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Abstract: Change detection using synthetic aperture radar (SAR) multi-temporal images only detects
the change area and generates no information such as change type, which limits its development.
This study proposed a new unsupervised application of SAR images that can recognize the change
type of the area. First, a regionally restricted principal component analysis k-mean (RRPCA-Kmean)
clustering algorithm, combining principal component analysis, k-mean clustering, and mathematical
morphology composition, was designed to obtain pre-classification results in combination with
change type vectors. Second, a lightweight MobileNet was designed based on the results of the
first stage to perform the reclassification of the pre-classification results and obtain the change
recognition results of the changed regions. The experimental results using SAR datasets with
different resolutions show that the method can guarantee change recognition results with good
change detection correctness.

Keywords: change detection; SAR; multi-temporal images; change recognition; MobileNet

1. Introduction

Globally, natural phenomena such as earthquakes and heavy rainfall events, which
sometimes occur simultaneously, can lead to building collapse and flooding [1–3], causing
significant damage and serious economic and social impacts on the natural environment
and human infrastructure. Synthetic aperture radar (SAR) sensors are used in remote
sensing geodynamic monitoring owing to their all-day, all-weather operation. Image
change detection using SAR has become increasingly important for disaster assessment in
urban areas [4], deforestation [5], and flood and glacier monitoring to analyze events that
change a geographical area following a disaster [6]. However, the existing change detection
only detects the change area and cannot recognize the change type, such as the change
from what-to-what ground object type. If the change type can be directly recognized, the
application of biphasic SAR images can be greatly expanded.

Several efforts have been made in the application of SAR images [7–10]. Similar to
change detection, the presence of inherent noise in SAR images makes change identification
difficult. A common approach is to first derive the difference image (DI) of a multi-temporal
SAR image and then analyze the DI to obtain a change map [11], and our proposed change
recognition draws on this idea.

For DI analysis, the hierarchical fuzzy C-means clustering (HFCM) algorithm was
used in previous studies [12–14] to obtain pre-classification results. In these studies, the
pre-classification stage of the HFCM algorithm had more misclassified pixels in the pre-
classification results, which led to incorrect training samples being provided to the deep
learning network classification model and ultimately resulted in misclassification. A
principal component analysis (PCA) and k-mean clustering algorithm (PCA-Kmean) [15]
was proposed to obtain detection results that better retain the change region, albeit with
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more false alarms. Recently, deep learning (DL) has become an effective nonlinear modeling
tool for the reclassification stage, and various neural network classification models are
widely used for change detection, as they can extract high-dimensional abstract features
from images to achieve better automatic classification. The standard convolutional neural
network (CNN) [16] is a common classification model; however, its simple structure usually
leads to poor classification results. Gong et al. [17] proposed a deep neural network (DNN)
for SAR image change detection, but it has the disadvantages of large parameters, slow
training, and limited performance. The PCANet [18] was found to be more time consuming
due to the long feature extraction time. However, for the same accuracy conditions, smaller
models have fewer parameters, are faster to train, and are easy to deploy on mobile devices.
The SAR image change detection method of pre-classification, which involves clustering
and then post-classification by a neural network model, is expected to be a lightweight
and well-classified neural network classification model. Recently, several lightweight DL
networks such as SqueezeNet [19], ShuffleNet [20], and MobileNet V2 [21] were proposed,
with all of them achieving good classification efficiency; however, their network depth is
redundant for training small-sized image blocks, and the training time is long.

Inspired by the two-stage idea of clustering pre-classification of SAR change detection
and deep learning network classification, we designed a new application of unsupervised
change recognition using Mobile PCA_kmean (RRPCA-Kmean) and lightweight networks.
It can greatly expand the application of bi-temporary SAR images and is no longer limited
to the detection of changing regions by the existing change detection.

The novelty of this study is based on the following three points:
(1) An RRPCA-Kmean clustering algorithm was designed to provide highly reliable

pre-classification results. These results can be used as a pseudo-label for training samples
that emphasize central pixels and ignore edge noise.

(2) A Lightweight MobileNet (LMNet) classification model was designed to provide a
fast and efficient classification network for change recognition.

(3) A two-stage unsupervised change recognition framework was designed. The
method simultaneously implements change region detection and change recognition.

2. Methodology

The methods proposed in this study can be categorized into two stages (pre-classification
and reclassification), which are described in Figure 1. First, RRPCA-Kmean was used to obtain
pre-classification results from the DI; subsequently, the pre-classification results were used as
pseudo-labels to generate training samples from the dual-temporal SAR images. Finally, an
LMNet was designed to train the samples and reclassify the pre-classification results.

2.1. RRPCA-Kmean Clustering Algorithm

Two SAR images were taken from the same location at different times: I1 =
{I1(m, n), 1 ≤ m ≤ M, 1 ≤ n ≤ N} and I2 = {I2(m, n), 1 ≤ m ≤ M, 1 ≤ n ≤ N}, both of
size M× N. Change recognition is required to recognize the change type from I1 to I2.

The first step was to generate the initial DI from two original SAR images. Considering
its ability to suppress speckles, log-ratio is a common operator in many change detection
studies [22]. The DI is defined as follows:

IDI(m, n) =
∣∣∣∣log

(
I1(m, n) + 1
I2(m, n) + 1

)∣∣∣∣ (1)

Subsequently, we combined mathematical morphology, PCA, and k-mean clustering to
design a RRPCA-Kmean clustering algorithm. First, pre-classification results were obtained
using PCA and k-means clustering, as they consider a large number of mis-classifiable
pixels as intermediate classes, which greatly reduces the generation of incorrect labels.
To reduce the classification error problem of a large number of intermediate classes in
reclassification, we also introduced mathematical morphology erosion to restrict the pre-
classification results. A 50 × 50 all-1 matrix was used as the structural element for local
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erosion, and the minimum value was found to replace the original gray value within this
50× 50 neighborhood. In the pre-classification result, there were only three gray values: 0.5,
1, and 0. The unchanged region with gray value 0 occupied most of the matrix; consequently,
the gray values of the changed region (with gray value 1) and the intermediate class region
(with gray value 0.5) were reduced to 0 to achieve morphological region restriction. The
process of the algorithm is summarized in Algorithm 1.

Algorithm 1 RRPCA-Kmean Algorithm

Input: DI
Step 1: Extract the PCA feature vector.
Step 2: Run the k-mean clustering algorithm to generate three classes Ω1

c ,Ω1
i and Ω1

u. where Ω1
c is

a pseudo-changed class, Ω1
i is a pseudo-intermediate class, and Ω1

u is a pseudo-unchanged class.
Step 3: Calculate the ratio of the mean value to the number of pixels for each class and arrange
them from smallest to largest to obtain three classes

{
Ω2

c , Ω2
i , Ω2

u
}

, the initial pre-classification
results.
Step 4: Perform mathematical morphological erosion of the pre-classified result map using a
50 × 50 all-1 matrix.
Step 5: Take out the pre-classified result map within the corrupted range, the RRPCA-Kmean
result map.
Output: RRPCA-Kmean result map containing

{
Ωc, Ωi, Ωu

}
.
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Figure 1. Proposed LMNet change recognition method.

2.2. Generation of Training Samples

The next step was to extract training samples for change recognition. We further
filtered the changed class pixels in the regionally restricted pre-classification result. The
changed class pixels with grayscale values greater than 0 in the time 2 image and time 1
image subtraction results denote the land to water (LW) changed labels, and the change
class pixels with grayscale values less than 0 denote the water to land (WL) changed
labels. It is worth noting that mathematical morphology is introduced in this paper to
improve the accuracy of labels with different variation types and reduce the recognition
error. Unchanged type labels are represented as unchanged class in the pre-classification
result. The training samples are generated as shown in Figure 2.
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First, image patches of positions of interest (pixels belonging to Ωc and Ωu) were
generated. These image patches contained enough change information around the positions.
PI1

mn represents a patch with the center at position (m, n) in image I1, and the size of
PI1

mn is (k/2)× (k/2).PI2
mn represents the corresponding patch in image I2. To dilute the

noise, a bilinear interpolation was applied to obtain blocks of size (k/2) × k. The two
blocks were then combined and multiplied with a mask (blue represents gray value 1 and
white represents 0 in Figure 2) to obtain the training samples. This mask processing step
suppressed edge noise and emphasized the central pixel.

2.3. Lightweight MobileNet Classification Model

The MobileNet v2 [21] has many layers; it contains depth-separable convolution
and pointwise convolution modules as well as an inverse residual module, which were
introduced in our proposed network. Among them, the depth-separable convolution and
pointwise convolution modules mainly reduce the parameters and computation cycles.
The inverse residual module mainly avoids the gradient vanishing problem and reduces
information loss. Both are effective for our small image blocks, since they minimize the
number of parameters and operations and shorten the training time. We designed a
lightweight MobileNet reclassification model for reducing information loss and realizing
efficient classification. The proposed model mainly consisted of five modules: Modules A,
B, C, D, and E. Module A and Module B are depth-separable convolutions with the addition
of a 1 × 1 convolution; Module C is an inverse residual module; Module D is a squeeze
excitation (SE) module; and Module E is an efficient final stage module. Depth-separable
convolution is good for reducing the computational effort, but it exhibits reduced accuracy.
The addition of a 1 × 1 pointwise convolution in Module A and Module B helps to alleviate
this problem. The inverse residual module in Module C helps to alleviate the problem
of information loss caused by dimensional transformation. Module D is a lightweight
attention module for reducing computational effort. To alleviate the problem of high
resource consumption in the output of the network, Module E uses a 1 × 1 convolution for
expansion, and Relu6 activation function is used immediately after the pooling layer to
improve the network speed. The Relu6 activation function maintains the robustness of the
network well, as shown in Equation (2).

Relu6 = min(max(0, x), 6) (2)

The network finally uses a 1 × 1 convolution for linear output to prevent information
loss due to dimensional transformations. The use of the drop layer helps to further reduce
computation, accelerate convergence, and alleviate overfitting. The processing of this
efficient final stage module increases the speed of computation while preserving accuracy.
The network structure is shown in Figure 3, and the specific network body architecture is
shown in Table 1.
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Table 1. Lightweight MobileNet body architecture.

Type Filter Shape Input Size

Conv 3 × 3 × 32 10 × 10 × 1
Module A 3 × 3 × 32 5 × 5 × 32
Module B 3 × 3 × 96 5 × 5 × 96
Module C 1 × 1 × 24 × 144 3 × 3 × 24
Module D 3 × 3 3 × 3 × 144
Module E 1 × 1 × 24 × 32 3 × 3 × 24

3. Results
3.1. Datasets

Three actual SAR image data sets in Figure 4 were employed to prove the superiority
of the proposed approach. Table 2 lists a detailed description of each dataset, including
sensor type, location, imaging date, image size, resolution, and reason for variation.

Table 2. Details of a real SAR data set.

Dataset A B C

Sensor Radarsat-2 Radarsat-2 GaoFen-3

Location Yellow River,
China

Yellow River,
China

Yellow River,
China

Band C C C
Polarization VV VV VV

Date
2008.06 2008.06 2021.07.20
2009.06 2009.06 2021.07.24

Size 257 × 289 233 × 356 300 × 300
Resolution 8 m 8 m 5 m
Changes Farming Flood Farming

To evaluate the effectiveness of our proposed LMNet, the related models were consid-
ered for comparison, including the standard CNN [16], SqueezeNet [19], ShuffleNet [20],
and MobileNet v2 [21] networks. The training samples for each network were selected as
in the RRPCA-Kmean. The SqueezeNet, ShuffleNet, and MobileNet networks were trained
for classification using migration learning with modified input size and final output of
the softmax and fully connected layers. All experiments were performed using MATLAB
2020b. The initial learning rate was set to 0.001, and the “adam” optimizer was used.

3.2. Evaluation Metric

We used four credible evaluation indexes to measure the performance of the proposed
LMNet in change recognition, including the kappa coefficient (k) of change detection, LW
recognition accuracy P1, water to land (WL) recognition accuracy P2, overall accuracy (OA),
and average accuracy (AA).

P1 =
TP1

TP1 + FP1 + FN1
(3)
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P2 =
TP2

TP2 + FP2 + FN2
(4)

OA =
TP1 + TP2

TP1 + TP2 + FP1 + FN1 + FP2 + FN2
(5)

AA = (P1 + P2)/2 (6)

For each prediction, separate statistics were used for TP (predicted answer correct), FP
(wrongly predicted other class as this class), and FN (predicted this class label as other class
label). The subscripts in the above equation indicate that they were calculated separately
for different types of changes.
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3.3. Analysis of Results

The final recognition result was a subjective evaluation of the recognition of the
change type by the color change type map. To evaluate the results objectively, k was
evaluated for change detection of the binary image of the reference image. By comparing
the change recognition map with the change type reference map, LW, WL, OA, and AA were
calculated. Figure 5a–e shows the recognition results of different methods, and Figure 5f
indicates the corresponding reference chart. Table 3 and Figure 6 present the results of each
method quantitatively.
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SqueezeNet; (c) results of ShuffleNet; (d) results of MobileNet v2; and (e) results of LMNet. (f) The
change recognition reference chart. Red indicates the change type of land to water (LW), green
indicates the change type of water to land (WL), and black indicates the unchanged type.

Speckle noise is a critical and unavoidable factor affecting the change detection results
in SAR image processing. In addition, complex backgrounds, such as the edges of land and
water, can also introduce some interference.

As for the standard CNN, it can be seen from Figure 5a that some pixels in dataset A
were missed, while extra pixels in dataset B should not have been detected. Table 3 also
shows that the standard CNN had lower evaluation metrics in all the B and C datasets.
These indicate that the simple shallow neural networks were not sufficiently generalized
and are prone to increased false positives or misses.

For SqueezeNet, it can be seen from Figure 5b that there were many false alarms in
all three datasets, which were not effective. As can be seen from Table 3, the metric OA
(51.67%) was better than CNN (45.93) in dataset B but was lower than CNN on the other
two datasets A and C. This indicates that such a lightweight network is not suitable for
high-resolution detection of the types of changes that occur at river edges.
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Table 3. Change recognition results of different methods on three datasets.

Method
Results on the A dataset

k (%) LW Area (%) WL Area (%) OA (%) AA (%)

CNN 82.80 78.90 37.58 74.97 58.24
SqueezeNet 72.95 65.10 41.75 62.68 53.42
ShuffleNet 78.83 73.98 40.00 70.08 56.99

MobileNet v2 84.02 79.79 48.73 76.72 64.26
LMNet 87.64 84.00 49.61 81.59 66.80

Method
Results on the B dataset

k (%) LW Area (%) WL Area (%) OA (%) AA (%)

CNN 61.31 61.59 28.22 45.93 44.90
SqueezeNet 66.69 58.18 38.89 51.67 48.54
ShuffleNet 72.89 64.13 47.29 58.77 55.71

MobileNet v2 76.52 66.41 55.45 63.22 60.93
LMNet 81.10 71.32 63.93 69.23 67.62

Method
Results on the C dataset

k (%) LW Area (%) WL Area (%) OA (%) AA (%)

CNN 69.39 61.36 45.59 56.01 53.47
SqueezeNet 66.18 70.66 31.60 52.95 51.13
ShuffleNet 74.00 73.44 44.32 62.15 58.88

MobileNet v2 74.94 68.24 49.93 62.53 59.09
LMNet 78.96 71.32 59.86 67.79 65.59

For ShuffleNet, it can be seen from Figure 5c that more false detections occurred in
datasets A and C due to noise interference. However, the recognition of change types at
river edges in dataset B, such as CNN and SqueezeNet, had fewer false pixels than CNN
and SqueezeNet, indicating that ShuffleNet is more suitable for change recognition at river
edges. As shown in Table 3, OA (70.08%) was lower than CNN (74.97%) on dataset A.
Therefore, this lightweight network needs further improvement to enhance its adaptability.

A comparison of Figure 5a–d shows that MobileNet V2 had the lowest number of
recognition errors, and the details were better retained. MobileNet V2 recognizes each
change type better than the first three methods. The evaluation metrics of MobileNet V2 in
Table 3 were also optimal, indicating that this deep lightweight network is better adapted
to recognize various datasets. Although the MobileNet V2 network is time-consuming, it
can be further improved to suit different needs.

As for our proposed LMNet, a comparison of Figure 5a–e shows that our result was
the best with the least number of incorrectly recognized pixels. LMNet achieved the highest
basic k values, OA, and AA in all datasets in Table 3. In addition, it can be seen from Table 4
that LMNet required less time and had the least number of parameters, indicating that our
LMNet works best.

Table 4. The training times and parameters of compared methods.

Methods CNN SqueezeNet ShuffleNet MobileNet
v2 LMNet

Times 1.3 min 7.3 min 21.4 min 32.2 min 5.4 min
Parameters 39.7 k 9.8 M 863 k 3 M 158 k

In addition, to clearly understand the effect of each method in Table 3, we present
Figure 6, which clearly shows that the indicators of our method are optimal compared to
those of other methods.
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Figure 6. Change recognition results of different methods on three datasets.

3.4. Analysis of the Patch Size

The training samples were captured by image patches of size k. We evaluated the
performance of the proposed LMNet with k = 8, 10, 12, 14, 16, and 18. Figure 7 shows the
relationship between k and OA. The value of OA first increased and then decreased as k
gradually increased. The OA curve shows that the training sample size was very important
for the change recognition task. However, large patch sizes increase the computational
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burden and may introduce some information noise that affects the performance of change
recognition. Therefore, we took k = 10 for the first two datasets and k = 14 for the last dataset
in the experiments. The sizes differed, as the first two datasets had few and concentrated
change regions, while the last dataset had small and many change regions with high
resolutions. The larger dataset contained more information and was more suitable for the
recognition of small change regions.
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4. Conclusions

In this study, a RRPCA-Kmean and LMNet two-stage unsupervised change recognition
method was proposed for further application to change detection in SAR images. The
RRPCA-Kmean designed in this study can be applied to various change detection and
recognition methods that generate pre-classification results by clustering. The proposed
training sample design method emphasizes the central change pixels and suppresses edge
noise. The proposed LMNet has a good balance between recognition time and recognition
effect, while exhibiting a good application value. Our method achieved good results on SAR
images with different resolutions, and experiments demonstrated the future application of
the algorithm in change detection. In our future work, we will aim to recognize more types
of changes.
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