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Abstract: Satellite-based flood monitoring for providing visual information on the targeted areas is
crucial in responding to and recovering from river floods. However, such monitoring for practical
purposes has been constrained mainly by obtaining and analyzing satellite data, and linking and
optimizing the required processes. For these purposes, we present a deep learning-based flood
area extraction model for a fully automated flood monitoring system, which is designed to contin-
uously operate on a cloud-based computing platform for regularly extracting flooded area from
Sentinel-1 data, and providing visual information on flood situations with better image segmentation
accuracy. To develop the new flood area extraction model using deep learning, initial model tests
were performed more than 500 times to determine optimal hyperparameters, water ratio, and best
band combination. The results of this research showed that at ‘waterbody ratio 30%’, which yielded
higher segmentation accuracies and lower loss, precision, overall accuracy, IOU, recall, and F1 score
of ‘VV, aspect, topographic wetness index, and buffer input bands’ were 0.976, 0.956, 0.894, 0.964,
and 0.970, respectively, and averaged inference time was 744.3941 s, which demonstrate improved
image segmentation accuracy and reduced processing time. The operation and robustness of the fully
automated flood monitoring system were demonstrated by automatically segmenting 12 Sentinel-1
images for the two major flood events in Republic of Korea during 2020 and 2022 in accordance with
the hyperparameters, waterbody ratio, and band combinations determined through the intensive
tests. Visual inspection of the outputs showed that misclassification of constructed facilities and
mountain shadows were extremely reduced. It is anticipated that the fully automated flood moni-
toring system and the deep leaning-based waterbody extraction model presented in this research
could be a valuable reference and benchmark for other countries trying to build a cloud-based flood
monitoring system for rapid flood monitoring using deep learning.

Keywords: deep learning; cloud computing; fully automated flood monitoring; Sentinel-1 data;
image segmentation

1. Introduction

Floods are reported to be one of the major natural disasters that repetitively cause
severe damage over wide regions. The frequency of floods is expected to continuously
increase due to high intensity rainstorms and sudden snowmelt as a result of climate
change [1–3]. Human factors are also a major contributor that leads to flood disasters,
including irrational deforestation and land use, and lack of flood control facilities [4,5].
Especially, with increased urbanization, the expansion of impervious surfaces changed
natural drainage systems, leading to an increased risk of flooding in urban areas [6]. Many
countries suffer from floods caused by localized heavy rains or rains during rainy seasons,
and their impact to such countries tends to be more severe. Although floods have been
successfully managed in some regions by flood storage and water resource management [7],
it is still limited to specific hydrological and environmental conditions [8].
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Among different types of floods, including flash floods, urban floods, sewer floods,
glacial lake outburst floods, and coastal floods [9], river floods frequently leave devastating
damage over wide areas adjacent to the rivers, and cause enormous economic losses [10,11].
Traditionally, flood risk has been evaluated for real-time flood management, long-term
planning for flood adaptation, and hydrological modeling [12,13]. For real-time flood
management, early response information is needed on the flood situation for flood warning
and decision-making, and such information has been provided through simulation methods
relying on existing data. The use of such traditional methods has been, however, limited
by a lack of empirical data [13]. Thus, to respond to such flood events at their early
stage, regular flood monitoring is required to provide data on the extent of floods, which
information is expected to be persistent and automated.

Owing to the extent of waterbodies and their geospatial features, satellite data have
been used for such purposes. Of various types of sensors, spaceborne synthetic aperture
radar (SAR) is considered to be suitable for flood monitoring [14,15], as it can acquire
images through cloud cover, and regardless of light and weather conditions [16,17]. An
essential prerequisite for satellite-based flood monitoring is obtaining satellite data for
targeted areas for analysis. Although normalized C-band radar datasets at global scale
were presented for the mapping of permanent waterbodies [18], timely flood monitoring
requires analyzing newly acquired satellite data on a regular basis. For this reason, attempts
were made to accurately map waterbodies using latest SAR data.

Accurately extracting the shape and extent of waterbody is important in many aca-
demic and practical domains, especially disaster management, including flood monitor-
ing. For extracting waterbodies from SAR data, a few fully automatic processing chains
have been proposed for near-real-time flood monitoring [19–23]. The analytic methods
of such research include thresholding methods [24,25], change detection [26], tree-based
approaches [27], and machine learning [28,29]. Considering the results of previous re-
search, deep learning-based flood area extraction has shown relatively better performance,
compared to tradition approaches for flood monitoring [30].

In academic, scientific, and practical aspects, the previous studies, however, lack
(1) the accuracy of classification results, (2) frequency of analyses, (3) operation of pre-
sented models, and (4) continuity of flood monitoring systems, in addition to (5) spatial
scale. As building fully automated flood monitoring systems has been constrained by
obtaining, analyzing, and visualizing satellite data for this purpose, most existing flood
monitoring systems have been developed mainly for experimental purposes at the lab-
oratory level, and thus the operation of most of them are limited. In addition, although
deep learning networks have shown great performance in image segmentation, they are
not widely applied to flood monitoring using SAR data [31]. It is because developing deep
learning-based waterbody extraction models is limited by difficulties in producing input
data for training [32], labeling of ground-truth data, optimization of network layers, and
determining hyperparameters for producing an optimal model, in addition to determining
the size of input image patches.

In this paper, we present a deep learning-based flood monitoring system using cloud
computing, which is fully automated, persistent, and operational, relying on customiz-
ing deep neural networks, producing optimal input data, and optimally linking required
procedures through intensive initial tests. The system overcomes the obstacles on build-
ing near-real-time flood monitoring systems, and outperforms existing flood monitoring
models in terms of the accuracy of output results and processing time.

This paper consists of six sections. Detailed explanation on the development of a
fully automated flood monitoring system is presented in Section 2, and the procedures
for producing and processing input data for the flood monitoring system are explained
in Section 3. In Section 4, the accuracy of the flood monitoring outputs and processing
time for model training are presented, and visual interpretation results, contribution,
implication, and limitations of this research are discussed in Section 5, which is followed
by the conclusions.
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2. Development of a Fully Automated Flood Monitoring System
2.1. Overview of the Cloud-Based Flood Monitoring System Using Deep Learning with Land
Cover Maps

For this research, a cloud-based flood monitoring system was developed as shown in
Figure 1, which is fully automated, persistent, and operational. The processing chain of the
deep learning-based system consists of three parts, including (a) receiving satellite data
and preprocessing, (b) deep learning-based waterbody extraction through Amazon Web
Services (AWS), and (c) visualization and spatial analysis.
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Figure 1. Processing chain for fully automated waterbody extraction for regular flood monitoring:
(a) receiving satellite data, (b) deep learning-based flood area extraction on Amazon Web Services
(AWS), and (c) visualization and spatial analysis.

For the fully automated flood monitoring system, the AWS cloud computing platform
was adopted because the size of storage and memory provided by the platform is selectable,
and the performance of the CPU and GPU is elastic and stable. The services are optimized
to machine learning algorithms as computing resources are managed by automatically
adjusting to the amount of required computation and the volume of input data. Newly
acquired Sentinel-1 data, which are sensed and ingested regularly, is also directly available
through the platform within a few hours as Sentinel-1 Ground Range Detected (GRD)
products are regularly downloaded and added to the AWS S3 bucket through Copernicus
OpenHub. At this stage, the data have already been converted to the cloud-optimized
GeoTIFF format for deep learning-based image segmentation. For preprocessing and
further analysis, the availability of satellite data is automatically checked every 10 min.

All of the necessary steps for near-real-time flood monitoring are programmed to
automatically trigger next steps in turn in the platform. When the received Sentinel-1 data,
which are available at the AWS open data bucket, are saved in Amazon Simple Storage
Service (Amazon S3), event-based Lambda is automatically triggered to run the deep
learning module for flooded area monitoring, by which the satellite data are segmented
for waterbody extraction analysis. Satellite data are received and provided through its
ground stations, and then the received Sentinel-1 data are immediately preprocessed using
SNAP, which is provided by European Space Agency (ESA) for satellite data processing.
SNAP is installed in the server and starts to run automatically by Lambda for satellite data
preprocessing. In the Amazon Elastic Compute Cloud (Amazon EC2), the satellite data are
stacked and cropped automatically for following image segmentation. It reduces time for
reading and writing input data and output results.

The output results (e.g., segmented images) are transferred to a local database server
via Client URL (cURL) for visualization and further spatial analysis. The procedure is
completed with minimum time delay for publishing analysis results, which includes tiling
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of the output results for fast loading and visualization at various scales, taking a few
minutes. Detailed explanation on deep learning-based image segmentation procedures in
the cloud server is presented in the following section.

2.2. Deep Learning-Based Waterbody Extraction Using Land Cover Maps

In the cloud-based flood monitoring system shown in Figure 1, the deep learning-
based waterbody extraction (i.e., part b in Figure 1) is the main step that determines the
accuracy of image classification, and the usefulness of the flood monitoring system. The
substeps of the step include preprocessing of satellite data, producing geospatial layers,
and producing training data using land cover maps, and deep learning model training
and inference, in addition to accuracy assessment (Figure 2). To realize and operationalize
the substeps on the cloud platform, and to improve the accuracy of image segmentation
using deep leaning, new algorithms were developed, and deep neural networks for image
segmentation were customized and optimized in this research. Detailed explanation of the
steps is presented in the following section.
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Figure 2. Algorithm of the deep learning-based waterbody extraction in this research (These steps
include preprocessing of satellite data, producing geospatial layers, and producing training data
using land cover maps, deep learning model training and inference, and accuracy assessment.).

3. Development of the Deep Learning-Based Waterbody Extraction Model
3.1. Producing Input Data
3.1.1. Preprocessing of Sentinel-1 Data and Producing Label Data

Two main input datasets for producing an initial deep leaning-based waterbody
extraction model are Sentinel-1 images and land cover maps. To generate label data for
deep learning model training and verification, detailed land cover maps of Republic of
Korea were used, which were produced by the Ministry of Environment of Republic of
Korea. The maps were produced using aerial photographs and satellite data including
KOMPSAT-2, Landsat 7/8, and SPOT-5, after preprocessing and mosaicking of the satellite
data. The accuracy of classification has been verified using reference data, such as digital
maps, land registration maps, land use zoning maps, and forest-type maps, and through
field survey. The final product maps, which have 41 land cover classes, are provided in
shapefile format at 1:5000 scale. Of the classes, fresh water-related classes (i.e., rivers and
lakes/reservoirs) were extracted and merged to produce label data, and verified through
visual inspection for pixelwise class labeling (Figure 3a).

Sentinel-1 Ground Range Detected (GRD) images, which were obtained by a C-band
Synthetic Aperture Radar (SAR) antenna launched by the European Space Agency (ESA),
were downloaded from the Copernicus Open Access Hub (https://scihub.copernicus.eu/
dhus/#/home, accessed on 15 February 2021), on the basis of locations and acquisition
times that match those of the images for the detailed land cover maps. To generate input

https://scihub.copernicus.eu/dhus/#/home
https://scihub.copernicus.eu/dhus/#/home
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satellite images for flood monitoring, the original images were preprocessed through
‘Remove GRD border noise’, ‘Radiometric Calibration’, ‘Speckle Filtering’, and ‘Terrain
Correction’ [33]. The preprocessed Sentinel-1 images, which are VV bands in linear scale
at 10 m spatial resolution, were matched to the land cover maps for visual inspection
(Figure 3b). After the inspection, the shapefiles (i.e., land cover maps) were converted to
binary raster files to produce final label data (Figure 3c). The label data have two classes,
i.e., water (0) and nonwater (1) in the GeoTiff file format, which have been rasterized to
have the same spatial resolution with that of Sentinel-1 images.
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3.1.2. Producing Geospatial Layers and Stacking Input Layers

To improve the accuracy of deep learning-based image segmentation by combining
geospatial data as input layers, seven geospatial layers were produced (Figure 4a). The
layers include: (a) Digital Elevation Model (DEM) for Republic of Korea, (b) Terrain
Ruggedness Index (TRI), (c) Topographic Wetness Index (TWI), (d) Profile Curvature
(PC), (e) Aspect (AS), (f) Slope (SL), and (g) Buffer (BF). The layers were selected and
produced in accordance with the principle and procedures presented in [34], which were
expected to provide topohydrographic information during training and inference of the
deep learning model. The geographical and spatial features contained in the layers improve
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the performance of classifying land cover classes and terrain effects as they represent the
features of waterbodies and the surrounding environment, which are learned during the
training of deep neural networks [34]. The DEM for Republic of Korea was mosaicked,
inspected, and gap-filled for further processing, which has 10 m spatial resolution that
matches with the spatial resolution of preprocessed Sentinel-1 images and label data. Using
the DEM, the TRI, TWI, PC, AS, and SL inputs were produced based on the principles
described in [35–38]. BF was produced using digital maps for Republic of Korea, which
were produced in 2018 at 1:5000 scale. All the layers were produced and exported to a
geospatial database in GeoTiff file format to determine the best combination of final input
data and to optimize the deep learning model for automated flood monitoring.
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Figure 4. Geospatial layers produced for this research and stacking and cropping input layers:
(a) produced geospatial layers for Republic of Korea, (b) stacked geospatial layers, (c) extracting
stacked layers (around 30,000 × 20,000 pixels), and (d) cropping the stacked layers for deep learning
model training (256 × 256 × 8 bands).

All the input layers, including Sentinel-1 images, were overlaid and stacked by
using the same spatial resolution and coordinate system, i.e., EPSG:4326 (WGS 84 lati-
tude/longitude) coordinate, to be a multiband single image for model training. The values
in the layers were normalized to have values between 0 and 1. The stacked images were
extracted from the geospatial layers produced for the entire Republic of Korea region in
accordance with the extent of Sentinel-1 images, and then the extracted layers were cropped
out at the size optimal for model training. The procedures were conducted with new
Python codes developed for this research. The size of the final image patches stacked for
training was eight-layered 256 × 256 images, which was determined through repetitive
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experiments (Figure 4b–d), and the number of image patches produced for this research
was 4110.

3.2. Developing Deep Learning-Based Image Segmentation Algorithm
3.2.1. Customization and Optimization of the Deep Neural Networks

For operational purposes, it is well known that the usefulness of outputs from satellite-
based flood monitoring is often hampered by the spatial resolution of satellite data, and
comparing to input satellite data, the spatial resolution of output feature maps become
coarser due to convolution by kernel and downsampling with pooling layers in convolu-
tional neural network (CNN)-based deep learning architectures, which are for extracting
higher-level feature maps [39]. Considering such factors, pixel-based image segmentation
was selected as the base of deep neural networks for the fully automated flood monitoring
system to prevent losing spatial feature information contained in the original input data.
To exploit the geospatial layers for improving image segmentation accuracy, the U-Net
architecture was customized and optimized, which was presented by [40]. The architecture
has shown good performance in semantic segmentation with minimum training data while
retaining feature information of input data [41,42]. The deep neural network presented in
this research was optimized for analyzing geolocated satellite and geospatial data, which
were stacked as multilayered GeoTiff images.

As shown in Figure 5, the deep neural networks for multilayered image segmentation
for this research extract higher-level feature maps with 18 3 × 3 2D convolution layers and
four 2 × 2 2D max pooling layers during downsampling, and restore spatial resolution
through four 2 × 2 upsampling layers in the expanding path and concatenation. Through
the convolution and pooling layers, the deep neural network performs repeated down-
sampling and upsampling and interpolation to determine trainable parameters. Batch
normalization layers are included in the deep learning architecture for image segmentation
to exploit multilayered/big-sized data for wide areas. Through the customized and opti-
mized network architecture, pixels and contextual information of input layers are learned
for deep learning model generation and for waterbody extraction by image segmentation
using the generated model.
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3.2.2. Model Training and Inference

To derive the best deep learning model for this research, i.e., achieving best segmenta-
tion accuracy of satellite data using deep neural networks with highest spatial resolution
and minimum processing time, we relied on both mathematical and empirical experiments.
Using the training data produced for this research, the deep learning models were tested
more than 500 times as preliminary analysis to test the effect of determining hyperpa-
rameters, spatial resolution of the dataset, optimal image patch size, water ratio, and the
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combination of input data layers. To evaluate the effectiveness of training, the training data
were split into training, validation, and test datasets in the ratio of 3:1:1 [34]. Hyperparame-
ters were tested and determined by repetitive experiments to achieve best segmentation
accuracy with minimum loss (Table 1), which was determined through focal Tversky loss.
It was performed by changing input parameters in turn to identify best parameters of
possible combinations using image patches of Sentinel-1 VV bands and corresponding
label data. The kernel sizes of convolution layers were 2 × 2 and 1 × 1 for upsampling and
output convolution layers, respectively, with a fixed stride of 1 × 1. RELU and sigmoid
were used as the activation function for each layer and output layer, and zero padding
was added to prevent losing spatial resolution of input data. Adam was employed as an
optimizer, with a learning rate of 0.001 and decay rate set as 0.9 and 0.99 for beta1 and beta
2. For efficient training, input data were normalized through batch normalization with a
batch size of 32, and maximum epoch was set as 1000 and iteration was 30 per epoch. Early
stopping was used to minimize training time.

Table 1. Hyperparameters for producing deep learning models for the flood monitoring system.

Hyperparameters for Producing Deep Learning Models

Kernel size (upsampling/output) 2 × 2/1 × 1

Stride/Padding 1 × 1/zero padding

Activation function ReLU/sigmoid (output layer)

Learning rate/Decay rate Adam optimizer 0.001/beta1 = 0.9, beta2 = 0.999

Max epoch/Iteration 1000/30 per epoch

Early stopping No improvement of loss for ten epochs

Batch size 32

Patch size/Input channels 256 × 256/1–8

Training data/Water ratio 4110/0.1 and 0.3

For inference, new satellite data were automatically matched and stacked with geospa-
tial layers, and then cropped at the image size of 256 × 256 pixels. Inference was performed
using trained models and parameters that were saved for image segmentation. After infer-
ence by image patches using trained models, the segmented image patches were mosaicked
as a form of a georeferenced full-scene GeoTiff file for display, which is a 1 (water) and
2 (nonwater) valued binary image.

All the subprocesses for the fully automated flood monitoring, including preprocessing
of satellite data and deep learning-based waterbody extraction, are operating with the
AWS p2.xlarge instance that has four vCPUs, 61 GiB memory, and one Nvidia Telsa GPU,
which has 12 Gb memories. The number of parallel processing cores is 2496, and network
performance for the process is maintained as high.

3.3. Evaluation of the Accuracy of Output Results

While the fully automated flood monitoring system operates regularly, the analysis
results are evaluated for validating the quality of outputs. To evaluate the quality of output
results, criteria for evaluating the accuracy of image segmentation have been applied to
two flood events. The two cases are the major flood events that affected the entire territory
of Republic of Korea, which occurred in August in 2020 and 2022. The cases can also
demonstrate the operation of the fully automated flood monitoring system as the system
operates automatically. For the flood events in 2020 and 2022, 12 Sentinel-1 images were
downloaded as input data (Figure 6). Of the 12 images, the first six images in Table 2 are
for the 2020 flood event (i.e., I-1 to I-6 in Table 2) and the other six images (i.e., I-7 to I-12 in
Table 2) are for the 2022 flood events, which cover the entire Republic of Korea region.
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Figure 6. Sentinel-1 images for the two major flood events in August in (a) 2020 and (b) 2022.

Table 2. Selected Sentinel-1 images for evaluating deep learning-based image segmentation for the
fully automated flood monitoring system.

No. Satellite Type/Mode Acquisition Time
(UTC) Product ID Usage

I-1 Sentinel-1A GRDH/IW 2020/08/01
21:31:35–21:32:00 02B262_A966 Inference

I-2 Sentinel-1A GRDH/IW 2020/08/01
21:32:00–21:32:25 02B262_8D57 Inference

I-3 Sentinel-1A GRDH/IW 2020/08/01
21:32:25–21:32:50 02B262_5B51 Inference

I-4 Sentinel-1A GRDH/IW 2020/08/08
21:23:13–21:23:38 02B594_2774 Inference

I-5 Sentinel-1A GRDH/IW 2020/08/08
21:23:38–21:24:03 02B594_9B4B Inference

I-6 Sentinel-1A GRDH/IW 2020/08/08
21:24:03–21:24:37 02B594_FCDC Inference

I-7 Sentinel-1B GRDH/IW 2022/08/09
09:31:30–09:32:00 054EA8_BB08 Inference

I-8 Sentinel-1B GRDH/IW 2022/08/09
09:32:00–09:32:25 054EA8_532F Inference

I-9 Sentinel-1B GRDH/IW 2022/08/09
09:32:25–09:32:50 054EA8_E6EE Inference

I-10 Sentinel-1B GRDH/IW 2022/08/16
09:23:28–09:23:57 0551FC_6B4A Inference

I-11 Sentinel-1B GRDH/IW 2022/08/16
09:23:57–09:24:22 0551FC_3E42 Inference

I-12 Sentinel-1B GRDH/IW 2022/08/16
09:24:22–09:24:47 0551FC_2E19 Inference
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The accuracy of deep learning-based image segmentation was evaluated in accordance
with the confusion matrix and equations [43–45] shown in Figure 7. As training data were
split into training, validation, and test datasets in the ratio of 3:1:1, validation and test
datasets were used to evaluate training and inference accuracies in addition to model and
system performance. Confusion matrices were produced by comparing actual vales of
ground-truth data and predicted values of inferred images (Figure 7a,b). To evaluate model
training, loss was estimated using validation datasets, in addition to producing confusion
matrices. The validation was performed every 20 iterations to check the improvement of
deep learning models by training. Using confusion matrices that were produced using
test dataset, overall accuracy of pixelwise image segmentation, precision, recall, mean
intersection over union (IOU), and F1 score were estimated through random sampling to
evaluate image segmentation accuracy (Figure 7c).
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Figure 7. Accuracy assessment of image-segmented output images: (a) ground-truth data and
prediction result for comparison; (b) confusion matrix for accuracy assessment; and (c) equations for
evaluating accuracy, precision, recall, F1 score, and IOU.

4. Results
4.1. Image Segmentation by Waterbody Ratio

To develop the best deep learning model for fully automated flood monitoring, the
accuracies of image segmentation were evaluated in accordance with the waterbody ratio
of input image patches, after determining hyperparameters for training. Table 3 shows the
results of estimated loss, overall accuracy, precision, recall, IOU, F1 score, and training time
by waterbody ratio. The number of images patched for training decreased from 1038 to
370, as the waterbody ratio increased from 5% to 30%. The waterbody ratio 30% showed
the lowest loss of 0.049 and highest F1 score of 0.952, whereas the waterbody ratio 10%
showed the highest overall accuracy of 0.927 and IOU of 0.862. The waterbody ratio 30%
also showed highest precision and recall, which were 0.917 and 0.990, respectively. Training
time for 5%, 10%, 20%, and 30% of waterbody ratio were 512.1195, 705.3739, 418.7561, and
373.3092 s, respectively, showing the shortest training time for the 30% waterbody ratio.
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Table 3. Accuracy of image segmentation by waterbody ratio.

Water Ratio No. of Patches Training Time Loss Accuracy Precision Recall IOU F1 Score

5% 1038 512.1195 s 0.189 0.897 0.897 0.795 0.793 0.842

10% 745 705.3739 s 0.092 0.927 0.907 0.929 0.862 0.918

20% 511 418.7561 s 0.095 0.892 0.908 0.917 0.796 0.912

30% 370 373.3092 s 0.049 0.926 0.917 0.990 0.816 0.952

4.2. Image Segmentation by Input Layers

In addition to the image segmentation by waterbody ratio of input image patches,
the accuracies of image segmentation by different band combinations of the eight input
bands were evaluated to present the best deep learning model for the fully automated flood
monitoring system. The analysis results of more 300 tests on optimal band combinations
show that some band combinations yielded higher precision, recall, and F1 score than those
of the VV input bands. The band combinations also showed lower loss than the VV bands.
The 30% waterbody ratio showed relatively higher segmentation accuracies and lower loss
than those of the 10% waterbody ratio. The precision, overall accuracy, IOU, recall, and F1
score of ‘VV, AS, TWI, and BF input bands’ (1467-0.3 in Figure 8) were 0.976, 0.956, 0.894,
0.964, and 0.970, and those of ‘VV, DEM, SL, BF input bands’ (1237-0.3 in Figure 8) were
0.962, 0.955, 0.890, 0.978, and 0.970, whereas those of the VV input bands were 0.943, 0.944,
0.857, 0.986, and 0.964, respectively. Training time for this result was between 317.0 and
3431.8 s, showing that the training time for some band combinations was faster than that
for the VV input bands.
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Figure 8. Accuracy of image segmentation by water ratio and combinations of input layers (numbers
in the input band(s) column indicate band combinations of 1-VV, 2-DEM, 3-SL, 4-AS, 5-PC, 6-TWI,
7-BF, and 8-TRI).

4.3. Image Segmentation for the Two Major Flood Events in 2020 and 2022

Using the deep learning models, which were produced by applying the testing proce-
dures more than 500 times, 12 Sentinel-1 images for the entire Republic of Korea region
were segmented in accordance with the hyperparameters presented in Table 1, waterbody
ratio 30%, and different band combinations of the eight input bands. The automatically
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segmented Sentinel-1 images for the 2020 and 2022 flood events are presented in Figure 9,
which are mosaicked results of six full-scene Sentinel images that cover the entire Republic
of Korea region. Maps in Figure 9a–c show the output images for 2020 that were seg-
mented using Figure 9a VV, AS, TWI, and BF input bands; Figure 9b VV, DEM, SL, BF
input bands; and Figure 9c VV input band, while Figure 9d–f show segmented images
for 2022 using Figure 9d VV, AS, TWI, BF input bands; Figure 9e VV, DEM, SL, BF input
bands; and Figure 9f VV input band. Maps Figure 9g–l are enlarged images of the red boxes
in Figure 9a–f, respectively, presented for visual comparison. As shown in Figure 9g–l,
Figure 9c,f showed more misclassification than Figure 9a,b,de, which used four bands as in-
put data, demonstrating the effectiveness of using geospatial layers in deep learning-based
satellite image segmentation. This is explained in detail in the discussion section.
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combination for 2020; (b) VV, DEM, SL, BF combination for 2020; (c) VV for 2020; (d) VV, AS, TWI,
BF combination for 2022; (e) VV, DEM, SL, BF combination for 2022; (f) VV for 2022; and (g–l) are
zoom-in images of the red boxes shown in (a–f), respectively.
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5. Discussion
5.1. Accuracy of Image Segmentation

The cloud-based flood monitoring system we developed advances the accuracy, fre-
quency, and practicality of flood monitoring systems, or more generally waterbody extrac-
tion models that were presented by previous research. By presenting a customized deep
neural network for satellite image segmentation, and by determining optimal hyperparame-
ters, waterbody ratio, and band combination, the fully automated flood monitoring system
showed 0.943, 0.944, 0.857, 0.986, and 0.964 of precision, overall accuracy, IOU, recall, and F1
score, when VV, AS, TWI, and BF input bands were used at 30% waterbody ratio for input
training data. The results were verified by evaluating model performance and segmentation
accuracy using the confusion matrix and equations explained in Section 3.3, which have
been widely used in the remote sensing and computing science societies for evaluating
the performance of deep learning-based image segmentation. The results demonstrate
better, or comparable, performance of deep learning-based image segmentation for the
fully automated flood monitoring system, compared to previous research. Fully automated
waterbody extraction systems presented in [27,29] showed overall accuracies of 79 to 93%
and 93%, respectively. Using thresholding-based classification for single-polarized data
from Sentinel-1 images, [46] presented a fully automated processing chain for flood area
mapping. The research showed overall accuracies between 94.0% and 96.1% and kappa
coefficients between 0.879 and 0.910, but the experiment was confined to specific areas.

Based on intensive visual inspection, we assume that the improvement of segmen-
tation accuracy is because of the effects of model training optimization procedures and
geospatial layers. Misclassification of golf courses, airport runways, paddy fields, and
terrain effects (such as mountain shadows) were extremely reduced, as shown in Figure 10.
In SAR images, such constructed facilities and topographical features have been frequently
misclassified due to the similarity of reflected signals [47]. During our experiments, it was
also observed that objects in urban areas and paddy fields were sometimes misclassified,
and we tried to minimize this misclassification through the procedures mentioned in the
previous sections. Although we show segmentation accuracy was improved by the method
presented in this research, the misclassification could not be completely removed because
of the information contained in the input layers, which is still insufficient, and spatial
and physical features of objects. Considering the assessment, the results of this research
suggest that misclassification in SAR image classification or segmentation can be reduced
by optimizing hyperparameters and training data, and employing the best combination of
geospatial layers.

5.2. Processing Time, Memory Use, and Visualization

Once new satellite images are downloaded for flood monitoring, the images are
automatically segmented using the optimal deep learning model installed in AWS. For
image segmentation, only time for inference is needed for analyzing new satellite data,
after preprocessing of the new satellite data. When one Nvidia Telsa GPU, which has 12 Gb
memories, was used for inference, the time required for segmenting one full Sentinel-1
scene was between 648.5044 and 1144.7612 s (Table 4). As averaged inference time for the
‘VV, AS, TWI, and BF band combination’ was 744.3941 s, this was faster than the inference
time of ‘VV bands’ or ‘VV, DEM, SL, and BF band combination’. For the inference and
training of the deep neural network, around 11 Gb GPU memory was used out of 12 Gb,
which is considered to be ‘not excessive’ and affordable for operating the fully automated
flood monitoring system. As only one GPU is being used for inference, we think that the
inference time is sufficient for rapid flood monitoring, and this is even faster than other
fully automated image classification for rapid flood monitoring. The time for completing
the processing chain presented by [46] was approximately 45 min for single-polarized data
of a Sentinel-1 IW-GRD scene, which includes automatic thresholding, initial classification,
and fuzzy logistic-based refinement. The approach proposed by [30] required 25 min for
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downloading satellite data, preprocessing, and inference. The time required for the same
procedure in our system was approximately 15 min.
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Figure 10. Segmentation results overlaid on Google Earth images ((a–c,g–i) are for 2020, (d–f,j–l) are
for 2022; first column—VV, AS, TWI, BF combination, second column—VV, DEM, SL, BF, combination,
and third column—VV images; first and second rows 1© to 3© show differences in segmentation
results for airport runways, golf courses, and paddy fields, respectively, and the third and fourth
rows show differences in segmentation results for mountain shadows.

As explained in Section 2.1, after the analysis processes shown in the previous sections,
the outputs produced on the cloud computing platform are sent to the local database server
through cURL for visualization and further spatial analysis (Figure 11). The time required
for visualization of outputs is negligible compared to the time for obtaining satellite data
and image segmentation. The elastic cloud computing enabled stable analysis in part,
reduced processing time, and shortened the time for obtaining satellite data. When river
boundaries from digital maps (sky blue in Figure 11c,d) are overlaid on the segmentation
outputs (blue in Figure 11a–d), the blue-colored areas outside the sky blue areas indicate
flooded areas (see Figure 11c,d). Comparison between river boundaries and waterbody
segmentation results is automatically performed without any human intervention to dis-
tinguish flooded areas. The visualization and spatial comparison provide information on
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flood situations at the time of satellite data acquisition, showing the operation of the fully
automated flood monitoring system developed for this research. In this paper, although all
available images are automatically downloaded and analyzed by the fully automated flood
monitoring system, we present the segmentation results of 12 Sentinel-1 images in Figure 6
as examples. It was observed that all of the outputs of the fully automated flood monitoring
system show similar segmentation accuracy, processing time, and stable performance,
demonstrating robustness of the method presented in this research for flood monitoring.

Table 4. Inference time per scene by input band combinations.

Scene ID
Inference Time (Sec)

VV AS TWI BF VV DEM SL BF VV

I-1 (02B262_A966) 854.4969 873.7666 857.9928

I-2 (02B262_8D57) 786.7988 795.0846 810.4651

I-3 (02B262_5B51) 695.3087 793.2391 751.3581

I-4 (02B594_2774) 871.7646 930.5432 905.7588

I-5 (02B594_9B4B) 744.1722 757.0344 762.0988

I-6 (02B594_FCDC) 724.4174 801.6264 807.6250

I-7 (054EA8_BB08) 711.2012 842.5217 839.9597

I-8 (054EA8_532F) 648.5044 827.2473 790.1158

I-9 (054EA8_E6EE) 678.2370 889.0405 830.3994

I-10 (0551FC_6B4A) 685.7259 916.4830 857.3961

I-11 (0551FC_3E42) 686.7059 896.8351 811.5082

I-12 (0551FC_2E19) 845.3665 1144.7612 1024.7044

Averaged time 744.3941 872.3501 837.4496
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5.3. Novelty and Contribution

As aforementioned, fully automated flood monitoring has been limited by developing
processing systems, the accuracy of satellite image segmentation, and processing time, in
addition to the operationalization of the automated processing systems. This is not the first
research that presents a fully automated flood monitoring system, but we think that this
research advances actual satellite-based flood monitoring practices and existing studies by
demonstrating the fact that such practices can be achieved by presenting optimally trained
deep learning models, cloud-based computing, and training data generation using land
cover maps. The results of this research show that the improved accuracy and processing
time of satellite image segmentation meet the need for practical flood monitoring, as shown
in the previous sections. We think, therefore, that the results of this research and the
flood monitoring system presented in this study provide both academic and technological
advancement. To improve the accuracy of flood area extraction using deep learning, reduce
processing time, and operationalize the fully automated flood monitoring, this research
focused rather on optimization and customization of an existing deep learning architecture
and hyperparameters for input data through intensive experiments, producing high-quality
input datasets for training and inference, and adopting and linking cloud-based computing,
rather than focusing on presenting new deep learning networks. As this research provides
a technological contribution, in addition to its academic contribution, the results of this
research can be used as a benchmark for building an operational flood monitoring system
for rapid and stable flood monitoring using deep learning with higher image classification
accuracy and faster processing time.

5.4. Implication, Limitations, and Future Work

The implication of this research lies not only in satellite image segmentation for flood
monitoring and building a fully automated flood monitoring system, but also deep learning-
based satellite image classification for other purposes and building satellite-based disaster
monitoring systems. The findings of this research suggest that deep learning-based flood
monitoring using satellite data can achieve higher image segmentation accuracy, compared
to existing previous studies, and the fully automated flood monitoring system developed
through this research can be operationalized for practical purposes.

However, by developing a processing chain for persistent flood monitoring using
cloud computing and intensive tests of hyperparameters, waterbody ratio, and band com-
binations for flood area extraction, from which a fully automated flood monitoring system
is presented in this research, the usability of the findings of this research need to be demon-
strated for other regions. The results of this research showed higher image segmentation
accuracy and processing time for flood monitoring, but they were developed and tested
for the Republic of Korea region. Although the flood monitoring system presented in this
research can be implemented for both rural and urban areas, the development of the system
is focused more on monitoring floods in rural areas and during rainy seasons; these areas
are more frequently affected by river floods than flush floods in urban areas due to the
flood drainage system. For urban areas in Republic of Korea, there are other means for
flood monitoring, for example CCTV, but such means and accessibility are limited in rural
areas. In addition, as the flood monitoring system presented in this research focuses on
estimating the extent of floods by exploiting Sentinel-1 data, the magnitude of floods that
includes velocity and depth of water need to be evaluated by combining other ancillary
data. To enhance the frequency, spatial resolution, and accuracy of flood monitoring, the
possibility of adapting other satellite data, such as ICEYE and Spacety SAR constellations,
to the system needs to be tested.

6. Conclusions

Developing a fully automated flood monitoring system using satellite data has been
limited by present processing systems, processing time and accuracy of image segmenta-
tion, and the operationalization of the automated processing system. To overcome these
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obstacles, a deep learning-based flood area extraction model for a fully automated flood
monitoring system is presented in this research, which is designed to operate persistently
on a cloud-based computing platform. The system regularly extracts flooded areas from
Sentinel-1 data, and thus provides visual information on flood situations. As the results of
this research showed that deep learning-based flood monitoring using satellite data can
achieve higher image segmentation accuracy, and the fully automated flood monitoring
system developed through this research can be operationalized for practical purposes, the
system was presented by developing a processing chain for persistent flood monitoring
using cloud computing, and presenting optimal deep learning models and input data.
Intensive tests of hyperparameters, waterbody ratio, and band combinations for flood
area extraction were conducted to improve image segmentation accuracy. Since this re-
search showed improved accuracy for flood area extraction using deep learning, reduced
processing time, and operationalization of a fully automated flood monitoring system,
the results of this research can be a reference to satellite image segmentation for flood
monitoring, building a fully automated flood monitoring system, and deep learning-based
satellite image classification for other purposes, such as building satellite-based disaster
monitoring systems.
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