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Abstract: The detection of arbitrarily rotated objects in aerial images is challenging due to the highly
complex backgrounds and the multiple angles of objects. Existing detectors are not robust relative to
the varying angle of objects because the CNNs do not explicitly model the orientation’s variation.
In this paper, we propose an Orientation Robust Detector (OrtDet) to solve this problem, which
aims to learn features that change accordingly with the object’s rotation (i.e., rotation-equivariant
features). Specifically, we introduce a vision transformer as the backbone to capture its remote
contextual associations via the degree of feature similarities. By capturing the features of each part
of the object and their relative spatial distribution, OrtDet can learn features that have a complete
response to any direction of the object. In addition, we use the tokens concatenation layer (TCL)
strategy, which generates a pyramidal feature hierarchy for addressing vastly different scales of
objects. To avoid the confusion of angle regression, we predict the relative gliding offsets of the
vertices in each corresponding side of the horizontal bounding boxes (HBBs) to represent the oriented
bounding boxes (OBBs). To intuitively reflect the robustness of the detector, a new metric, the mean
rotation precision (mRP), is proposed to quantitatively measure the model’s learning ability for a
rotation-equivariant feature. Experiments on the DOTA-v1.0, DOTA-v1.5, and HRSC2016 datasets
show that our method improves the mAP by 0.5, 1.1, and 2.2 and reduces mRP detection fluctuations
by 0.74, 0.56, and 0.52, respectively.

Keywords: object detection; rotation-equivariant; self-attention

1. Introduction

Object detectors for remote sensing images are designed to quickly and accurately
search for target objects in images, such as vehicles, aircraft, playgrounds, and bridges.
They are essential in traffic management, target detection (military), land use, and urban
planning [1–3]. As remote sensing images are acquired with a top-view perspective,
oriented object detectors use OBBs, which provide more accurate orientation information
of the objects than the general object detectors [4–8] that use HBBs. This application
enables better detections for objects with dense distributions, large aspect ratios, and
arbitrary directions.

Many detectors designed for OBB tasks on remote sensing have reported promising
results. In order to enhance the robustness and make the detector capable of detecting
objects in arbitrary directions, most are devoted to learning the rotation-equivariant features
of the objects [4,8–11]. As analyzed in the experiments of this paper, in the commonly used
dataset of remote sensing, many categories not only have a small number of samples but
also are concentrated in small angle intervals. Traditional detectors based on CNNs cannot
learn rotation equivalence accurately because the convolutional kernels do not follow the
directional changes of the objects [9,12]. Existing detectors can detect arbitrary orientation
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objects by employing larger capacity networks that fit the feature expression of the object
under different directions in the training set [13]. As shown in Figure 1a, we found that
when the angle in the validation set is rotated to increase its distribution and training set
differences, the performance of traditional detectors can differ by nearly 15 AP. Therefore,
the robustness of the detector cannot be guaranteed. As shown in Figure 1b, the features
maps extracted by traditional detectors are concentrated in the center of the object no matter
how they are rotated, and it is difficult to learn the directional information of the object. It
is crucial for the detector to encode the rotational equivalence features of the objects more
accurately. For example, the CNNs have translation equivalence feature, so the presence of
the object at any position does not have a significant impact.

(a) (b)

Figure 1. (a) The horizontal coordinate is the objects rotation angle in the validation set, the vertical
coordinate is the AP, the red curve is our detector OrtDet, and the blue curve is the traditional
detector. (b) Illustration of our method. The orange arrow represents the feature heat map, the
blue arrow represents the rotation operation. Traditional detectors have difficulty in learning the
orientation information of the objects, and their extraction features are focused on the center of the
objects regardless of the rotation. Our OrtDet learned the orientation information of the object better.

Recently, to improve the ability of CNNs to encode the rotation equivalence of the
object, group convolutions [14] have been proposed to extend the traditional CNNs to
obtain the rotation equivalence features in larger groups, which produce feature maps with
dedicated orientation channels to record features in different directions of the image [15–17].
The ReDet [13] builds on this approach by designing a rotation-invariant region of interest
(RiRoI) structure to obtain features of the object in the directional channel and successfully
confer the CNN models with rotation equivalence in detection tasks. However, such
methods not only increase the computational complexity of the CNNs but also introduce a
large amount of nonessential computations, e.g., most of the remote sensing image regions
are composed of a background, and we do not need to obtain features of multiple directions
in the background region. Cheng [18] et al. explicitly added a rotation-invariant regularizer
to the CNN’s features by optimizing a new loss function to force a tight mapping of the
feature representations of the training samples before and after rotations to obtain rotation
equivalence images. However, such methods force the CNN to learn high-dimensional
image-level rotation equivariant/invariant features. In contrast, instance level rotation-
equivalence features are more noteworthy in the object detection task.

In addition, the existing detectors [8,19–21] measure the precision using the mean
average precision (mAP) metric. There is no specific metric for measuring the robustness
of the object direction in the oriented object detection task. To a certain extent, the ability
to learn more rotation equivalence features results in a higher mAP metric. However, the
higher mAP does not equate to better rotation equivalence features of the object. The
training and validation sets are usually divided randomly on the dataset, so there are
independent and identically distributed [22–24] in direction distribution. Therefore, the
detectors can achieve a high mAP by fitting the feature expression in each direction of the
train set. It is equivalent to informing the detector in advance of the test set’s object in
the corresponding direction feature, and it cannot learn rotation equivalence features. In
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particular, for remote sensing dataset bridges, courses and ports, and other objects, due to
the limitation of the number of satellites and the limitation of the overhead perspective,
the number of objects is not only small but also more than 50% of objects directions are
concentrated in the range of 0 ± 15°. When the angle distributions of the training and test
dataset are inconsistent, the mAP will be substantially reduced. Thus, the mAP metric can
only reflect the accuracy of the detector for the current angle distribution dataset and does
not reflect the robustness of the detector.

In this paper, we propose a novel OrtDet architecture for remote sensing images to
improve robustness by learning the rotation equivalence features of the objects. Firstly,
we introduce the vision transformer architecture as the backbone. As shown in Figure 1b,
compared with the traditional detector, which focuses on the central part of the object
regardless of how the object is rotated, and the extracted feature is very coarse, the OrtDet
can regress the overall features of the object (e.g., nose, fuselage, wings, etc.) more finely
and accurately, so we can identify the orientation of the object by its features, which is
more suitable for the oriented object detection task. Unlike CNNs with fixed and limited
perceptual fields, it relies on an intrinsic self-attentive mechanism as the main module to
capture its remote contextual associations via the degree of feature similarity. The feature
similarity region can change adaptively according to the object direction. As shown in
Figure 2a, it can be seen that the feature similarity regions obtained by self-attention at
each point are treated as nondifferentiated at the beginning of training. When the model is
trained, as shown in Figure 2b, the model learns that the similarity region of the features
at each point in the object converges adaptively from the full image range to the region
where the object is located, and Figure 2c shows that this similarity region is consistent
with the change in the object’s orientation, thus demonstrating that this approach can better
learn rotational equivalence features. This direction also follows the ViT [25] philosophy
to reduce the “induction bias” while pursuing generalized features. Self-attention [26]
computations have fewer inductive bias than CNNs, such as translation equivalence and
localization, but it can still learn translation equivalence and scale equivalence features
under certain datasets and supervised/self-supervised tasks [25,27], so it can also learn
object rotation equivalence under the corresponding supervised tasks, i.e., oriented object
detection tasks. Secondly, the transformer’s architecture is a plain, nonhierarchical architec-
ture that maintains a single-scale feature map [25]. We use the Tokens Concatenation Layer
(TCL) layer, which reduces its spatial resolution with the increase in network depth and
thus generates a multiscale features map.Then, we leverage the Feature Pyramid Network
(FPN) [28] module to assign feature levels according to the scale of objects. To reduce the
computational complexity of the model, we use the window mechanism and shift window
mechanism to reduce the computational overhead of the model while maintaining the
relationship between the windows of the images [29].

(a) (b) (c)

Figure 2. The relative importance of a single token (red point) with respect to the other tokens in the
image is visualized. The shade of yellow color represents the degree of importance. (a) represents
the beginning of the transformer’s backbone training. (b) represents the state after the transformer’s
backbone is trained. (c) shows the object at different angles in the image.

In addition, we use the vertex offset method to accurately describe an oriented object
by indirectly regressing the glide of each vertex offset of the object with the smallest HBBs
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on each corresponding side. The principle is outlined in Section 3.4. This representation can
further alleviate the instability of the regression’s results due to the change in the object’s
direction. Furthermore, to quantitatively measure the ability of the detector to learn the
object rotation equivalence features, we propose a new evaluation metric: mean Rotation
Precision (mRP). It measures the fluctuation of the accuracy of the detector for the same
dataset at different angle distributions. A smaller mRP means that the accuracy is less
affected by the object direction in the dataset and is more robust. The effectiveness of the
proposed method is demonstrated by extensive experiments on the remote sensing datasets
DOTA-v1.0, DOTA-v1.5, and HRSC2016.

The significant contributions of this paper can be summarized as follows:

• We propose an Orientation Robust Detector for remote sensing images. It adaptively
captures remote contextual associations via the degree of feature similarity. The rota-
tion equivalence feature can be learned more accurately for objects at different angles.

• We use windowing mechanism and TCL strategy to reduce the computational com-
plexity of transformer and generate multi-scale features. A more efficient and robust
method is used to represent the oriented objects to reduce the regression’s confu-
sion problem.

• We propose a new metric, mRP, compared to the traditional mAP; it reflects the ability
to learn object rotation equivalences by quantitatively describing the fluctuation of the
accuracy in the test set for different object angle distributions.

• We carry out experiments on the DOTA-V1.0, DOTA-V1.5, and HRSC2016 datasets to
demonstrate the effectiveness of our method, which involves significant improvements
in detection performances as measured by both mAP and mRP metrics.

2. Related Work
2.1. Oriented Object Detection

Unlike most HBB object detectors [30–35], OBB object detectors [4,8,13,19,20] are more
suitable for the overhead perspective of the remote sensing images. To detect objects in
arbitrary directions, the method [36] determines OBBs by directly introducing angular
parameters based on the Faster RCNN [31] regression center coordinates, width, and height.
Rotated RPN anchors [37–39] with different angles, aspect ratios, and scales are defined
manually to perform the regression of the object, while RRoI pooling is used to rotate
the object features for normalization. However, the above method dramatically increases
the extra calculation burden in the training and testing phases. The RoI-Transformer [4]
interposes a light-weighting module between RPN and RCNN. A lightweight module is
inserted to transform horizontal RoIs (HRoIs) into rotation RoIs (RRoIs), thus avoiding
the generation of a large number of anchors and reducing the computational complexity.
To avoid the problems of abrupt boundary variability and angular periodicity, the gliding
vertex [19] first extracts the external horizontal bounding boxes of the object and then
introduces scale factors on each side of the HBBs to locate the vertices of the OBBs. CSL [20]
used angle classification instead of regression and designed soft labels to cope with the
boundary problem, which achieved good results, but angle classification also led to an
excessive amount of output parameters. R3Det [8] and S2A-Net [10] designed a feature
refinement module using feature interpolation to achieve better spatial alignments with
oriented objects. Some complex and uncommon methods have recently been developed
to represent OBBs using the middle line [7] and polar coordinates [40]. Zhang et al. [41]
propose a novel oriented object detector based on CNN with adaptive object orientation
features. All the above methods aim to improve the representation of the OBBs or feature
representation of the object. The former can address the loss of abruptness caused by the
angle periodicity and the interaction between the length and width of the edges. The latter
can extract the exact features of the corresponding rotated object.
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2.2. Rotation Equivalence Networks

To alleviate the deficiency that CNNs have a poor representation of rotational equiv-
alence features, the group convolution method [14] is proposed to incorporate a 4-fold
approximation with respect to the rotational equivalence feature. HexaConv [17] used a
hexagonal raster expansion relative to a 6-fold rotation equivalence and obtained rotation-
equivalence features at more angles. The ReDet [13] approach builds on this by modifying
the RRoI structure in the detector to allow the cyclic switching of the direction channels and
the interpolation of the corresponding features to obtain the rotation-equivalence features
of the object. STN [42] and DCN [43] are widely used in oriented object detection tasks
by explicitly modelling the rotation variation in the detector. The RICNN [44] optimizes a
new loss function by introducing regularization. Cheng [18] et al. explicitly add a rotation-
invariant regulariser to the CNN’s features by optimizing a new loss function to force a
tight mapping of the feature representations to achieve rotational equivalence features.
OSIm [45] combines the rotation-equivalence channel features constructed in the frequency
domain with the original spatial channel features to cope with the problem. Although these
methods approximate rotation-equivalence features, they all require many training sam-
ples and a large number of parameters. Secondly, these methods all focus on image-level
rotation-equivalence features instead of instance-level rotation-equivalence features.

2.3. Transformer-Based Networks

In contrast to the above methods based on CNN backbone methods, our approach
employs a transformer structure based on the self-attention mechanism [26] as the backbone
of the detector. The advantage of the transformer lies in using self-attention for capturing
global contextual information to establish a long-range dependence. ViT [25] applied a
standard transformer directly to image classification by splitting the image into patches
and not focusing on pixels, leading to very competitive results with CNNs. Since the
architecture is a single-scale feature map with high computational complexity, it cannot
be directly used as a backbone for detection tasks [27]. The swin transformer [29] was
proposed to reduce the high number of computations by introducing the window and
shift window mechanism. By limiting self-attention computation to the local window in
the image, it is able to achieve higher accuracies than all existing CNN-based state-of-
the-art methods. DETR [34] reduces the computational complexity of the transformer by
combining the transformer and CNN, applying transformer architecture to object detection
for the first time. Deformable DETR [46] borrows the idea of a variable convolution
neural network that enables the transformer’s ability to detect multiscale objects. Adaptive
clustering transformers [47] further reduce the computational complexity of the model by
clustering and accelerate the convergence process. SMCA-DETR [48] introduced a spatially
modulated Gaussian mechanism to achieve fast convergence speeds compared with DETR.
In the field of remote sensing, the transformer is also used in the field of object detection [49]
and instance segmentatio [50,51]. In addition, the CRTransSar [52] structure has also been
proposed for applications in SAR images for the object detection of ships. Zhang et al. [53]
proposed a TRS structure to apply transformer for a remote sensing scene-classification
task. The above methods use transformers as the backbone in the model, when combining
them with CNNs to reduce their computational complexity, and there are no allocated
supervised tasks for mining the rotational equivalence features of the detector.

3. Method
3.1. Overview

This section presents the principle of the proposed OrtDet to encode rotation-equivalence
features and the box regression mechanism. The overall architecture of OrtDet is shown
in Figure 3. Firstly, the image is split into tokens by patch partition and is fed into the
backbone of the transformer’s architecture. Then, it produces multiscale feature expressions
relative to the image by the TCL layer. Secondly, the features corresponding to the smallest
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HBBs of the object are extracted by RPN and RoI Align. Finally, the OBBs are determined
by regressing the four vertices offset of the HBBs by the FC layer.

Figure 3. Overview of the proposed method. (a) Main structure of rotating object detection. (b) Main
structure of Transformer model backbone. The brown arrows represent the features at each scale in
the FPN. (c) Structure of the transformer block for feature extraction, where LN represents layer norm
operations, W-MSA represents self-attention operations in the rule window, and SW-MAS represents
self-attention operations in the offset window.

3.2. Feature Learning

We introduce the transformer architecture as the backbone. To enrich the spatial
neighborhood information of each pixel and reduce the computation, input image I is
first divided into H ×W patches, xi ∈ Rp2∗C, i ∈ {1, · · ·, N} by a patch partition module,
where P is the size of each patch, C is the channel number of the image (in RGB image
usually 3), and N is the total number of patches (Figure 4). The Transformer uses a constant
latent vector size D via all of its layers, so the tokens are projected to an arbitrary channel
dimension D by using linear embedding layer U and each patch is mapped to a token
that enriches the feature’s information. The token after patch partition is denoted by z0, as
shown in Equation (1).

z0 = [x1U, x2U, · · ·, xNU], U ∈ R(p2·C)·D, z0 ∈ RN·D (1)

Figure 4. The original image is divided into nonoverlapping Patches(red boxes), and the original
spectral features in the Patches are concatenated in the spatial dimension to be output as tokens of
the original image. The dotted lines represent the rest of the Tokens that are omitted

Our model uses multi-head self-attention (MSA) [26] to find the relative importance
of a single token with respect to the other tokens in the image, which is measured by
calculating the attention weight between each token. To obtain the attention weight, the Q
(query), K (key), and V (value) vectors are generated by multiplying the element against
three learned matrices UQKV . (Equation (2)). The vector for Q, K and V dimensions is
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denoted by DK. Vector Q and K contain the similarity of each token in the image obtained by
the dot product of Q and K. Next, the output similarity matrix is weighted by multiplying
the V vector to obtain the final results. Since vectors Q, K, and V are generated by tokens,
the method is called self-attention.

[Q, K, V] = ZiUQKV , UQKV ∈ RD∗3DK (2)

To determine the relevance between tokens, the dot products of the Q of the focused
token and the K of other tokens are obtained. The dot product’s result is normalized by DK
and fed into a softmax to obtain attention weight AT (Equation (3)). The AT determines
the relative importance of every pair of tokens in the image.

AT = So f tmax(
QKT
√

DK
), AT ∈ RN∗N (3)

Each row of the AT represents the relative importance of a single token with respect
to the other tokens, so the V of each token is multiplied by the output of the softmax.
The result can be interpreted as the most closely associated tokens, thus extracting its
corresponding feature. Since the highest score is usually used to represent itself, it is
necessary to use MSA to extract different relevant features.

ST = AT ·V (4)

The MSA block computes the scaled dot-product attention separately for N heads
using the previous operation, but each of the different heads is projected to a different Q-K-
V vector using a different UQKV matrix. The output of each of the N heads is concatenated
and projected to the specified feature dimension using a feedforward layer with learnable
weights W.

MSA(z) = Concat(SA1(zi); SA2(zi), · · ·, SAN(zi)) ·W, W ∈ RnDk∗D (5)

To further reduce the computational complexity of the transformer architecture, we
adopt a windowing mechanism. Instead of performing self-attention with all the remaining
tokens in the image, we divide the tokens into separate nonoverlapping windows by
region, as shown in Figure 5a. Moreover, only the self-attention between each token in each
window is calculated, as shown in Equation (6). W_MSA represent the MSA operations
in windows.

ẑl = W_MSA(LN(zl−1)) + zl−1 (6)

zl = MLP(LN(ẑl)) + ẑl (7)

Secondly , to prevent the restrictive isolation of tokens in each window, as shown in
Figure 5b, the shift windows operation is introduced to allow information interactions
between adjacent and nonoverlapping local windows. It significantly enhances the feature
representation capability of the model, as shown in Equation (8). SW_MSA represent
MSA operations in shift windows. Each transformer block followed by a two-layer MLP
and LayerNorm(LN) layer is applied before each MSA module and each MLP module, as
shown in Equations (7) and (9).

ẑl+1 = SW_MSA(LN(zl)) + zl (8)

zl+1 = MLP(LN(ẑl+1)) + ẑl+1 (9)
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(a) (b)

Figure 5. Self-attention in windows portioning (a) and Shift windows partitioning (b) operation.
The orange, yellow, green and blue colors represent Tokens in each window in (a), the red boxed
pixel in (b) can be used to perform a self-attention operation with the four adjacent pixels in the
previous windows

3.3. TCL Layer

We use the TCL layer to transform nonhierarchical, single-scale features into hierar-
chical, multiscale features and conduct the task of multiscale object detection in remote
sensing images. The detailed operation procedures are as follows.

Specifically, we perform a concatenation operation on the 2× 2 neighbor tokens in the
feature map, which reduce the feature scale of tokens to half of the original one and change
the channel dimension from D-dimension to 4D-dimension. To prevent the dimension from
growing too fast and to render the merged features smoother, we use linear layer Ud to
reduce the feature dimension from 4D to 2D. (Equation (10))

z′j
2 , i

2
= Concat(z(i,j), z(i+1,j), z(i,j+1), z(i+1,j+1)) ·Ud, Ud ∈ R4D∗2D, z′ ∈ R

N
2 ∗2D (10)

In stage 1, we do not use the TCL layer to reduce the feature scale because the original
image input feature dimension is expanded to the D dimension using linear embedding. In
stage 2, the feature scale is reduced from W

4 ×
H
4 to W

8 ×
H
8 using the TCL layer, and in stage

3 and stage 4, the feature scale is reduced to W
16 ×

H
16 and W

32 ×
H
32 , respectively. As shown

in Figure 6, the model is designed as a hierarchical pyramid structure via the TCL layer
to produce a hierarchical feature representation. Stage 1 and Stage 2 downsampled the
images by 4× and 8×, respectively, which produced shallow features with strong spatial
and geometric features, but lacked semantic features for the images. Stage 3 and Stage 4
downsampled the images by 16× and 32×, respectively, which produced deep features
that responded to high-level semantic features of the objects, but lacked spatial geometric
features. Therefore, we use the FPN [28] module to fuse the shallow and deep features of
the image and perform the object detection task independently in each level by top-down
and skip connections. Thus, we can satisfy multiscale object detection features in remote
sensing images.

Figure 6. To describe this operation more visually, we use different colors for the features of different
rows. The original tokens in the red box are concatenated with their feature vectors in the spatial
dimension(e.g. 1, 2, 5 and 6 tokens), then projected to the specified feature dimension.

3.4. Rotated Object Box Regression

The direct regression of the angle parameters is challenging for the detector. Therefore,
we use the regression of HBB corner point offsets to determine the OBB. An intuitive
illustration of the method is depicted in Figure 7. We first calculate the HBB (black box Bh
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in Figure 7) of the OBB (blue box Bo in Figure 7). Bh is represented using the conventional
methods (x, y, h, w), with (x, y) representing the center point and (h, w) representing the
width and height, respectively. In addition to the HBB’s representation, four additional
parameters (β1,β2,β3 and β4) are introduced to describe the OBB of the object. The formula
for βi, i ∈ {1, 2, 3, 4} is shown in (Equation (11))

βi =
li
w

, i ∈ {1, 3}

βi =
li
h

, i ∈ {2, 4}
(11)

where li represents the offset of each corner point in the OBB from the corresponding corner
point in the HBB. The normalization operation allows the model to converge quickly to the
target object.

Figure 7. First, determine black box Bh (x, y, w, and h) of the object’s border, and the red dot represents
the coordinates of the object center point. Then calculate the offset of each corner point(β1, β2, β3 and
β4) in the HBB to describe the blue box, Bo, of the object.

The input image is first fed into the backbone to extract features and generate HBBs
proposals with RPN. Then, the regional features extracted via RoIAlign on the proposals
are passed through the FC layers to generate final results, including a HBB (x, y, h, and
w) and four variables (β1, β2, β3, and β4) defining the OBB. The loss function of the model
is similar to that of the Faster RCNN [31]. The difference in the regression loss of object
bounding box Lreg is calculated according to Equation (12).

Lreg = λ1Lh + λ2Lβ

Lβ =
4

∑
i=0

smoothL1(βi − β̂i)
(12)

where Lh is the HBBs loss of the object, which is calculated in the same way as in the Faster
RCNN, andβ̃i represents the true offset of each corner point of the rotating border. λ1 and
λ2 are hyperparameters to balance the importance of each part of the loss.

3.5. Rotated Precision Metric

To address the defect that the mAP does not accurately measure the model’s ability to
learn the rotation equivalence of the object, we propose a new mean rotational precision
(mRP) as an evaluation metric. Firstly, all images in test set I containing K categories are
randomly rotated by N sets of different angles to form an extended test set {I1, I2, I3, . . . , In}.
Then, the accuracy of APi

j is evaluated for each object class in the test set Ii
j (1 ≤ i ≤ n, 1 ≤

j ≤ k), and the variance value, RPj, of APi
j accuracies for each category in the rotated test

set is calculated as follows:

RPj =
∑n

i=1(APj
i −Mj)

2

k
(13)
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where Mj represents the average accuracy of each category under different angle distributions.

Mj =
∑i=1

n APj
i

n
(14)

Finally, the mRP results are obtained by averaging various types of objects:

mRP =
∑k

j=1(RPj −M)2

k
(15)

where M represents the average of the various types of RPj accuracies.

M =
∑k

j=1 RPj

k
(16)

RPj represents the degree to which the accuracy is affected by the angle for each category,
with smaller values representing the model’s ability to learn the rotation equivalence feature
of the object better. mRP is the robustness of the mAP for each dataset, and a smaller mRP
means a more robust model, leading to fewer errors due to changes in the object’s direction.

4. Experiments and Analysis

This section evaluates the proposed OrtDet on three public datasets designed for
remote sensing oriented object detection task. We first introduce the dataset used in the
experiment (Section 4.1). Then, we describe the implementation details and hyperparameter
design (Section 4.2). Finally, we analyze our model and present our experimental results on
different datasets (Sections 4.3–4.5).

4.1. Dataset Description

The experiments evaluate the proposed OrtDet on three publicly available datasets
designed for remote sensing oriented object detection.

DOTA-v1.0 [36] is one of the largest datasets for oriented object detection in the remote
sensing field released by Wuhan University in China. It contains 2806 remote sensing
images with sizes ranging from 800 × 800 to 4000 × 4000 and containing 188,282 object
instances and 15 object categories, which includes the following: Plane (PL), Baseball
diamond (BD), Bridge (BR), Ground track field (GTF), Small vehicle (SV), Large vehicle
(LV), Ship (SH), Tennis court (TC), Basketball court (BC), Storage tank (ST), Soccer-ball field
(SBF), Roundabout (RA), Harbor (HA), Swimming pool (SP), and Helicopter (HC).

DOTA-v1.5 is a new dataset released in the 2019 DOTA Challenge that adds to the
DOTA-v1.0 dataset, mainly by adding a new category: Container Crane (CC) and giving
many small object instances smaller than 10 pixels for specific annotations, especially on
the SV category for more detailed annotation. Compared to DOTA-v1.0, the DOTA-v1.5
dataset is more challenging, but the model training can be more stable.

HRSC2016 [54] is a challenging ship detection dataset with OBBs annotation produced
by Northwestern Polytechnical University in China in 2016, which contains 1061 aerial
images that range in size from 300 × 300 to 1500 × 900. It contains 436 training sets,
181 validation sets, and 444 test sets. Similarly to DOTA, we used separate training and
validation set. All images were resized to (800,512) without changing the aspect ratio, and
a random horizontal flip was applied during training.

For a fair comparison, we process the dataset similarly to the baseline method. When
evaluating the mAP metric in the DOTA dataset, the training and validation sets are used
for training, the test set is used for testing, and the accuracy is evaluated using the official
code. To calculate the rotation precision of the mRP, we need to rotate the image and label
information simultaneously to evaluate the accuracy of the dataset at different angular
distributions. As we do not have access to the label information of the test set, we only use
the training set for training and rotate the validation set for testing. We cropped the original
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image to 1024 × 1024 for image processing, set the step size to 824, and used 0 to paddle
images smaller than 1024 after cropping. The sample distribution in each category in the
DOTA-v1.5 dataset is shown in Figure 8a. The number of samples in each category is shown
in Figure 8b. As depicted in the figure, it can be seen that in the remote sensing dataset,
ground nonfixed objects mainly include targets such as vehicles, planes and ships, and
ground-fixed objects mainly include targets such as courts, bridges, and ports. The number
of objects for ground nonfixed objects is usually much larger than that of ground-fixed
objects. Furthermore, the object directions of ground-fixed objects are concentrated in a
few angle intervals. On the other hand, due to the arbitrary nature of the direction in
ground nonfixed objects, the object’s directions are evenly distributed in each interval, so
it is consistent with the previous analysis of this paper, which proves that the proposed
model has a wide range of application scenarios in the field of remote sensing.

(a) (b)

Figure 8. (a) The direct distribution of each category in the DOTA-V1.0 dataset by cropping the
images at each angle. (b) The number of samples in each category after cropping the images in the
DOTA-V1.0 dataset.

4.2. Implementation Details and Hyperparameter Design

The proposed method is mainly experimented on the RTX3090 using the MMDetection
framework [55]. The initial learning rate is 7.5× 10−3 with a batch size of 4 for training and
divided by 10 in each learning rate decay step. For the DOTA-v1.0 and DOTA-v1.5 datasets,
the training epoch is set to 12, and the learning rate decayed at 8 and 11 epochs. We cropped
the original image to 1024× 1024 with a step size of 824. The data augmentation strategy
is used to balance the categories in the training sample. For the HRSC2016 dataset, the
training epoch was set to 36, and the learning rate decayed at 24 and 33 epochs. In all
experiments, the network is trained by the SGD optimizer with momentum and weight
decay set to 0.9 and 5× 10−4, respectively. The window size is set to 7× 7 by default. The
parameter, D, of the channel number is set to 96, and the expansion layer of each MLP is 4
for all experiments (e.g., the MLP input dimension is 96 and, the hidden layer’s dimension
is 384 ). In multi-head self-attention, the number of heads gradually increased as the
transformer block deepened. In stage 1, stage 2, stage 3 and stage 4, the number of heads is
3, 6, 12, and 24, and the numbers of layers is set to 2, 2, 6, and 2, respectively. In addition,
the hyperparameters λ1 and λ2 in Equation (12) are both set to 1. Data augmentation was
performed by only using random horizontal and vertical flips. When evaluating the mRP’s
metrics, to ensure the authenticity of the results, we rotate the validation set by multiple
angles to ensure that the operation does not change the size of the object, and we use a
rotation followed by a cropping sequence for both the images and the annotation files.
Moreover, we do not use rotated augmentation in the training process for the mRP metric.

4.3. Detection Precision

We compare the OrtDet model proposed in this paper with representative state-of-
the-art methods on the three benchmark dataset in Tables 1–3. We indicate in boldface
and highlight the best results on each column for the different methods. Our method
shows the best performance on either dataset, achieving 74.09% mAP on the DOTA-v1.0
dataset, 64.4% mAP on DOTA-v1.5, and 89.6% mAP on the HRSC2016 dataset. In addition,
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compared to the same vertex offset regression of the Gliding Vertex method, our OrtDet,
can significantly improve the accuracy for small objects categories, such as Large Vehicle,
Small Vehicle, Ship, and to a certain extent for other categories. The reason is that small
objects are more sensitive to angular regression, and the slight deviation for small objects is
more likely to reduce the IoU between the ground truth and the regression bounding box.
In contrast, our OrtDet can obtain rotation-equivalence features better than CNNs, so the
improvement in accuracy for such objects is noticeable. Moreover, in the DOTA-v1.5 dataset,
the Small Vehicle category incorporates a large number of labels below 10 pixels. Thus,
vertex offset regression is unsuitable for describing such tiny rotating objects, resulting in
lower accuracies for the Small Vehicle category than other oriented object detection models.
However, our detector can significantly alleviate this deficiency.

Table 1. Mean average precision (%) of the different methods for the DOTA-v1.0 dataset.

Methods PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

RRPN [37] 88.52 71.20 31.66 59.30 51.85 56.19 57.25 90.80 72.84 67.38 56.69 52.84 53.08 51.94 53.58 61.01
RoI-Transformer [4] 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56
Gliding-Vertex [19] 88.58 84.94 49.87 73.90 70.80 75.62 79.21 90.60 78.06 86.26 58.11 70.11 75.88 72.81 47.82 73.51

R3Det [8] 89.59 81.17 50.53 66.10 70.92 78.66 78.21 90.81 85.26 84.23 61.81 63.77 68.16 69.83 67.17 73.74
OrtDet (Ours) 89.02 84.82 50.68 71.45 72.06 74.98 87.64 90.85 78.76 85.81 58.97 68.95 67.29 70.49 59.61 74.09

Table 2. Mean average precision (%) of the different methods for the DOTA-v1.5 dataset.

Methods PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC CC mAP

RetinaNet-O [33] 71.4 77.6 42.1 64.7 44.5 56.8 73.3 90.8 76.0 60.0 46.9 69.2 59.6 64.5 48.1 0.8 59.2
FR-O [36] 71.9 74.5 44.5 59.9 51.3 69.0 79.4 90.8 77.4 67.5 47.7 69.7 61.2 65.3 60.5 1.54 62.0

Mask R-CNN [56] 76.8 73.5 49.9 57.8 51.3 71.3 79.7 90.5 74.2 66.0 46.2 70.6 63.1 64.5 67.8 9.42 62.7
Gliding Vertex [19] 72.1 82.4 47.5 73.4 34.6 68.0 80.3 90.7 71.1 69.1 49.8 68.1 68.5 66.9 57.8 14.6 63.3

HTC [57] 77.8 73.7 51.4 64.0 51.5 73.3 80.3 90.5 75.1 67.3 48.5 70.6 64.8 64.4 55.9 5.15 63.4
OrtDet (Ours) 72.3 84.5 48.7 71.1 42.1 73.2 80.7 90.7 71.2 69.5 47.8 71.3 67.9 67.4 58.5 13.8 64.4

Table 3. Mean average precision (%) and mean rotation precision of the different methods for the
HRSC2016 dataset.

Methods RRPN [37] RoI-
Transformer [4]

Gliding-
Vertex [19] OrtDet (Ours)

mAP 79.6 86.2 87.4 89.6
mRP 2.55 2.37 2.28 1.76

4.4. Rotation Equivalence

In order to quantitatively assess the ability of baseline and the OrtDet to learn object
rotation-equivalence features, the experiments are conducted to measure the extent to which
the accuracy was affected by the angles distribution of each category in three datasets using
the RP metric. The mRP is further used to quantitatively measure the overall fluctuation
degree of the detector. The results are shown in Tables 3–5. We indicate in boldface and
highlight the best results on each column for the different methods.

Table 4. Mean rotation precision (%) of the different methods for the DOTA-v1.0 dataset.

Methods PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mRP

FR-O [36] 0.28 3.75 2.06 3.98 3.37 2.18 0.47 5.07 4.20 2.58 4.18 2.05 4.72 2.95 8.79 3.45
HTC [57] 0.26 1.96 1.71 3.80 3.60 2.10 0.30 2.09 4.26 2.05 4.04 2.32 3.28 2.44 8.84 2.87

RoI-Transformer [4] 0.42 2.51 1.65 2.82 2.88 2.62 0.23 0.22 4.15 2.27 2.92 2.40 3.91 2.30 10.2 2.82
R3Det [8] 0.34 1.50 2.00 4.08 2.28 1.55 0.26 3.03 5.24 1.71 2.63 1.63 3.05 2.13 10.22 2.77

Gliding-Vertex [19] 0.13 3.63 1.83 2.97 2.70 0.66 0.35 0.21 3.20 0.84 2.92 2.23 3.82 3.75 7.64 2.38
OrtDet (Ours) 0.12 2.84 2.18 2.23 2.25 0.65 0.31 0.09 1.23 0.25 1.02 1.98 2.83 1.76 5.06 1.64
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Table 5. Mean rotation precision (%) of the different methods for the DOTA-v1.5 dataset.

Methods PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC CC mRP

FR-O [36] 0.66 3.07 1.53 3.73 3.15 2.23 0.27 5.47 5.40 0.41 3.17 1.54 4.86 0.77 8.23 0.74 2.83
Mask R-CNN [56] 0.57 2.46 1.54 3.74 2.53 1.78 0.16 4.76 4.78 0.33 3.58 2.15 2.47 0.82 9.49 1.68 2.68

HTC [57] 0.36 2.77 0.87 3.51 1.93 0.97 0.49 4.21 4.03 0.36 3.94 1.61 2.94 1.48 7.92 3.06 2.53
RoI-Transformer [4] 0.40 3.00 1.44 2.82 1.60 0.90 0.53 1.77 3.78 0.48 2.44 2.11 3.69 1.14 8.65 3.85 2.41
Gliding-Vertex [19] 0.67 2.68 2.27 3.13 0.30 0.94 0.07 1.74 3.14 0.21 1.29 1.03 2.25 0.95 7.73 1.82 1.89

OrtDet (Ours) 0.23 1.35 1.23 2.11 0.76 0.80 0.05 0.63 1.60 0.12 0.72 1.11 1.58 0.90 5.01 0.99 1.20

The experimental results in Tables 5 and 6 show that the RP of certain categories for
all the detectors are significantly smaller than others, such as aircraft, ships, and vehicles,
for which the directional characteristics are apparent. The accuracy variation of plane and
ship with their angular distribution is further shown in Figure 9. The distribution of these
categories in the training set is shown in Figure 8a. As these categories are nonground
fixed objects, they can be distributed at any angle in the overhead perspective of the
remote sensing image. Hence, their distribution in each angle interval in the dataset is
approximately balanced. Figure 10a,b show the plane and ship categories distribution on
each angle interval in detail. In addition, the number of objects in these categories is much
larger than the number of objects in other categories from Figure 8b. Thus, the CNN-based
backbone has sufficient data for learning the features of these objects in different directions.
Thus, it does not need to learn the rotation-equivalence features of the object and can still
accurately regress the OBBs of these categories. The OrtDet model can further reduce RP
fluctuations in these categories by learning rotation-equivalence features.

(a) (b) (c) (d)

Figure 9. (a,b) show the fluctuation of the detection accuracy of the ship and plane categories in the
DOTA-V1.0 dataset with the rotation angle of the dataset, respectively. (c,d) show the fluctuation of
the detection accuracy of the ship and plane categories in the DOTA-V1.5 dataset with the rotation
angle of the dataset, respectively.

(a) (b) (c) (d)

Figure 10. (a–d) represent the distribution of ship, plane, soccer-ball fields and basketball courts in
each angle interval, respectively. We count the number of objects belonging to each angle interval
from 0° to 165° in 15° intervals. From the figure, we can find that the distribution of plane and ship in
each angle interval is much more balanced than that of basketball courts and soccer-ball fields.
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Table 6. Performance comparisons of the backbone on OrtDet.

DOTA-v1.0 DOTA-v1.5
Methods Backbone mAP mRP mAP mRP Size (Mb)

ResNet 70.89 2.38 59.89 1.75 60.4OrtDet Transformer 72.32 1.64 61.50 1.19 52.9

For the roundabout and storage tank categories, although they are distributed within
a specific range of angles, their accuracy does not fluctuate particularly significantly re-
gardless of the rotation of the dataset due to the approximate circular shape of the objects.
The main reason for the slight change is that the detector’s result is always horizontal no
matter how the circular object is rotated. However, to make the labels follow the rotation of
the object, we rotate the ground truth of the dataset accordingly, thus resulting in a slight
deviation of the result of the circular object from the ground truth after rotation.

The categories Basketball-court, Soccer ball field, Ground track field, and Harbor are
ground-fixed objects. The angles do not change flexibly in the overhead perspective of
remote sensing images, resulting in a relatively concentrated distribution of the object’s
angles. For example, the angle of the basketball court category in Figure 10c is concentrated
around 0° and 90°, and the training samples of these categories are tiny compared with
those of the plane, ship, and vehicle, as shown in Figure 8b. Therefore, the detector in
the baseline does not has sufficient data to learn the features of these categories in other
directions. Therefore, when the object angles of these categories in the validation set are
inconsistent with the training data, the accuracy will drop sharply, proving that they cannot
really learn the rotation equivalence feature. Contrarily, the accuracy of the OrtDet is much
less affected by the angle distribution than that of the baseline. The model can rely on
training data with a more concentrated angle distribution to obtain robustness results in
the validation set with a completely different angle distribution. Figure 11 shows that
the experimental results demonstrate that the method is much more capable of learning
rotation-equivalence features than the baseline. As depicted in Figure 12, we visualize
and evaluate the Basketball-Court, Helicopter, Plane, Soccer-ball-field, and Tennis-Court
categories using a confidence threshold of 0.7. The OrtDet model proposed in this paper
does not change significantly with a change in the object’s direction when the accuracy is
high, while baseline methods are prone to missing detections and false detections due to
the change in the object’s angle.

(a) (b) (c) (d)

Figure 11. (a,b) show the fluctuation of the detection accuracy of the Soccert-ball-field and Basketball-
court categories in the DOTA-V1.0 dataset with the rotation angle of the dataset, respectively.
(c,d) show the fluctuation of the detection accuracy of the Soccert-ball-field category and the
Basketball-court category with the rotation angle of the dataset in the DOTA-V1.5 dataset, respectively.
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Figure 12. Qualitative comparison with baseline methods in detecting the identical objects categories
of different orientations in the DOTA-v1.5 dataset by rotating an input image with different angles.
The bounding box is the result of the detection for different categories. The OrtDet architecture is
subject to much smaller angular images of the object than the baseline.

Figure 13 shows that in the DOTA-v1.0 and DOTA-v1.5 datasets, the OrtDet has a
much smaller overall fluctuation than baselines. At the same time, the mAP of each angular
distribution is slightly higher or similar to that of the baseline. Therefore, the OrtDet has
a more significant advantage in encoding rotation equivalence features, and its learning
of rotation equivalence features makes the detector more robust. In particular, in remote
sensing images, due to the limitation of the satellite trajectory and overhead perspective,
generating a large number of training samples with a more uniform angle distribution for
fixed ground features is challenging. Thus, the robust detector is more beneficial to the task
of the oriented detector in remote sensing images.

4.5. Ablation Study

In this section, we perform a series of ablation studies on the DOTA dataset to validate
the effectiveness of the proposed method in this paper.

(a) (b)

Figure 13. A higher roundness of the curve indicates a higher robustness of the detector, and a
smaller distance between the curve and the outer circle indicates higher accuracies. (a) Variation
of the detection accuracy with the rotation angle of the validation set on the DOTA-v1.0 dataset.
(b) The variation of the detection accuracy with the rotation angle of the validation set on the
DOTA-v1.5 dataset.

Transformer Architecture. To verify the effectiveness of the transformer architecture,
we compared the ResNet backbone based on CNN. The experimental results are shown in
Table 6. Compared with the ResNet, the transformer architecture can obtain a higher mAP
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with further reductions in the number of parameters and significantly reduce the degree of
mRP fluctuations. Thus, the transformer can better learn rotation equivalence features, and
the rotation equivalence features of the object can improve the accuracy.

Vertex offset. In order to verify that the vertex offset method can accurately regress
the OBBs, we compare the vertex offset method used in OrtDet with the most commonly
used direct regression of the object angle method. The experimental results are shown
in Table 7. The direct regression of the object angle will reduce the accuracy due to the
imprecision of the angle regression. In contrast, the method of angle vertex offsets will
slightly increase the number of parameters of the model due to the regression. However,
this method can reduce the deviation of the regression results due to the change in the
object angle based on the acquisition of the object rotation equivalence features and further
improve the accuracy of the OBBs. Moreover, this method can improve the accuracy and
reduce the fluctuation of the results.

Table 7. Performance comparisons of the box regression on OrtDet.

DOTA-v1.0 DOTA-v1.5
Methods Box Reg mAP mRP mAP mRP Size (Mb)

RBox reg 71.88 2.04 61.33 1.88 50.8
OrtDet Vertex

offset 72.32 1.64 61.50 1.19 52.9

5. Conclusions

In this paper, we propose the Orientation Robust Detector to improve the robustness
relative to the object’s direction in the oriented object detection task. Introducing the trans-
former’s architecture alleviates the deficiency observed in traditional CNNs in learning
object rotation equivalence. Moreover, its accuracy is robust relative to inconsistent angle
distribution problems in the test set with the training set and/or the problem where data
are insufficient in each angle range. Hence, the false and missed detections caused by the
object direction variations are significantly reduced. We used the TCL layer to generate the
transformer’s pyramidal feature hierarchy to address the large-scale differences of objects
in remote sensing. We also reduced the computational complexity of the model by introduc-
ing a windowing mechanism and a shift windowing mechanism. In addition, we predict
the HBBs of the object and the relative gliding offset to represent the OBBs, which avoids
the deviation of the OBBs regression due to the change in the object’s direction. Finally, the
mRP metric is proposed to quantitatively reflect the degree of accuracy fluctuation when
the object orientation of the dataset changes as a measure of the model’s learning ability for
object rotation equivalence features. Experimental results fully demonstrate the effective-
ness and robustness of our OrtDet. Nevertheless, the windowing mechanism introduced
to reduce the complexity of the model leads to a limited interaction range between image
regions. Our future work will focus on expanding the image’s interaction range in the
transformer architecture as much as possible while being computationally tractable.
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