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Abstract: Based on the Wentze–Kramers–Brillouin approximation, we derive formulae to calculate
the position of convergence zones in a range-dependent environment with sound speed profiles
varying in linear and ellipsoidal Gaussian eddy cases. Simulation results are provided for the linear
and ellipsoidal Gaussian eddy cases. Experiment data are used for calculations considering linearly
varying sound speed, and the findings suitably agree with the simulation results. According to the
evaluated environment, the influence of the range-dependent sound speed profile on the position of
the upper and lower convergence zones for different source depths is analyzed through simulations.
The corresponding results show that the influence of the sound speed profile on the position of the
upper convergence zone is greater for a shallower source. In contrast, the position of the lower
convergence zone for large-depth reception is less affected.

Keywords: convergence zone; transmission loss; Wentze–Kramers–Brillouin approximation; coupled
normal mode

1. Introduction

The marine hydrological environment, with its local sound speed profile structure,
considerably influences long-range sound propagation and alters time and space correla-
tions of underwater pressure fields. The sound speed profile in the deep sea causes rays
to refract or reflect and gather in a certain area to form a spatial periodic high-intensity
sound area called the convergence zone [1]. This zone is important for characterizing long-
range sound propagation, and research on its characteristics in the deep sea has become
a research hotspot.

Since the 1940s, several theoretical studies have been conducted on the sound propaga-
tion characteristics of the convergence zone, mainly focusing on the sound transmission loss
and impact of environmental factors on the position of the convergence zone. Woezel [2]
and Brekhovskikh [3] discovered sound fixing and ranging channels in the deep sea.
Urick [4] found that, with increasing sound source depth, the convergence zone splits,
with the inner zone moving inward and the outer zone moving outward. Schulkin [5]
analyzed the influence of bubbles and surface waves on sound propagation in the con-
vergence zone based on experimental data. Bongiovanni et al. [6] proposed a method to
locate the convergence zone based on deep-sea surface temperature data and evaluated
the prediction accuracy of this method using the parabolic equation method. Zhang [7]
used the normal mode theory to approximate the pressure field for ideal shallow water
mixed-layer conditions. Wang and Wang [8] analyzed the impact of strength, thickness,
and depth of the main thermocline on the convergence zone through numerical simulations
and found that the strength of the main thermocline has the greatest impact on the position
of the convergence zone. Chen et al. [9] found that the Subtropical Mode Water in the
Northwestern Pacific Ocean will help form a sonic duct which makes the convergence
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zone gain greater. Yang et al. [10] divided the sound speed profile in the North Atlantic
into six types and analyzed the influence of different types on the position and gain of
the convergence zone. Bi and Peng [11] found that, because of the earth’s curvature, the
location of the convergence zone moves toward the sound source, and its movement can
reach 10 km at 1000 km in distance.

With increasing knowledge of the deep sea, research on the convergence zone is
no longer limited to a range-independent environment but instead more focused on the
impact of mesoscale spatial variability on sound propagation in the convergence zone.
Henrick [12] analyzed the sound propagation characteristics of the convergence zone in
a range-dependent environment with an eddy by establishing an ideal eddy parameter
model. According to ray theory simulations, when the sound source is located at the center
of a cold eddy, the convergence zone moves closer to the sound source, and when the sound
source is far from the eddy center, the convergence zone movement reduces. Rudnick
and Munk [13] found that the influence of internal waves on the sound speed gradient
of a mixed layer causes the convergence zone to move towards the sound source. Colosi
and Rudnick [14] analyzed experimental data and found that a change in the thickness of
the mixed layer with range leads to energy leakage in the mixed layer, thus making the
convergence zone close to the sound source and increasing the width. Li et al. [15] found
that the convergence zone moves backwards and the width increases with an anticyclone
eddy, whereas the cyclone eddy has the opposite effect. Colosi and Zincola-Lapin [16]
analyzed the influence of mesoscale phenomena on mode coupling in the lower surface
sound channel and found that the convergence zone moves toward the sound source,
while the width increases under strong high-order coupling. White et al. [17] studied
the impact of internal waves and tides on sound propagation and found that the second
convergence zone moves farther from the sound source than from the first convergence
zone for a 250 Hz sound source. Zhang et al. [18] analyzed the impact of mesoscale
vortices on the convergence zone through the parabolic equation method, determining
that warm vortices increase the distance of the convergence zone, while cold vortices make
it smaller. Piao et al. [19] found that there is a convergence zone in the deep sea at large
receiving depths and analyzed the position of the convergence zone using ray mode theory.
Wu et al. [20] found that, under the influence of the Indian Ocean Dipole, the thermocline
fluctuation at the location of the second convergence zone has an important influence on
the formation and location of the third convergence zone. It is found that the location
of the third convergence zone shifts 2–3 km toward the sound source in the experiment.
Chandrayadula et al. [21] analyzed the influence of internal tides on the modes intensity
and compared with a new hybrid broadband transport theory.

In long-range sound propagation, the influence of the range-dependent sound speed
profile on the position of the convergence zone should be considered. Research on sound
propagation in the deep sea mainly focuses on the characteristics of long-range sound
propagation in a range-independent environment and the characteristics of the conver-
gence zone near the sea surface, while scarce studies are available on the influence of
range-dependent sound speed on the position of the convergence zone, especially the
convergence zone at large receiving depths. Ocean acoustic tomography is very impor-
tant. Studying the sensitivity of the convergence zone to the sound speed variation can
provide theoretical support for ocean acoustic tomography. In this paper, the formulae
to calculate the position of the convergence zone in a range dependent environment are
derived based on the Wentze–Kramers–Brillouin (WKB) approximation for the position of
the convergence zone in a range-independent environment. Two cases are considered. One
is linearly varying sound speed, and the other is ellipsoidal Gaussian eddy. The formulae
derived from the two cases are simulated and analyzed. Through the simulations, the
correctness of the formulae is verified. The formula for the linear case is further verified
with experimental data.

The remainder of this paper is organized as follows. In Section 2, the position of the
convergence zone in a range-dependent environment is derived for sound speed profiles



Remote Sens. 2022, 14, 6314 3 of 17

with linear variation and ellipsoidal Gaussian eddy case. In Section 3, we report simulation
results using the derived formulae. In Section 4, the experimental setup is introduced, and
experimental data are processed and analyzed. In Section 5, we discuss the experimental
results. In Section 6, the conclusions are made.

2. Methods
2.1. Position of Convergence Zones

According to the normal mode theory, the pressure field of a single-frequency point
source for range r and depth z can be expressed as (suppressing the harmonic time depen-
dence, e−iωt)

p(r, z) = A∑
n

φn(zs)φn(z)H(1)
0 (knr), (1)

where z is the receiver depth, zs is the source depth, r is the horizontal range between the
source and receiver, A is a normalization constant, φn(z) is the normal mode depth function,
H(1)

0 (knr) is the Hankel function of the first kind that satisfies the radiation condition over
a large range, and kn is the horizontal wavenumber.

The normal mode depth functions satisfy the following differential equation:

d2φn(z)
dz2 +

[
k2

0q2(z)− k2
n

]
φn(z) = 0. (2)

In addition, they satisfy orthonormality:∫ H

0
φn(z)φm(z)dz = δnm, (3)

where k0 = ω0/c0, ω0 is the angular frequency, c0 is the reference sound speed, q(z) is the
depth-dependent refraction index, c0/c(z), and H is the sea depth. δnm is a Dirac function
whose value is equal to 1 only when n is equal to m.

When the refraction index is a slowly varying function of depth, or when the frequency
is high, the following WKB approximation is obtained:

λn(z)
2π

(∣∣∣∣dκn(z)
dz

∣∣∣∣/κn(z)
)
� 1, (4)

where κ2
n(z) = k2

0q2(z)− k2
n. λn(z) is the wavelength. Using the WKB approximation and

asymptotic approximation of the Hankel function in Equation (2), the phase function of the
pressure field can be obtained as follows:

θ = knr±
∫ z

zs
κn
(
z′
)
dz′. (5)

Tindle and Guthrie [22] and Beilis [23] unveiled constructive interference between
neighboring modes, resulting in a change of phase ∆θ over a group of modes ∆n being a
multiple of 2π, that is, ∆θ/∆n = 2πm and

∆θ

∆n
= 2πm =

(
∆kn

∆n

)
r∓

∫ z

zs

kn(∆kn/∆n)
κn(z′)

dz′. (6)

From Equation (6), the position of the convergence zone in a range-independent
environment can be obtained as follows:

r = ±
∫ z

zs

kn

κn(z′)
dz′ + mDn, (7)

where Dn = 2π/(∆kn/∆n) is the modal skip distance.
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When the sound speed varies with range, the peak positions of the convergence zone
shift compared with those described by Equation (7). We consider an adiabatic approxi-
mation that discards any transfer of energy to other modes. Simultaneously, the refraction
index is a slowly varying function of depth satisfying the condition of Equation (4). Hence,
the variation in sound speed, δc(z, r), is introduced to derive the formula for the position
of the convergence zone in a range-dependent environment. The sound speed is defined as

c(z, r) = c(z) + δc(z, r), (8)

where c(z) is the sound speed at range 0 km. The corresponding phase function of the
pressure field is given by

θ =
∫ r

0
kn
(
r′
)
dr′ ±

∫ z

zs
κn
(
z′, r

)
dz′, (9)

where κn(z, r) =
[
k2

0q2(z, r)− k2
n(r)

]1/2 and q(z, r) = c0/c(z, r). Calculating ∆θ/∆n = 2πm
yields

2πm =
∫ r

0

∆kn(r′)
∆n

dr′ ∓ kn(r)
∆kn(r)

∆n

∫ z

zs

1
κn(z′, r)

dz′. (10)

All the other quantities of interest are defined in terms of δc(z, r). The approximate
wavenumber is given by

kn(r) = kn + δkn(r), (11)

where

δkn(r) =
−k2

0
kn

∫ H

0
φ2

n
(
z′
)
q3(z′)( δc(z, r)

c0

)
dz′

Hence,
∆δkn(r)

∆n
=
−∆kn

∆n
δkn(r)

kn
, (12)

and

kn(r)
∆kn(r)

∆n
= kn

∆kn

∆n
+ O

{
[δkn(r)]

2
}

. (13)

Further,
κn(z, r) = κn(z) + δκn(z, r), (14)

where

δκn(z, r) = −
[
k2

0q3(z)δc(z, r)/c0 + knδkn(r)
]

κn(z)
.

Consider the second integral part in Equation (10):

In(z, r) = 1
κn(z,r) =

1
κn(z)+δκn(z,r)

= κn(z)−δκn(z,r)
κ2

n(z)
= In(z)− δκn(z,r)

κ2
n(z)

(15)

Equation (15) shows that the integral term in the sound speed under varying range
environment is composed of an integral term in a range-independent environment and a
change term caused by variations in sound speed. We derive specific formulae for sound
speed profiles with linear variation and ellipsoidal Gaussian eddy case.

2.2. Case of Linearly Varying Sound Speed

Consider the following specific form for the range variation of sound speed:

δc(z, r) = σrc(z)w(z), (16)



Remote Sens. 2022, 14, 6314 5 of 17

where σ is the intensity parameter of the range variation, which is small, |σ|/k0 � 1, and
w(z) is a dimensionless function used to limit the range variation in a limited region of the
environment, 0 < w(z) ≤ 1. In this form of δc(z, r), Equation (15) can be rewritten as

In(z, r) = In(z) + σrp̂n(z), (17)

where

p̂n(z) =
k2

0q2(z)w(z)− k2
nan

κ3
n(z)

,

and modal constant an is given by

an =
k2

0
k2

n

∫ H

0
φ2

n
(
z′
)
q2(z′)w(z′)dz′. (18)

Substituting the above partial expressions into Equation (10), we obtain

r(1∓ σLn) +
σan

2
r2 = Rz + mDn, (19)

where Ln = Ln(z) = kn
∫ z

zs
p̂n(z′)dz′ and Rz = ±kn

∫ z
zs

dz′ In(z′), being only related to the
depth of the sound source and receiver.

When σ = 0, Equation (19) reduces to Equation (7). Compared with Equation (7), the
change in the first term on the left-hand side of Equation (19) adds a linear range variation
of sound speed, and the second term is a quadratic term related to range r in the phase
integral term owing to the linear variation in sound speed. Solving the quadratic problem

in r provides two roots. One root is −(1∓σLn)−
√

(1∓σLn)
2+2σan(Rz+mDn)

σan
< 0, which should

be neglected. The other root is

r =
−(1∓ σLn) +

√
(1∓ σLn)

2 + 2σan(Rz + mDn)

σan
, (20)

which indicates the position of the convergence zone in a range-dependent environment
with a linear variation in sound speed.

2.3. Case of Ellipsoidal Gaussian Eddy

The sound speed variation for the ellipsoidal Gaussian eddy can be expressed as

δc(z, r) = A0 exp

(
−
(

r− r0

dr

)2
−
(

z− z0

dz

)2
)

, (21)

where A0 is the amplitude of sound speed variation caused by the eddy, r0 and z0 determine
the center position of the eddy, and dr and dz are characteristic parameters of the semi-major
and semi-minor axes, respectively.

Equation (15) is thus rewritten as

In(z, r) = In(z) + ζ(r) p̂n(z), (22)

where

ζ(r) =
A0

c0
exp

(
−
(

r− r0

dr

)2
)

,

p̂n(z) =
k2

0q3(z) exp
(
−
(

z−z0
dz

)2
)
− k2

nan

κ3
n(z)

,
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an =
k2

0
k2

n

∫ H

0
φ2

n
(
z′
)
q3(z′) exp

(
−
(

z′ − z0

dz

)2
)

dz′.

By substituting the above partial expressions into Equation (10), we obtain

r +
A0an

c0

√
πdr
2

er f
(

r− r0

dr

)
∓ ζ(r)Ln(z) = Rz − Rr0 + mDn, (23)

where er f (x) is a Gaussian error function, Ln = Ln(z) = kn
∫ z

zs
p̂n(z′)dz′ and

Rz = ±kn
∫ z

zs
dz′ In(z′) are only related to the depth of the sound source and receiver, and

Rr0 = A0an
c0

√
πdr
2 er f

( r0
dr
)

is related only to the eddy center position and characteristic width.
Compared with Equation (7), the left-hand side of Equation (23) adds two terms. Term

A0an
c0

√
πdr
2 er f

(
r−r0

dr

)
is the result obtained by integrating the integral term with respect

to r in the phase function, owing to the Gaussian eddy environment. Term ζ(r)Ln(z) is
the product of the horizontal parameters and integral terms of vertical eddy parameters.
Simultaneously, the right-hand side of Equation (23) adds Rr0 compared with the range-
independent environment. Rr0 appears by the existence of eddy and is only related to the
eddy center position and characteristic width. The position of the convergence zone in the
ellipsoidal Gaussian eddy environment can be obtained by numerically calculating the root
of Equation (23).

3. Simulations

We verified the derived formulae through simulations considering sound speed pro-
files with linear variation and ellipsoidal Gaussian eddy case.

3.1. Case of Linearly Varying Sound Speed

For the simulation, we considered a sea depth of 4500 m. The sound speed profile at a
range of 0 km satisfied the Munk sound speed profile:

c(z) = c0
{

1 + ε
[
e−η − (1− η)

]}
, (24)

where η = 2(z− z0)/B, B = 1000 m, z0 = 1000 m, c0 = 1500 m/s, and ε = 5.7 × 10−3. The
sedimentary layer was considered to be a fluid with a constant sound speed of 1650 m/s
and density of 1.6 g/cm3. The acoustic absorption coefficient of the sedimentary layer was
0.5 dB/λ.

Figures 1 and 2 show the sound speed profile and depth variation function w(z) for
the first 400 m. In this range-dependent environment with linearly varying sound speed,
σ was set to −1.74 × 10−8, such that the maximum sound speed variation in the range of
450 km was −12 m/s. The source depth was 200 m, and the receiver depth was 3500 m.
Thus, the receiver depth was below the conjugate depth of the sound source.
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The transmission loss in the range-independent and range-dependent environments
was calculated using the normal and coupled normal modes, respectively. For the range-
dependent environment, adiabatic approximation, which assumes that no other energy
transfers to other modes, was used. We focused on the position of the convergence zone.
Thus, the modes with phase speeds less than the seabed sound speed, namely, the refracted
and surface-reflected modes, were selected for the simulations to calculate the transmission
loss. A comparison of the obtained transmission losses is shown in Figure 3.
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varying sound speed.

To calculate the position of the convergence zone in a range-dependent environment
with linear variation in sound speed according to Equation (20), the modal strength of the
normal modes of each order must be calculated. The corresponding results are shown in
Figure 4. The modal strength of the lower mode is 0, and only the part with the larger
amplitude is shown in the figure.
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Figure 4 shows that mode 170 yields the strongest modal intensity at the receiver
depth. Computationally, the spread in mode ∆n is defined by two successive minima in the
figure (i.e., ∆n = 10). Table 1 lists the positions of the convergence zones calculated using
Equation (20) and the coupled normal mode.

Table 1. Positions of convergence zones obtained using proposed formulation and coupled normal
mode.

Number of Convergence Zones, m rri/km rrd/km req/km

1 76.6 76.6 76.6
2 134.5 134.4 134.4
3 192.0 191.1 190.0
4 248.5 246.6 245.6
5 305.0 301.9 301.3
6 361.5 356.3 356.8
7 417.9 411.1 412.4

In Table 1, column rri lists the position of the convergence zone in the range-independent
environment based on the normal mode. Column rrd lists the position of the convergence
zone in the range-dependent environment based on the coupled normal mode. Column req
lists the position of the convergence zone in the range-dependent environment obtained
from our derived Equation (20).

For the first two convergence zones, Equation (20) better agrees with the coupled
normal mode theory. With more convergence zones, there is an error between our formula-
tion and the coupled normal mode, but the error at the seventh convergence zone is only
1.3 km. The error may be explained as follows. First, by calculating the modal strength at
different ranges in sections, the maximum order of modal strength in the entire range is
the 170th order of the normal mode, but two successive minima appear near the highest
intensity mode change with increasing range. When calculating for 400 km, ∆n should
be 14. With this change, the position of the seventh convergence zone is 411.7 km, and
the error with respect to the coupled normal mode result is smaller. Hence, the previous
error is partially due to the error of Dn in Equation (20) because of the selection of ∆n after
increasing the range. Part of the error may also be caused by the fact that, although ∆n
orders of normal modes yield the strongest modal intensity in the convergence zone, other
higher-order modes also have a certain impact. Therefore, the position of the convergence
zone, according to Equation (20), shows some error with respect to the results of all the
refracted and sea surface-reflected modes selected in the coupled normal mode. However,
the error is negligible, indicating that Equation (20) can be used to accurately calculate the
position of the convergence zone in a range-dependent environment with linearly varying
sound speed.

3.2. Case of Ellipsoidal Gaussian Eddy

For the simulation, we considered a sea depth of 4500 m. The sound speed profile at a
range of 0 km satisfied the Munk sound speed profile given by Equation (24). The Gaussian
eddy parameters were set as follows: intensity of cyclonic eddy of −30 m/s, semi-major
axis of 40 km, semi-minor axis of 400 m, eddy center r0 = 110 km, and z0 = 0 m. The
sedimentary layer was considered as a fluid with a constant sound speed of 1650 m/s and
density of 1.6 g/cm3. The acoustic absorption coefficient of the sedimentary layer was
0.5 dB/λ.

Figure 5 shows the sound speed profile for the first 400 m. The source depth was 200 m,
and the receiver depth was 3500 m. Thus, the receiver depth was below the conjugate
depth of the sound source.



Remote Sens. 2022, 14, 6314 9 of 17Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 20 
 

 

 

Figure 5. Sound speed profile of Gaussian eddy. 

As for the linear variation in sound speed, the transmission loss in the range-inde-

pendent and range-dependent environments was calculated using the normal and cou-

pled normal modes, respectively. For the range-dependent environment, adiabatic ap-

proximation was used. The refracted and surface-reflected modes were selected in the 

simulation to calculate the transmission loss. The obtained transmission losses are shown 

in Figure 6. 

 

Figure 6. Transmission losses in range-independent and range-dependent environments for ellip-

soidal Gaussian eddy case. 

To calculate the position of the convergence zone in a range-dependent environment 

with a Gaussian eddy using Equation (23), the modal strength of the normal modes of 

each order must be calculated. The corresponding results are shown in Figure 7. The 

modal strength of the lower mode is 0, and only the part with the larger amplitude is 

shown in the figure. 

Figure 5. Sound speed profile of Gaussian eddy.

As for the linear variation in sound speed, the transmission loss in the range-independent
and range-dependent environments was calculated using the normal and coupled normal
modes, respectively. For the range-dependent environment, adiabatic approximation was
used. The refracted and surface-reflected modes were selected in the simulation to calculate
the transmission loss. The obtained transmission losses are shown in Figure 6.
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Figure 6. Transmission losses in range-independent and range-dependent environments for ellip-
soidal Gaussian eddy case.

To calculate the position of the convergence zone in a range-dependent environment with
a Gaussian eddy using Equation (23), the modal strength of the normal modes of each order
must be calculated. The corresponding results are shown in Figure 7. The modal strength of
the lower mode is 0, and only the part with the larger amplitude is shown in the figure.
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Figure 7 shows that the strongest modal intensity at receiver depth is achieved at
mode 168. Computationally, the spread in mode ∆n is defined by two successive minima
in the figure (i.e., ∆n = 10). Table 2 lists the positions of the convergence zones calculated
according to Equation (23) and the coupled normal mode.

Table 2. Positions of convergence zones obtained using proposed formulation and coupled normal mode.

m rri/km rrd/km req/km

1 76.6 76.4 76.4
2 134.5 131.4 131.1
3 192.0 187.2 186.7
4 248.5 243.4 242.5
5 305.0 299.7 298.3
6 361.5 355.9 354.1
7 417.9 412.0 409.9

The columns of Table 2 have the same meanings as those of Table 1 but considering
Equation (23) for column req.

For the first convergence zone, Equation (23) agrees with the coupled normal mode
theory. For other zones, there is an error between the two results, mainly because the skip
distance is smaller than the numerical calculation. When considering the range of 400 km,
an appropriate ∆n value is 14 for the position of the convergence zone to be 410.5 km.
However, the error is only about 0.5% between the result of Equation (23) and the coupled
normal mode in the seventh convergence zone, indicating that Equation (23) can be used to
accurately calculate the position of the convergence zone in a range-dependent environment
with a Gaussian eddy.

4. Experiments
4.1. Experimental Setup and Data Processing

In the summer of 2014, a deep-sea long-range sound propagation experiment was
conducted in the South China Sea. An experimental diagram is shown in Figure 8. A
hydrophone was placed at a depth of 3146 m, and the explosions at a depth of 200 m was
selected as the sound source.
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Figure 8. Diagram of experimental setup for data collection. The sound source is represented as a
star mark.

Figure 9 shows the sea depth measured in the experiment, which was approximately
4300 m, within 450 km of the entire experimental range. Figure 10 shows the sound speed
profile at the hydrophone position measured by a conductivity, temperature, depth (CTD)
sensor. The CTD is placed at the bottom of the submersible buoy. With the deployment
and recovery of the submersible buoy, the sound speed profile of the whole depth can be
obtained. The axis of the sound channel was approximately 1000 m. Figure 9 shows that
the seabed in the first 300 km is flat, and there are three seamounts in 300–450 km. To ignore
the impact of sea depth changes on the convergence zone, the experimental data for the
first 300 km were selected for analysis.
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Figure 10. Sound speed profile at hydrophone position.

To study the influence of sound speed variation, data represented by the hybrid
coordinate ocean model (HYCOM) were used to obtain the sound speed profile in different
ranges. The HYCOM data included temperature, salinity, density, and other parameters.
Shaji et al. [24] showed that HYCOM data can be used to simulate a real environment.
The precision of the HYCOM data selected for this study was 1/12◦. By obtaining the
temperature and salinity data from the experimental area and using Wood’s empirical
formula for sound speed, we obtain the following variation in sound speed:

c = 1450 + 4.206× T − 0.036× T2 + 1.137× (S− 35) + 0.0175× D, (25)

where c is the sound speed, T is the temperature, S is the salinity, and D is the depth.
The sound speed profile over the first 400 m of depth obtained from the HYCOM data

is shown in Figure 11, where the solid black line represents the depth of the maximum
sound speed in the mixed layer. The variation in sound speed is mainly concentrated at a
depth above 200 m, and the depth of the maximum sound speed in the mixed layer changes
slightly with range. To further analyze the characteristics of the surface sound speed in
the experimental area, the corresponding parameters were calculated for the environment
within 200 m.
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Figure 11. Sound speed profile obtained from HYCOM data.

Figure 12 shows the average sound speed, salinity, temperature, refractive index of
sound speed, sound speed gradient, and root-mean-square error (RMSE) of the sound
speed for depths above 200 m. In each graph, the circle indicates the depth of the maximum
sound speed in the mixed layer, and the asterisk represents the depth of the maximum
sound speed gradient. The salinity, temperature, sound speed gradient, and RMSE of
the sound speed show negligible changes above the depth of the maximum sound speed,
and all the parameters have obvious changes from the depth of the maximum sound
speed. Through Figure 12a–c, it is found that temperature is the main influencing factor
of sound speed. At the depth of maximum sound speed gradient, the RMSE of the sound
speed also reaches its maximum. Below this depth, the RMSE of sound speed decreases
again. Figure 12 shows that the depth variation function can be described by the RMSE of
sound speed, namely, w(z) = crmse/max(crmse) in Equation (16), where crmse is the RMSE
of sound speed.
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(c) temperature, (d) refractive index of sound speed, (e) sound speed gradient, and (f) RMSE of sound
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represents the depth of the maximum sound speed gradient.

4.2. Experimental Results and Analysis

The sound source used in the experiment was an explosion located at a depth of 200 m.
When calculating the transmission loss curve of the sound pressure field, the broadband
explosion source is usually filtered in a one-third octave with a certain center frequency,
and then the filtered signal is processed. We filtered the received signal with a one-third
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octave of the central frequency of 200 Hz, and the experimental transmission loss was
calculated as

TL( f0|(r, z)) = SL( f0)− (10lg[E( f0)]−Mv − βm), (26)

where SL( f0) is the source level of the explosion sound (199.8 dB in this experiment), E( f0)
is the average energy within the signal bandwidth, Mv is the sensitivity of the hydrophone
(−185 dB), and βm is the amplification factor of the receiver (30 dB).

Figure 13 shows the transmission loss calculated from the experimental data and using
normal mode theory. The asterisks indicate the results from experimental data, while the
blue curve indicates the results of the range-independent environment, that is, the result
calculated from the sound speed profile in Figure 10, and the red curve indicates the results
of the range-dependent environment, that is, the result calculated from the sound speed
profile in Figure 11. The change in sound speed profile is small within the first 150 km, and
the position offset of the convergence zone caused by the sound speed variation is also
small. After 150 km, the change in sound speed increases, and the position offset of the
convergence zone also increases. Figure 13b–f show the transmission loss curves of the
five convergence zones. The simulated transmission loss curve is more consistent with the
experimental data when considering the sound speed variation.
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We used Equation (20) to calculate the position of the convergence zone under sound
speed variations. The sound source was located at 200 m, and the receiver depth was
3146 m, being below the reciprocal depth of the sound source. The modal strength of the
normal modes, for which the phase speed is smaller than the bottom sound speed, is shown
in Figure 14. The modal strength of the lower mode is 0, and only the part with larger
amplitude is shown in the figure.
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Figure 14 shows that mode 170 yields the strongest modal intensity at the receiver
depth. Computationally, the spread in mode ∆n is defined by two successive minima in the
figure (i.e., ∆n = 17), and the WKB approximation (Equation (4)) is considered. From the
coupled normal mode, the horizontal wavenumber of mode 170 is 0.9297. Substituting this
value into expression κn(z) and using Equation (4), we obtain 7.8 × 10−4, being much less
than 1 as required. Therefore, the refraction index is a slowly varying function of depth at
this frequency. Equation (20) can be used to calculate the position of the convergence zone.
The sound speed variation is calculated in segments with varying intensity parameter σ,
such that δc(z, r) is closer to the real sound speed profile. By substituting all the parameters
into Equation (20), the position of the convergence zone is obtained. Table 3 lists the
results obtained from our derived formula and coupled normal mode. The position of the
convergence zone obtained in the experiment is listed in the fourth column.

Table 3. Positions of convergence zones obtained using proposed formulation and coupled normal
mode on experimental data.

m rri/km rrd/km rex/km req/km

1 72.7 72.6 73.6 72.6
2 124.9 124.4 122.1 124.3
3 175.2 174.3 173.7 173.8
4 226.4 224.9 225.2 224.3
5 277.6 275.8 275.6 274.9

Equation (20) suitably provides the position of the convergence zone for a range-
dependent sound speed profile. After the five convergence zones, there is a small difference
of 0.9 km between the coupled normal mode and proposed formulation. The positions
of the convergence zones obtained from the range-dependent and range-independent
environments listed in Table 3 show that more convergence zones cause an increasing
position offset owing to the sound speed variation. Because the variation in sound speed
after 150 km accelerates, the absolute value of σ increases. Thus, according to Equation (20),
the position offset of the convergence zone increases.

Figure 15 shows the transmission losses in range-dependent and range-independent
environments for sound source and receiver depths of 200 m. The transmission loss curve
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is basically the same in both cases, and the position and gain of the convergence zone are
equal because the sound speed variation does not change considerably before 150 km. After
150 km, owing to the increasing sound speed variation, the transmission loss curve begins
to exhibit differences, and the position and gain of the convergence zone change between
the environments. In Figure 15, the fifth convergence zone is enlarged locally. Through
the transmission loss curve, a position offset of 2.4 km occurs at the fifth convergence
zone owing to the sound speed variation. Compared with the transmission loss curve in
Figure 13 and enlarged view, the convergence zone is shifted by approximately 1.8 km
owing to the sound speed variation at a receiver depth of 3146 m. For the sound source
below the mixed layer, the influences of the sound speed variation with range on the
convergence zone near the sea surface and the convergence zone for large-depth reception
are similar, and the influence on the convergence zone for large-depth reception is smaller.
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Figure 15. Transmission loss obtained from range-independent and range-dependent sound speed
profiles with source and receiver depths of 200 m.

Figure 16 shows the results for a source depth of 100 m in the mixed layer. The receiver
depths are 100 m and 3800 m, which is the reciprocal of 100 m. Before 150 km, given the
small sound speed variation, the position and gain of the two types of convergence zones
show negligible changes. When the sound speed variation changes notably after 150 km, it
influences the position of the convergence zone. As the sound speed gradually decreases
with range, the convergence zone shifts to the sound source, and the convergence zone
near the sea surface is more affected than the convergence zone for large-depth reception.
In this environment, the sound speed variation causes the convergence zone near the sea
surface at the fifth convergence zone to shift by approximately 5 km, while the convergence
zone for large depth reception only shifts by approximately 1 km.
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Comparing Figures 13, 15 and 16, the variation in sound speed has a greater influence
on the convergence zone when the source is at the mixed layer than when the source is
below it. According to Equation (20), the upper and lower limits of the integral of Ln in the
molecule are related to the depth of the sound source, and the integral term contains depth
function w(z). When the sound source is located at the mixed layer, w(z) is large, and the
offset of the convergence zone distance increases. Comparing Figures 13 and 16b, as the
receiver depth increases, the influence of the sound speed variation on the position of the
convergence zone for large-depth reception decreases.

5. Discussion

The results of the experimental data show that the formula derived in this paper can
accurately predict the position of the convergence zone when the sound speed varys linearly.
As for the ellipsoidal Gaussian eddy case, the simulation results verify the correctness of the
formula. The position of the convergence zone in other mesoscale phenomena cases may
also be derived as long as the specific δc(z, r) can be expressed. However, further research
is still needed for other cases of stochastic sound speed variation. In addition, for real world
problems, the roughness of the sea surface needs to be incorporated into the stochastic part
of the problem. Simulation and experimental data reveal that the convergence zone for
large-depth reception has a good convergence gain, and it is less affected by the sound
speed variation. Accurate prediction of the position of the convergence zone will play a
key role in ocean acoustic tomography.

6. Conclusions

Based on the WKB approximation, we derived the position formulae of the conver-
gence zone in a range-dependent environment with sound speed profiles varying in linear
and ellipsoidal Gaussian eddy cases. The formulae obtained under the two profiles were
simulated. By comparing the calculation results obtained from the coupled normal mode
and derived formula, we verified the accuracy of the formula of the convergence zone
position under a range-dependent sound speed profile. In addition, the derived formula
under linear variation was verified using experimental data. The experimental data and
convergence zone position simulated by the coupled normal mode were compared to
further verify the correctness of the derived formula.

A simulation was carried out based on experimental data, and the influence of the
sound speed variation on the position of the convergence zone was analyzed when the
sound source was located at and below the mixed layer. We can draw the following
conclusions: (1) When the sound source is located below the mixed layer, the sound speed
variation reduces the offset in the position of the convergence zone, but the offset near the
sea surface is larger than that of the convergence zone for large-depth reception. In the
fifth convergence zone, the offset for the zone near the sea surface is approximately 2.4 km,
and the position offset for large-depth reception is approximately 1.8 km. (2) When the
sound source is located at the mixed layer, the influence of sound speed variation on the
position of the convergence zone near the sea surface is substantially increased. However,
the influence on the position of the convergence zone for large-depth reception decreases.
In the fifth convergence zone, the position offset near the sea surface is approximately
5 km, and the offset for large-depth reception is approximately 1 km. Through simulation
and experimental data, the convergence zone for large-depth reception also has a good
convergence gain, increasing the applicability of this type of convergence zone. When
considering long-range target detection, the convergence zone for large-depth reception
is more appropriate than that near the sea surface because the former is less affected by
sound speed variations.
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