression problems with finite
samples, mainly based on a given sample data set, by seeking a function to fit all sample
points so that the total variance of sample points from the hyperplane is minimized [51].
SVR transforms the nonlinear problem into a linear problem in high-dimensional space
via kernel functions for nonlinear separable samples in low-dimensional input space,
replacing the inner product operation in high-dimensional space, and ensuring good
generalization ability [52]. Therefore, the SVR model has high accuracy, good ability to handle
high-dimensional and small sample data, good generalization ability, and robustness. In this
study, four kernel function models, including linear, polynomial, radial basis function
(RBF), and multilayer perceptron (Sigmoid), were used, and the best penalty coefficient (C)
with gamma value (g) was selected via grid search cross-validation to construct the SVR
model to estimate the three characteristic parameters.

2.4.3. RF Model

The random forest algorithm is another commonly used machine learning method.
The algorithm is based on modified nonparametric modeling of decision trees [53], and
constructs a decision tree by bootstrapping from the original sample set with put-back
randomly selected N samples to predict the results. The RF algorithm has good noise
resistance and can handle high-dimensional data with relatively high prediction accuracy.
An unbiased estimate of the error can be generated during the RF calculation, and the
importance of each variable involved in the model can be evaluated. There are three
important parameters in the estimation of single tree characteristic parameters using the
RF algorithm: Mtry is the number of variables used randomly at the nodes of each tree,
and Ntree is the number of regression trees in the RF. Nodesize is the minimum number of
terminal nodes in the regression analysis, and the default value is 5 [54,55]. In this study,
three characteristic parameters estimation models are developed based on the optimization
of RF parameters.
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2.5. The Flow Chart and Accuracy Validation

The flow chart of this study is shown in Figure 4. First, field measurements, lidar data
processing, and characteristic variable extraction were conducted. Second, two-thirds of all
measured samples were selected into training samples, and one-third were divided into
test samples. Finally, three modeling methods, MLR, SVR and RF, were used to construct
single tree characteristic estimation models according to Scheme 1 and Scheme 2, and the
accuracy of the models was evaluated.
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The model accuracy evaluation metrics include the determination coefficient (R2), root
mean square error (RMSE), and relative root mean square error (rRMSE). Generally, higher
values of R2 and lower values of RMSE and rRMSE indicate better performance of the
model. R2, RMSE, and rRMSE are calculated as follows:

R2 = 1− ∑n
i=1(x̂i − xi)

2

∑n
i=1(xi − x)2 (2)

RMSE =

√
1
n

n

∑
i=1

(xi − x̂i)
2 (3)

rRMSE =
RMSE

x
× 100% (4)

where n is the number of samples, x is the measured value of the sample canopy characteristic
parameters, x is the mean value of the sample canopy characteristic parameters, and x̂i is
the predicted value of the sample canopy characteristic parameters.
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3. Results
3.1. Canopy Volume and Profile Analysis

The canopy volume profile can directly show the spatial heterogeneity of the forest
canopy structure and the distribution and change in elements in the vertical direction.
Comparing the canopy volumes and profiles of the three species, the euphotic volume
was significantly larger than the oligophotic volume in the filled volume of the G. biloba
canopy (Figure 5); the closed gap volume was larger than the open gap volume in the empty
volume, and the closed gap volume occupied the largest volume. The canopy distribution
of C. camphora was consistent with that of G. biloba (Figure 6), and the euphotic volume was
greater than the oligophotic volume; the closed gap volume was larger than the open gap
volume in the empty volume, and the closed gap volume occupied the largest volume. In
the canopy distribution of M. glyptostroboides (Figure 7), the euphotic volume was close
to the oligophotic volume; the closed gap volume was slightly larger than the open gap
volume in the empty volume.
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3.2. Variable Importance Analysis

In this study, the point cloud characteristic variables extracted from lidar data were
run 100 times using the RF model according to two modeling schemes. Figures 8 and 9
show the importance scores of Scheme 1 and Scheme 2 input variables, respectively. As
shown in Figure 8, the importance score of the height characteristic variable in Scheme 1 is
significantly higher than that of the density characteristic variable. Among the three single
tree characteristic parameter models, Hcv was the largest in DBH and AGB, with values of
27.89 and 44.05, respectively; Hsq was the largest in V, with a value of 21.12. As shown in
Figure 9, the three parameters with the highest importance in Scheme 2 were all canopy
structure variables. In the DBH and V models, CG had the highest influence, with 31.96 and
28.97, respectively, and in the AGB model, CD had the highest influence, with 40.57. The
results show that the canopy structure variable was significantly more important than other
variables and was the key variable in the estimation of single tree structure parameters.
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Figure 10 shows the path coefficients (absolute values) calculated using the structural
equations for the direct effect of the three characteristic variables of height characteristics,
density characteristics, and canopy structure on the characteristic parameters. As shown
in Figure 10, CS had the largest direct effect on DBH and AGB, while HD had the largest
direct effect on V, and DB had the smallest effect on characteristic parameters. For DBH,
the path coefficient values, in order, were as follows: CS (0.647) > HD (0.318) > DB (−0.095).
For AGB, the path coefficient values were as follows: CS (0.871) > HD (0.116) > DB (−0.101).
For V, the path coefficient values were as follows: HD (0.593) > CS (0.389) > DB (0.038). The
canopy structure variables had important influence on the estimation of the three single
tree characteristics parameters.
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3.3. Model Construction and Evaluation
3.3.1. MLR Estimation Results

To evaluate the accuracy of the established prediction models of single tree characteristic
parameters, three independent variables were selected to construct the MLR models in this
study (Table 4). Among all the metrics selected in the MLR model of Scheme 1, the height
percentiles (Hcv, Hmean, Hsq, Hstd, H99, and Hvar) were frequently selected by the models.
Among all the metrics selected by the MLR model in Scheme 2, height percentile (Hcm, H95,
Hcv and Hvar), canopy structure variables (CD, CG, EV) were frequently selected by the
models. The accuracy value R2 of the models was improved after coupling the canopy
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structure variables. The canopy structure variables played an important role in the construction
of the model, indicating that these variables are sensitive in estimating forest structure.

Table 4. The MLR prediction models and their accuracy assessment under different schemes.

Scheme Parameters Equations R2

Scheme 1
DBH 36.2 − 108.85 × Hcv − 56.78 × Hmean − 56.65 × Hsq 0.76
AGB −63.11 − 183.5 × Hmean + 193 × Hsq − 56.92 × Hstd 0.78

V 0.11 + 0.04 × H99 − 0.36 × Hstd + 0.08 × Hvar 0.83

Scheme 2
DBH 5.18 + 1.32 × Hcm + 0.09 × EV + 0.61 × CD 0.78
AGB −101.75 + 10.44 × H95 + 0.201 × CG + 22.71 × CD 0.85

V 0.11 − 0.51 × Hcv + 0.04 × Hvar + 5.7 × 10 − 5 × CG 0.84

Figures 11 and 12 show the correlations between the predicted and field-measured
values of characteristic parameters estimated using the MLR models of Scheme 1 and
Scheme 2, respectively. As shown in Figure 11, the R2 values of the model training accuracy
for single tree DBH, AGB, and V in Scheme 1 were 0.76, 0.78, and 0.83, respectively, with
rRMSE = 9.67 to 27.23%; the R2 values of the model testing accuracy were 0.64, 0.69, and
0.62, respectively, with rRMSE = 11.02 to 39.01%. As shown in Figure 12, the training and
testing accuracy of Scheme 2 single tree characteristic parameters were improved. The
R2 values of the model training accuracy of DBH, AGB, and V were 0.78, 0.85, and 0.84,
respectively, with rRMSE = 9.33 to 30.82%. The R2 values of the model testing accuracy
were 0.69, 0.82, and 0.80, respectively, with rRMSE = 10.41–24.67%. The comparison of the
results shows that the R2 values of the estimation accuracy of the characteristic parameters
of Scheme 2 were all improved after adding the canopy structure variable. Among them,
the estimation accuracy of V improved by 29.0%, which was the greatest improvement,
followed by AGB with an accuracy improvement of 18.8% and DBH with an accuracy
improvement of 7.8%. In addition, the rRMSE values of the AGB and V estimation results
also decreased by 36.8% and 27.7%, respectively, which were large decreases.
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3.3.2. SVR Estimation Results

Figure 13 shows the comparison of the R2 values of the estimated characteristic
parameters for the four kernel function SVR models under the two modeling schemes.
As shown in Figure 13, the R2 values of the single tree characteristic parameters in both
Scheme 1 and Scheme 2 were the highest for the SVR model with RBF as the kernel function.
Therefore, the RBF kernel function was chosen to construct the SVR model in this study.
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Figures 14 and 15 show the correlations between the predicted and field-measured
values of characteristic parameters estimated using the SVR models of two modeling
schemes, respectively. As shown in Figure 14, the R2 values of the model training accuracy
for single tree DBH, AGB, and V in Scheme 1 were 0.83, 0.84, and 0.85, respectively, with
rRMSE = 8.14 to 24.10%; the R2 values of the model testing accuracy were 0.67, 0.77, and
0.75, respectively, with rRMSE = 10.76 to 26.78%. As shown in Figure 15, the R2 values
of the model testing accuracy of DBH, AGB, and V were 0.72, 0.82, and 0.81, respectively,
with rRMSE = 10.24 to 23.37%. The comparison of the results shows that the R2 values of
the training and testing accuracy of single tree characteristic parameters of the SVR model
were all improved by adding canopy structure variables in Scheme 2. Among them, the
estimation accuracy of V improved by 8%, which was the greatest improvement, followed
by DBH with an accuracy improvement of 7.4% and AGB with an accuracy improvement
of 6.5%. In addition, the rRMSE values of the AGB and V estimation results also decreased
by 12.7% and 11.6%, respectively, which were large decreases, indicating that coupling
canopy parameters can improve the estimation accuracy of urban single tree parameters.
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3.3.3. RF Estimation Results

The training data were input into the random forest model to traverse all variable
values and eventually obtain the optimal parameters. Figure 16 shows Mtry, which was
used to determine the minimum variable for each tree in the RF model, and the minimum
Mtry value was required when the model error was minimal. As shown in Figure 17, the
RMSE of the model error tended to be stable after Ntree reached 1500. Therefore, the values
of Ntree in the optimized random forest model were set to 1500 in this study. Table 5 lists
the specific settings for different parameter values for the two schemes.
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Table 5. Results of the optimization of model parameters for different schemes.

Scheme Parameters Nodesize Mtry Ntree Number of Variables

Scheme 1
DBH 5 15 1500 19
AGB 5 12 1500 19

V 5 18 1500 19

Scheme 2
DBH 5 4 1500 25
AGB 5 21 1500 25

V 5 3 1500 25

Figures 18 and 19 show the correlations between the predicted and field-measured
values of characteristic parameters estimated using the RF models of Scheme 1 and Scheme 2,
respectively. As shown in Figure 18, the R2 values of the model training accuracy for single tree
DBH, AGB, and V in Scheme 1 were 0.74, 0.80, and 0.81, respectively, with rRMSE = 10.46 to
26.36%; the R2 values of the model testing accuracy were 0.67, 0.74, and 0.76, respectively,
with rRMSE = 10.95 to 29.69%. As shown in Figure 19, the training and testing accuracy
of Scheme 2 single tree characteristic parameters were improved. The R2 values of the
model training accuracy of DBH, AGB, and V were 0.80, 0.89, and 0.86, respectively, with
rRMSE = 8.9 to 20.77%. The R2 values of the model testing accuracy were 0.76, 0.85, and
0.83, respectively, with rRMSE = 9.87–22.51%. Comparing the RF model results, the R2

values of the estimation accuracy of the characteristic parameters of Scheme 2 were all
improved after adding the canopy structure variable. Among them, the estimation accuracy
of AGB improved by 14.9%, which was the greatest improvement, followed by DBH with
an accuracy improvement of 13.4% and V with an accuracy improvement of 9.2%. In
addition, the rRMSE values of the AGB and V estimation results also decreased by 24.2%
and 15.2%, respectively, which were large decreases.
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3.4. Comparison of Model Results

Table 6 shows the summary of the field measured data and the estimation results
of different model characteristic parameters. Compared with the field-measured data,
the estimated CV values of MLR, SVR, and RF models range from 16.6 to 18.11%, the
estimated CVs of AGB range from 49.15 to 54.22%, and the estimated CVs of V range from
44.67 to 46.55%, with smaller variations and mean values closer to the measured values.
Appendix A (Table A1) shows the comparison of the model training accuracy and testing
accuracy of three models for estimating three single tree parameters in two schemes. An
analysis of the results in Appendix A (Table A1) shows that all models of the two schemes
achieved higher accuracy estimation of single tree parameters in urban forests. Figure 20
shows the distribution of the normalized residuals for the testing phase of the characteristic
parameters for different models. The normalized residuals of the characteristic parameters
of the testing samples of the three models were in the range of −2 to 2, indicating that all
models had good stability and reliability in predicting the characteristic parameters of a
single tree.

Table 6. Summary of information on measured and predicted characteristic parameters of the
samples.

Method
DBH AGB V

Min Max Mean CV(%) Min Max Mean CV(%) Min Max Mean CV(%)

Measured 11.80 33.90 20.97 19.00 21.87 345.43 120.46 57.49 0.047 0.688 0.189 50.79
MLR 14.46 32.79 21.31 16.86 10.08 283.90 123.09 51.85 0.067 0.590 0.190 46.22
SVR 13.82 33.54 21.13 18.11 16.20 297.22 121.77 54.22 0.078 0.613 0.188 46.55
RF 14.73 30.39 21.28 16.60 36.99 286.66 121.73 49.15 0.08 0.536 0.190 44.67

However, for the two schemes, the model accuracy and testing accuracy of the single
tree parameters for all models of Scheme 2 were improved, and the error was decreased
compared with Scheme 1, indicating that the coupled canopy parameters could improve
the estimation accuracy of the urban single tree parameter. In addition, from the three
models, the performance of the two machine learning models was better than that of the
MLR model, where the training accuracy of single tree characteristic parameters of the SVR
model was slightly higher than that of the RF model, but the testing accuracy of single tree
characteristic parameters of the RF model was better than that of the SVR model.
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4. Discussion

The forest canopy is a key component of forests that affects ecosystem processes and
functions [56], and the quantification and analysis of canopy distribution is one of the
methods used to characterize the spatial structure of forests. In this study, voxel-based
canopy volume was used to characterize the canopy spatial structure of different urban
trees, and the canopy volume profile was derived to more intuitively reflect the spatial
heterogeneity of the canopy structure and the variation in the arrangement of elements
within the canopy. As shown in Figures 5–7, the open gap volume of G. biloba was the
largest, while the closed gap volume of C. camphora was larger than that of both G. biloba and
M. glyptostroboides. First, this had a direct influence on the structure and shape of the canopy,
which was relatively regular for C. camphora and M. glyptostroboides, while the canopy shape
of G. biloba was more complex and the distribution of branches and leaves was more
dispersed, resulting in a larger volume share in the open gap of G. biloba. In addition, closed
gap volume was also strongly related to proper pruning in cities, which causes higher
crown base height [43], thus leading to a larger percentage of closed gap volume. On the
other hand, coniferous trees allow more light penetration into the lower canopy compared
to broadleaved trees [57], and M. glyptostroboides belongs to the coniferous species, thus
allowing M. glyptostroboides to form more areas of oligophotic zone.

Lidar data can provide parameter information directly connected to forest canopy
structure, and the estimation of forest characteristic parameters using different regression
methods can produce satisfactory prediction results [58]. The results of this study show
that the estimation accuracy of single tree characteristic parameters with coupled canopy
structural variables was improved compared to using only height and density characteristic
variables. The model accuracy was higher than the prediction accuracy of stand stock
and aboveground biomass in urban broadleaf forest areas estimated using ALS data [59].
This is due to the fact that high-density ULS data had richer canopy structure information.
Therefore, high-density lidar data were more advantageous in estimating stand volume
and aboveground biomass.

This research shows that the performance of the SVR and RF machine learning models
was better than that of the MLR model. As a statistical regression model, MLR is not
suitable for representing the complexity of high data and is sensitive to noise, and the
MLR model is often prone to underfitting, making the model performance poor. SVR seeks
linear regression hyperplanes and solves nonlinear problems in low-dimensional spaces
by mapping kernel functions from low to high dimensions. Although the SVR model fits
the training data well, there may be overfitting of the model. In addition, the SVR model
also needs to find the optimal penalty coefficient and gamma value to obtain the optimal
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model [60,61]. The RF was able to handle high-dimensional data and had good noise
resistance. During the model operations, unbiased estimates of errors can be obtained,
and the importance of each variable can be evaluated in the RF model [62]. The accuracy
of training the single tree characteristic parameters of the SVR model in this study was
slightly higher than that of the RF model, but the validation accuracy was not as good as
that of the RF model in the study, which may be caused by this reason.

Related studies around the world also indicate that RF has good predictive ability
in forest parameter estimation [58,60,63]. For example, Zhou et al. [64] used a RF model
to estimate the AGB of urban single trees based on UAV lidar data and achieved high
estimation accuracy. Zhang et al. [65] combined lidar and high-resolution remote sensing
images by comparing different models (SLR, LNN, BPNN, SVR, RF) for the quantitative
estimation and inversion of biomass, and the results indicated that the RF model had the
highest fitting accuracy. Cao et al. [63] indicated that the accuracy of the RF model was
higher than that with SVR, backpropagation neural networks, k-nearest neighbor, and the
generalized linear mixed model in the remote sensing estimation of forest biomass based
on satellite remote sensing. Peng Xi et al. [66] established different models for estimating
the s characteristic parameters of tropical forests in China based on UAV lidar data, and the
study indicated that the RF model had good accuracy in estimating forest characteristic
parameters. Although this study provides a reference for the application of UAV lidar in
urban forest characteristic parameter estimation, there are still some limitations. The urban
forest is unevenly distributed, and the estimation of large-scale urban forest characteristic
parameters using UAV lidar is still a challenge.

5. Conclusions

In this study, we used UAV lidar to obtain three kinds of single tree canopy point
clouds coupled with point cloud and canopy structure variables. MLR, SVR, and RF models
were used to estimate the characteristic parameters of DBH, AGB, and V of single trees in
urban forests based on UAV-Lidar data. The results indicate that canopy volume profiles
can visualize the spatial heterogeneity of forest canopy structure and the distribution and
variation of elements in the vertical direction, and canopy structure variables such as CG,
OV, EV, S, and CD had important effects on single tree characteristic parameters. The model
training accuracy and testing accuracy of the single tree parameters of the MLR, SVR, and
RF models were improved by incorporating canopy structure variables. In comparison, the
two machine learning models, SVR and RF, outperformed MLR, but the testing accuracy of
single tree characteristic parameters of the RF model was better than that of the SVR model.
The results of the study provide an important reference for the estimation of single tree
characteristic parameters in urban forests based on UAV-Lidar data, which is necessary
and useful for urban managers to understand the functions and values of urban forests and
to maximize the environmental benefits of urban forests.
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Appendix A

Table A1. Accuracy evaluation of the parametric model of a single tree characteristic for different
schemes.

Model Scheme
DBH AGB V

R2 RMSE rRMSE (%) R2 RMSE rRMSE (%) R2 RMSE rRMSE (%)

Train

MLR
Scheme 1 0.76 2.06 9.67 0.78 33.05 27.23 0.83 0.04 21.52
Scheme 2 0.78 1.98 9.33 0.85 37.41 30.82 0.84 0.04 21.27

SVR
Scheme 1 0.83 1.73 8.14 0.84 29.25 24.10 0.85 0.04 20.22
Scheme 2 0.88 1.46 6.85 0.94 17.68 14.56 0.86 0.04 20.24

RF
Scheme 1 0.74 2.22 10.46 0.80 31.99 26.36 0.81 0.04 23.68
Scheme 2 0.80 1.89 8.90 0.89 24.01 19.70 0.86 0.04 20.77

Test

MLR
Scheme 1 0.64 2.21 10.91 0.69 46.26 39.01 0.62 0.05 27.51
Scheme 2 0.69 2.11 10.41 0.82 29.20 24.67 0.80 0.04 19.90

SVR
Scheme 1 0.67 2.18 10.76 0.77 31.70 26.78 0.75 0.04 22.27
Scheme 2 0.72 2.08 10.24 0.82 27.67 23.37 0.81 0.04 19.68

RF
Scheme 1 0.67 2.22 10.95 0.74 35.15 29.69 0.76 0.04 21.82
Scheme 2 0.76 2.00 9.87 0.85 26.65 22.51 0.83 0.04 18.51
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