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Abstract: Benefiting from the advancement of deep neural networks (DNNs), detecting objects from
drone-view images has achieved great success in recent years. It is a very challenging task to deploy
such DNN-based detectors on drones in real-life applications due to their excessive computational
costs and limited onboard computational resources. Large redundant computation exists because
existing drone-view detectors infer all inputs with nearly identical computation. Detectors with less
complexity can be sufficient for a large portion of inputs, which contain a small number of sparse
distributed large-size objects. Therefore, a drone-view detector supporting input-aware inference,
i.e., capable of dynamically adapting its architecture to different inputs, is highly desirable. In this
work, we present a Dynamic Context Collection Network (DyCC-Net), which can perform input-
aware inference by dynamically adapting its structure to inputs of different levels of complexities.
DyCC-Net can significantly improve inference efficiency by skipping or executing a context collector
conditioned on the complexity of the input images. Furthermore, since the weakly supervised
learning strategy for computational resource allocation lacks of supervision, models may execute
the computationally-expensive context collector even for easy images to minimize the detection
loss. We present a Pseudo-label-based semi-supervised Learning strategy (Pseudo Learning), which
uses automatically generated pseudo labels as supervision signals, to determine whether to perform
context collector according to the input. Extensive experiment results on VisDrone2021 and UAVDT,
show that our DyCC-Net can detect objects in drone-captured images efficiently. The proposed DyCC-
Net reduces the inference time of state-of-the-art (SOTA) drone-view detectors by over 30 percent,
and DyCC-Net outperforms them by 1.94% in AP75.

Keywords: object detection in drone-view images; dynamic neural network; pseudo-label learning

1. Introduction

Recently, Unmanned Aerial Vehicles (UAVs), commonly known as drones, have at-
tracted much attention [1,2]. Drones can be deployed rapidly at a relatively low cost,
in various emerging applications, e.g., aerial photography and video surveillance [3,4].
Intelligent processing of images or videos captured by drones is very demanding, which
combines the advancements in computer vision and drones closely. Taking advantage of
advances in Deep Neural Networks (DNNs) in remote sensing image processing, remark-
able advances have been achieved in drone-view object detection, which aims to detect
instances of objects from images captured by drones.

Existing methods focus on extracting robust features to distinguish foreground targets
which contain very limited number of pixels, from the background clutter [5–7]. There are
three main types of drone-view detectors: context-based methods [8–10], super-resolution-
based (SR-based) methods [11–13], and multi-scale representation-based (MR-based) meth-
ods [14–16]. Despite their success in detecting objects from images captured by drones, the
deployment of these detectors on drones in the real-world can be challenging. A major
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reason is the conflict between these models’ high computational costs and the very limited
onboard computational resources. Existing drone-view detectors typically consist of com-
plicated modules for super-resolution or context collection of Regions of Interest (RoIs) to
achieve maximum accuracy. They typically involve prohibitively high computational costs.

We argue that there are large redundant computations because the existing drone-view
detectors [12,17,18] perform inference in a static manner. They infer all inputs with a fixed
computational graph, and, thus, can not adapt to the varying complexity of the input
during inference. Figure 1 shows an example where statically and dynamically configured
detectors infer easy and hard inputs by using a module for context collection. In many
real-life scenes, only a small portion of inputs require the module to be specially designed
for super-resolving RoIs or encoding context information. Consequently, it becomes highly
desirable to design a drone-view detector with a dynamic architecture, which improves its
computational efficiency through input-aware inference.
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Figure 1. Easy (sparsely distributed and large-size) and Hard (crowded and small-size) inputs for
detectors in static and dynamic cases. (a) In the static case, a detector executes the operation of context
collection to infer inputs regardless of their complexity. (b) In the dynamic case, a dynamic gate is
introduced to select an appropriate path for different inputs. The detector with the gate module can
skip context collection for easy inputs, and only execute context collection for hard inputs.

In this work, we present Dynamic Context Collection Network (DyCC-Net), a drone-
view detector supporting input-aware inference. DyCC-Net can perform input-aware
inference to offer a balanced trade-off between computational costs and accuracy. It can
skip or execute a Context Collector module [19] during inference, depending on the com-
plexity of the inputs. Specifically, DyCC-Net can skip the Context Collector module to
reduce the computational cost for easy inputs that can be correctly recognized without
context information. Meanwhile, it can obtain high accuracy by effectively recognizing
small objects in hard inputs by executing context collection. Furthermore, since the weakly
supervised learning strategy for computational resource allocation lacks supervision, train-
ing the model with detection loss only may cause that it selects the context collector
even for easy images. We present a Pseudo-label-based semi-supervised Learning strategy
“Pseudo Learning”, which uses the generated pseudo labels as supervised signals to allocate
appropriate computation resources effectively, depending on the inputs.

The key contributions can be summarized as follows:



Remote Sens. 2022, 14, 6313 3 of 19

(1) We present a drone-view detector supporting input-aware inference, called “DyCC-
Net”, which skips or executes a Context Collector module depending on inputs’
complexity. Thus, it improves the inference efficiency by minimizing unnecessary
computation. To the best of our knowledge, this work is the first study exploring
dynamic neural networks on a drone-view detector.

(2) We design a core dynamic context collector module and adopt the Gumbel–Softmax
function to address the issue of training networks with discrete variables.

(3) We propose a pseudo-labelling-based semi-supervised learning strategy, called “Pseudo
Learning”, which guides the process of allocating appropriate computation resources
on diverse inputs, to achieve the speed-accuracy trade-off.

We evaluate our DyCC-Net on two widely used public datasets for drone-view object
detection, i.e., VisDrone2021 and UAVDT. We compare DyCC-Net with 10 state-of-the-art
(SOTA) methods and find that the proposed DyCC-Net reduces the inference time of SOTA
models by over 30 percent. In addition, we also find that DyCC-Net outperforms the
previous models by over 1.94% in AP75.

The rest of the paper is organized as follows: First, we review the current development
on drone-view object detection and give a summary of related works in Section 2. Section 3
introduces the preliminaries of DyCC-Net, including Feature Pyramid Network and Con-
text Collector. Section 4 gives details of our DyCC-Net. Section 5 shows experiment results
of DyCC-Net. Finally, the paper concludes in Section 6.

2. Related Work

DyCC-Net is related to two types of approaches, i.e., dynamic neural networks and
drone-view object detection, which related works are reviewed in this section.

2.1. Dynamic Neural Networks

The research on Dynamic Neural Networks (DyNNs) is an emerging topic in deep
learning academic community [20]. The parameters or structures of DyNNs can be adapted
to different inputs [21]. They can make data-dependent decisions, adaptively determining
whether a module should be skipped or executed conditioned on input data, to improve
computational efficiency.

A variety of methods [21–25] focus on the design of dynamic architectures, which are
adjusted based on each input during inference. There mainly exist two types of methods:
dynamic depth and dynamic width. They allocate computational resources conditioned on
the inputs. This has a great potential to reduce redundant computational costs. Dynamic-
depth-based DyNNs attempted to adjust the network’s depth conditioned on each input.
Bolukbasi et al. [26] provided early exits in shallow layers, to reduce computational costs
of executing deep layers for easy input based on the decision of a classifier. SkipNet [27]
was proposed to enable dynamic layer skipping, which was a more flexible layer skipping
paradigm. Dynamic-width-based DyNNs attempted to skip branches in Mixture-of-Experts
(MoEs) to improve inference efficiency. Conventional soft MoEs [28,29] calculated soft
weights to each representation extracted by different experts. The computation costs of soft
MoEs would not be saved because all of the experts had to be executed. Our DyCC-Net
does not follow the soft MoEs paradigm but instead adopts its hard version by selectively
executing experts, conditioned on inputs, for more efficiency.

In addition to their architecture design, it is essential to train DyNNs [30]. DyNNs usu-
ally include non-differentiable decision functions. These functions make discrete decisions
to adapt their architectures based on inputs. This poses a new challenge for training DyNNs
because parameter gradients cannot be calculated via back-propagation [31]. Reinforce-
ment learning (RL) has been utilized for the optimization of non-differentiable decision
functions. In the RL paradigm, agents’ parameters are optimized to make discrete decisions
for dynamic inference [27,32,33]. However, the training of RL can be expensive since it is a
multi-stage optimization procedure, involving training backbone networks and optimizing
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the decision module. Instead of RL, our DyCC-Net uses a reparameterization technique,
namely the Gumbel–Softmax function, to train DyNNs for non-differentiable decisions.

2.2. Drone-View Object Detection

The research of drone-view object detection is a popular area of research in the field
of remote sensing. Different from natural images, drone-captured images usually contain
numerous small objects. Having numerous small objects crammed together in drone-
captured images is the main cause of the drop in detection performance. In this section,
we summarize three major streams of drone-view object detection. SR-based drone-view
detectors [11,12,17,34–37] were introduced to utilize super-resolution techniques to re-
store low-quality RoIs into high-quality ones. These models usually contain proposals for
crowded regions, RoI super-resolution, and the final object detection modules. They are
inefficient and also end-to-end learning can be hard to train. Context-based drone-view
detectors [8,9,38–40] built the relationships between objects and their surrounding environ-
ments into their original RoIs’ features. It is difficult to build such context relationships
because of the diversity and complexity of the backgrounds in drone-captured images.
Leveraging contextual information can also introduce much background noise, resulting in
poor performance in detection. MR-based drone-view detectors [41–43] combined spatial
and semantic information from low-level and high-level representations, respectively, for
fine-grained object classification.

These drone-view detectors usually use complicated modules for super-resolution
or context collection of RoIs to obtain maximum accuracy, leading to high computational
costs. They neglect inputs of different levels of complexities. Our DyCC-Net focuses on the
design of a drone-view detector for input-aware inference, to obtain a balanced trade-off
between performance and computational cost.

3. Preliminaries

In this work, we adopt the Feature Pyramid Network (FPN) [44] to extract multi-scale
representations and use Context Collector [19] to collect contextual information. In this
section, for the integrity of this paper, we briefly introduce FPN and Context Collector as
background knowledge.

3.1. Feature Pyramid Network

FPN [44] can effectively build multi-scale representations from different layers in a
backbone and improve the network’s performance. Figure 2 shows that FPN utilizes the
top–down pathway and lateral connections (shown with red arrows) to aggregate the
detailed spatial representations from low-level layers and the rich semantic representations
from high-level layers.

Mathematically, let Ri be the i-th top-down layer of the FPN and Fi be the i-th lateral
connection of the FPN. FPN outputs a set of feature maps {Pi|i = 1, 2, . . . , S}, where S is
the number of FPN stages. The output Pi is defined as:

Pi = Ri(Pi+1) + Fi(Ci), i = 1, 2, . . . , S− 1, (1)

where {Ci|i = 1, 2, . . . , S} are the inputs of FPN, and PS = FS(CS).
The lateral connection Fi(Ci) is employed to increase or reduce the number of feature

channels for the subsequent operation of feature concatenation in Equation (1). However,
the features adjusted by Fi(Ci) generally lack contextual information, especially for tiny
objects, as the size of the convolution filter is fixed and small.

Recently, a Context Collector module [19], specially designed for drone-view detectors,
was developed to improve the model’s representation capability of small-size targets. The
Context Collector has improved the model’s performance in detecting small-size targets by
collecting both local and global contextual cues. However, this is achieved at the cost of
increased overall computation, especially for easy cases containing mostly large objects that
can be detected without executing the context collector. Thus, in this paper, we develop
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a dynamic context collector, which dynamically adapts its structure to inputs of different
complexities and perform input-aware inference. Next, we briefly introduce the Context
Collector before illustrating our methodology in details.

Classification
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Figure 2. The pipeline of DyCC-Net is composed of four modules, i.e., a feature-extraction Backbone
module, our input-aware DyCC module, a top–down multi-scale features-extraction pathway, and a
Head for estimating bounding box positions and classification scores.

3.2. Context Collector

Figure 3 [19] illustrates the structure of Context Collector (CC). As it shows, CC consists
of three components: a 1× 1 convolutional filter, a dilated convolution for local contextual
information, and a global average pooling layer for global contextual information. For the
first branch, the 1× 1 convolutional filter ψi is adopted to regulate the number of the input
features Ci. For the second branch, a few 3× 3 atrous convolution filters υk

i with the dilation
rate of (1, 2, . . . , N) are adopted to extract local contextual features. For the last branch,
a Global Average Pooling layer φi is utilized to collect global context information. Then,
features generated from the above branches are concatenated to obtain the final features.
The above procedure can be formulated as:

Fi(Ci) = ∑
k=1,2,...,N

Con(υk
i (Ci), ψi(Ci), φi(Ci)) (2)
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Figure 3. The architecture of the Context Collector [19] adopted in this work.

The Context Collector improves the expressive power of small-size targets’ repre-
sentations by collecting contextual information surrounding the targets. However, this
is achieved as the cost of the increased overall computational costs, not desirable for
drone-view detectors. Moreover, for some UAV images, the operation of context collection
is not necessarily required to detect objects in the images. For example, when a flying
drone is close to the ground the objects appear to be relatively large in the image cap-
tured by the drone. The network architecture of the detectors needs to be adaptive to
the inputs, dynamically. Inspired by the success on DyNNs, we propose to integrate the
dynamic mechanism into CC and design a dynamic context collector to achieve a better
efficiency-accuracy trade-off.

4. Methodology
4.1. Overview

We first give the overview of the pipeline of the proposed DyCC-Net in Figure 2. The
extra core module of our DyCC-Net is the dynamic context collector module “DyCC”, in
addition to the commonly used Backbone for extracting features, the standard Head for
predicting the bounding box position and classification score, and a top–down pathway to
obtain multi-scale representations.

Intuitively, some easy images, mainly containing large objects, can be recognized
correctly without requiring rich contextual information. Therefore, a static design equipped
with a contextual information collector contains computation redundancy. To allevi-
ate such redundancy, we propose a dynamic architecture, Dynamic Context Collector
(DyCC), which can skip or execute the CC module to avoid unnecessary computation for
easy inputs.

DyCC aims to reduce computational costs by evaluating input images and allowing
easy image to skip the Context Collector module. During training, the computational cost
of DyCC-Net does not decrease because both Light and Heavy paths are executed for either
easy or hard images. During inference, its computational cost decreases by executing the
Light path instead of the Heavy path for easy inputs. As detailed in the lower part of
Figure 2, DyCC contains three components, i.e., a Dynamic Gate, a Heavy Path, and a Light
Path. The Dynamic Gate (detailed next in Section 4.2) is responsible for predicting a gate
signal, which determines the appropriate path for different inputs, i.e., the Heavy or Light
Path. The Heavy Path uses the Context Collector [19] to perform context collection and
1× 1 convolution for hard images, whereas the Light Path is a simple 1× 1 convolutional
layer that regulates the shapes of extracted features by a top–down pathway.
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4.2. Dynamic Gate

The Dynamic Gate is designed to learn to produce a gate signal α ∈ R2 based on the
feature maps Ci of the input images. The signal α is an approximate one-hot vector, which
is approximately equal to a value of [0, 1] when selecting the Heavy Path and [1, 0] when
selecting the Light Path. In the training stage, the two elements α0 and α1 are multiplied by
the output of the two paths, respectively. In the testing stage, the Heavy Path is bypassed
and the Light Path is executed if the output of the Dynamic Gate is approximately equal to
[1, 0]. The Dynamic Gate consists of a Gating Network and a Gating Activation Function,
as detailed below.

4.2.1. Designs of Gating Network

The Gating Network (GateNet) is expected to not only accurately select which path to
execute and but also to be computationally inexpensive. We investigated three different
designs of GateNet structures, as shown in Figure 4. The first Gating Network, denoted
by “GateNet-I” (as shown in Figure 4a) is formed by a Global Average Pooling layer
GAP, two fully-connected (FC) layers FC1 and FC2, and a ReLU layer δ which outputs a
two-dimensional vector. Mathematically, the output of GateNet-I, denoted by πGI

i , can be
defined as:

πGI
i = FC2(δ(FC1(GAP(Ci)))), (3)

where Ci is the input at the i-th layer of FPN. Let the shape of the input feature of GateNet
be Hi ×Wi × Ci and the shape of its output feature be Ho ×Wo × Co, the computational
cost of GateNet-I is about 1

Ho×Wo
of the Light Path. Although its computational cost is

almost negligible, the features extracted by GateNet-I lack contextual information because
the direct GAP layer on Ci utilizes a 1× 1 value to represent a Hi ×Wi feature map.
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Figure 4. The three different architectures of Gating Network GateNet. (a) The computational cost of
the GateNet-I is about 1

Ho×Wo
of the Light Path. (b) GateNet-II contains a Convolutional layer and

has a computational cost about 10 times of the Light Path. (c) GateNet-III includes one Pooling layer
and has similar computational cost to the Light Path. In addition, a Gumbel–Softmax function is
utilized to convert π to an approximate one-hot vector α.

A convolutional layer is utilized to enrich contextual information contained in the
features. Figure 4b compares the second design of the Gating Network “GateNet-II”,
which adopts a 3× 3 convolutional layer Conv for contextual information collection. Then,
following the convolutional layer, a Global Average Pooling layer GAP captures the context
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information at image level. Finally, a fully connected layer FC is adopted to calculate a two-
dimensional vector. Thus, the output of GateNet-II πGI I

i can be mathematically formulated:

πGI I
i = FC(GAP(Conv(Ci))). (4)

As a less computationally expensive alternative, Figure 4c presents the Gating Network
(GateNet-III), which consists of a 2× 2 Max pooling layer maxP, a 3× 3 convolutional layer
Conv using a stride of 2, GAP and FC. Similarly, the output of GateNet-III πGI I I

i can be
mathematically formulated as:

πGI I I
i = FC(GAP(Conv(MaxP(Ci)))). (5)

The computational cost of the GateNet-III is similar to that of the Light Path. Hence,
in our experiments, we use GateNet-III to determine the gate signal.

4.2.2. Gumbel–Softmax Gating Activation Function

An appropriate path, either Heavy or Light Path, is to be selected according to the
probability distribution π estimated by the Gating Network. The selection process is
discrete and thus non-differentiable, which poses a new challenge for training DyCC-Net.

As a natural approximation, a Softmax function is widely used by existing approaches
to make soft decisions in the training stage and then to revert the soft decisions to a hard
version during inference. In the hard decision version, a hard threshold is required to
be set during inference. While the softmax approximation method can train the DyNNs
with gradients, it leads to degraded prediction accuracy (∼40% drop [27]) because the
network with soft decisions is not trained for the hard gating in the inference stage. The
Gumbel–Softmax function [45] is adopted as the gate activation function to train the model
parameters for the non-differentiable decision.

As shown in Figure 4, Gumbel–Softmax function is utilized as a continuous, differ-
entiable function on class probabilities π = {π1, π2, . . . , πk} and predicts a k-dimensional
one-hot vector α:

αi =
exp((log(πi) + gi)/τ)

∑k
j=1 exp((log(πj) + gj)/τ)

, (6)

where i = 1, . . . , k, g1 . . . gk are i.i.d. samples drawn from Gumbel (0, 1) (The Gum-
bel (0, 1) distribution can be sampled using inverse transform sampling by drawing
u ∼ Uni f orm(0, 1) and computing g = − log(− log(u))), and τ is a temperature parame-
ter. The output of this activation function approximates a one-hot vector for a low τ and
converges to a uniform distribution as τ increases. The Gumbel–Softmax function is a
partial derivative function for the continuous distribution α. The re-parameterization trick
enables gradients to flow from f (α) to θ during backward propagation.

4.3. Pseudo Learning

The loss functions of DyCC-Net includes a classification loss for estimating objects’
categories and a regression loss for estimating objects’ positions. In particular, the binary
cross entropy (BCE) loss is utilized for classification, which can be expressed as:

LBCE = −(y · log(ŷ) + (1− y)× log(1− ŷ)), (7)

where y is the label of a sample, and ŷ is the predicted probability of the sample. GIoU [46]
is utilized for the regression of bounding boxes to address the weakness of IoU that its
value is equal to zero for non-overlapping case. GIoU can be expressed as followed.

GIoU = IoU − |C− (A ∪ B)|
|C| (8)
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IoU =
|A ∩ B|
|A ∪ B| (9)

where A is a position of a predicted bounding box, and B is a position of a ground truth
bounding box, and C is the smallest convex set of |A ∪ B|. If only the detection loss is
utilized to optimize DyCC-Net, DyCC would be encouraged to take the Heavy Path as
much as possible, which better minimizes the detection loss, and fail to perform input-
aware inference to reduce the overall computational costs.

To address this issue, we propose a Pseudo-label-based semi-supervised Learning
strategy for path selection. The training data used for the semi-supervised learning consist
of automatically pseudo-labelled positive and negative image samples. Positive image
samples refer to images, in which objects can be easily recognized by existing detectors,
and, hence, “easy”. Negative image samples refer to images in which objects are hard to
recognize with existing detectors and, hence, “hard”.

Figure 5 illustrates the process of the pseudo label generation. We firstly run a well-
trained baseline object detection model on all images and then evaluate each image’s
detection result against the median detection precision of the whole set. In this work, AP50
is adopted to evaluate the prediction precision of each image. Images whose AP50 scores are
higher than the median AP50 score of the whole set are labeled as positive image samples,
also known as easy images, and images whose AP50 scores are lower than the median AP50
score are labeled as negative image samples, also known as hard images. Thus, we can
generate pseudo labels for all images, which are used to train the DyCC-Net to determine
whether to take the Light Path or the Heavy Path given an input image.

Baseline
Model

Negative  Positive

The Histogram of 

Median 

Unlabeled Data Pseudo Labels


Figure 5. The pipeline of the pseudo label generation. Images with gray rectangles are fed into a
pre-trained object detector. Images with an estimated precision higher than the threshold are treated
as positive samples (shown with green rectangles) and images with an estimated precision lower
than the threshold are treated as negative ones (shown with red rectangles).

Some examples of positive and negative image samples are presented in Section 5.3.4.
Compared with unsupervised learning, our GateNet trained with Pseudo Learning can
make a more accurate selection of the appropriate path, to obtain a better efficiency–
accuracy trade-off.

Additionally, note that DyCC-Net is trained with both the generated pseudo-labels
(“easy” or “hard”) and the original object detection annotations (bounding boxes and object
classes) of the images to achieve high-accuracy and high-efficiency object detection from
drone-view images.

5. Experiments

The proposed DyCC-Net is evaluated on two benchmark datasets and compared with
10 SOTA methods to demonstrate that it can effectively detect objects in images captured
by drones. In this section, we first present the two datasets and models, and then verify the
effectiveness of DyCC-Net on the datasets for drone-view detection.
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5.1. Datasets and Models

The recent and well-known survey [47] for drone vision reported that there are only
two public datasets specially created for drone-view object detection, i.e., VisDrone2021 [47]
and UAVDT [48]. Thus, we choose those two datasets to verify that our DyCC-Net can
effectively detect objects in drone-captured images, as did the SOTA drone-view detectors,
e.g., UFPMP-Det [18] and CRENET [49]:

(1) VisDrone2021 [47]: The VisDrone2021 dataset contains ten object categories, e.g.,
pedestrian, person, car, etc. Every image in the dataset has annotations of object
class and bounding box and has a resolution about 2000× 1500. The VisDrone2021 is
split into three subsets: 6471 images for training, 548 images for validation, and 3190
for testing.

(2) UAVDT [48]: The UAVDT dataset contains three object categories including bus,
truck, and car. Each image in the dataset also has annotations of object class and
bounding box and has a resolution of 1080× 540. The UAVDT is split into two subsets:
23,258 images in the training subset, and 15,069 images in the testing subset.

We have explored several models widely-used for object detection, namely FRCNN [50],
SSD [51] and adopted YOLOv5 [52] as the baseline model for the overall performance
comparison. In addition, our method is compared with SOTA specially designed for drone-
view detection, i.e., UFPMP-Det [18], CRENET [49], TPH-YOLOv5 [53], DSHNet [54],
CRENET [49], GLSAN [12], and ClustDet [17].

5.2. Implementation and Evaluation Metrics

(1) Implementation: All of the experiments are conducted using one NVIDIA RTX3090
GPU; DyCC-Net is implemented with PyTorch 1.8.1. During training, the pre-trained
model YOLOv5 [52] is used as the backbone. The Stochastic Gradient Descent (SGD)
optimizer is used for training DyCC-Net and the learning rate with a Cosine learning
rate schedule is initialized to 6× 10−5. The long side of the input images is 1536 pixels,
as did TPH-YOLOv5 [53].

(2) Evaluation Metrics: The detection performance of the proposed DyCC-Net is evaluated
using the same metrics as PASCAL VOC [55], i.e., mean Average Precision (mAP) and
Average Precision (AP), which are defined by:

mAP =
1
M

M

∑
i=1

APi, (10)

where M is the number of objects’ categories, and

AP =
∫ 1

0
P(R)dR. (11)

Here, R is Recall, measuring how good the classifier estimates the positives and
calculated as the percentage of true positive predictions in the total number of positive
samples, P is Precision, measuring how accurate the prediction is and calculated as the
percentage of correct positive predictions in the total number of positive predictions,
and P(R) is the precision-recall curve. P and R are defined as follows:

P =
TP

TP + FP
(12)

and
R =

TP
TP + FN

(13)

where FN, FP and TP indicate the numbers of false negatives, false positives, and
true positives, respectively. AP is averaged on 10 Intersection over Union (IoU) values
of [0.50: 0.05: 0.95], where AP50 is calculated at the single IoU of 0.5.
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5.3. Ablation Studies

We conduct extensive ablation studies on VisDrone2021 in order to verify the contri-
butions of each component in DyCC-Net. YOLOv5 [52] is utilized as the baseline.

5.3.1. The Effectiveness of CC

We first demonstrate the effectiveness of CC to show that detection performance can
be boosted by considering context information with the context collecting module. We
show the baseline’s detection performance with the configuration of dilation rate d = 1
and kernel size k = 1. Firstly, a 3 × 3 convolution layer in each lateral connection is
added, leading to 0.7 gain in AP50. Next, as shown in Table 1, as we gradually add more
convolution filters, the model’s performance continues improving. The configuration in
the last row benefits from all convolution filters and, thus, obtains the best performance of
41.1% and improves the baseline by 1.9% in AP50. Thence, the convolution filter of the CC
finally adopts the following configuration: dilation rate d = [1, 1, 2, 3, 4, 5] and kernel size
k = [1, 3, 3, 3, 3, 3]. We denote the CC with such a configuration as CCk6d6.

Table 1. The effectiveness of CC under different configurations of dilation rate k and kernel size k.

k = 1 k = 3 k = 3 k = 3 k = 3 k = 3 AP50[%]d = 1 d = 1 d = 2 d = 3 d = 4 d = 5

X 39.2
X X 39.9
X X X 40.4
X X X X 40.8
X X X X X 41.0
X X X X X X 41.1

5.3.2. The Effectiveness of DyCC

In this section, we aim to demonstrate that the proposed DyCC can reduce computation
costs on the whole testing set while preserving detection accuracy. The computation costs
are measured as the average floating point operations (FLOPs) required to process each
image in the dataset. We have tested three configurations of YOLOv5 models, i.e., small
YOLOv5 (denoted as “YOLOv5-s”), medium YOLOv5 (denoted as “YOLOv5-l”), and large
YOLOv5 (denoted as “YOLOv5-x”). Moreover, the input image size is 640× 640 pixels.

Table 2 quantitatively compares the computation costs and detection accuracy with
or without the proposed DyCC. In this table, YOLOv5+CC and YOLOv5+DyCC means
the baseline model integrated with CCk6d6 and DyCC, respectively. The figures in the last
row of Table 2 show that the computation costs of YOLOv5-s, YOLOv5-l, and YOLOv5-x
with the proposed DyCC are 11.31G, 72.12G, and 134.47G with 34.39%, 43.47%, and 44.87%
of AP50, respectively. Compared with their baseline results in the first row of the table,
adopting our proposed DyCC improves the detection accuracy of the baseline by about 1%
with only a slightly increased computation costs. Compared with their counterparts shown
in the second row of the table, YOLOv5 with DyCC significantly reduces the computation
costs of YOLOv5+CC by about 10%, while retaining similar detection accuracy. This is
because the proposed DyCC processes easy images with Light Path and only hard images
with Heavy Path, thus reducing the overall computation costs on the whole testing set and
retaining the detection accuracy. Additionally, note that the computation costs of YOLOv5
models are about half of those reported in [52] because the type of tensors we used is
“torch.HalfTensor” instead of “torch.FloatTensor”.

Table 3 quantitatively compares the three proposed GateNets. The first row of Table 3
presents that the computation costs of the proposed GateNet-I integrated into YOLOv5-s,
YOLOv5-l and YOLOv5-x are 0.30G, 1.19G, and 1.87G with 34.36%, 43.45% and 44.86%
of AP50, respectively. The second row of Table 3 presents GateNet-II can significantly
improve the computation costs by 5∼10 times because of the newly added convolutional
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layer in GateNet. The last row of Table 3 presents GateNet-III improves the detection
performance with a slight improvement of the computation costs because of the newly
added convolutional and max pooling layer. Hence, GateNet-III is chosen in DyCC for
path selection.

Table 2. Effectiveness of the proposed DyCC and Pseudo Learning (indicated as “PL”) on computa-
tion cost (measured by “FLOPs (G)”) and detection accuracy (measured by “AP50”). The text ‘s’, ‘l’
and ‘x’ refer to small YOLOv5 (“YOLOv5-s”), medium YOLOv5 (“YOLOv5-l”), and large YOLOv5
(“YOLOv5-x”), respectively.

Method
FLOPs (G) AP50(%)

s l x s l x

YOLOv5 10.09 68.28 129.03 33.50 42.40 43.94
YOLOv5 + CC 13.15 79.41 146.08 34.43 43.51 44.89

YOLOv5 + DyCC w/o PL 13.50 80.87 148.36 34.41 43.50 44.89
YOLOv5 + DyCC (w PL) 11.31 72.12 134.47 34.39 43.47 44.87

Table 3. Comparison of different GateNets in term of computation cost (measured by “FLOPs (G)”)
and detection accuracy (measured by “AP50”).

GateNet
FLOPs (G) AP50(%)

s l x s l x

GateNet-I 0.30 1.19 1.87 34.36 43.45 44.86
GateNet-II 1.50 5.96 9.31 34.42 43.51 44.90

GateNet-III 0.38 1.49 2.33 34.39 43.47 44.87

5.3.3. The Effectiveness of Pseudo Learning

In this section, we show that the proposed Pseudo Learning strategy can guide our
Dynamic Gate to distinguish between easy and hard inputs, so that different inputs take
different paths to avoid unnecessary computation. The effectiveness of Pseudo Learning is
evaluated as its impact on the overall performance and efficiency. We also visually show
some examples of the positive and negative image samples classified by the Dynamic Gate.

Table 2 also quantitatively compares the computation costs (measured by “FLOPs”)
and detection accuracy (measured by “AP50”) obtained with or without using the proposed
Pseudo Learning. Figures in the last row of the table show that the FLOPs of YOLOv5-s,
YOLOv5-l and YOLOv5-x with using Pseudo Learning (indicated as “w PL”) are 11.31 G,
72.12 G, and 143.47 G with AP50 of 34.39%, 43.47%, and 44.87%, respectively. Compared
with their counterparts in the third row of the table (indicated as “w/o PL”), adopting our
proposed Pseudo Learning reduces the computation costs by about 10%, while retaining the
detection accuracy. This is because without the guidance of the proposed Pseudo Learning,
DyCC tends to take the Heavy Path as much as possible even for very easy images to
minimize the detection loss, which results in unnecessary computation.

Figure 6 shows image examples classified as positive and negatives by our Dynamic
Gate. As can be seen that, images in the same group share similar characteristics in terms
of the objects’ size and density. In general, objects in positive image samples are larger
and distributed with a lower density, whereas objects in the “Negative” examples are
smaller and more crowded. Our Dynamic Gate can identify the object difference in the
input images and select the appropriate path accordingly. We have achieved a classification
accuracy 80.95%, which shows that our Dynamic Gate can correctly distinguish positive
and negative image samples.
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Figure 6. Visualization of positive and negative image samples classified by our Dynamic Gate in
the DyCC-Net. Positive image samples in the top two rows are processed with the Light Path and
negative image samples in the bottom two rows are processed with the Heavy Path.

5.3.4. Generation of Pseudo Labels

In Section 4.3, we provide details of the generation of pseudo labels, where images
whose AP50 scores are higher than the median AP50 score of the whole set are labeled as
positive image samples and images whose AP50 scores are lower than the median AP50
score are labeled as negative image samples. In this subsection, we show the median
AP50 scores collected from the training set and validation set, and some examples of
pseudo-labeled positive and negative images with their AP50 scores.

Figure 7a,b show the histograms of AP50 of images in the training and validation sets,
respectively. For the training set, the median AP50 score of 0.73 is obtained and used to
distinguish between positive and negative samples. Thus, images whose AP50 scores are
higher than 0.73 are labeled as positive image samples, also known as easy images, whereas
images whose AP50 scores are lower than 0.73 are labeled as negative image samples, also
known as hard images. Similarly, the median AP50 score of 0.49 is obtained and used
to create the pseudo labels for images in the validation set. Note that, the median AP50
score 0.73 obtained from the training set is higher than the median AP50 score 0.49 of the
validation set. This can be explained as the model trained with the training images fits the
training set better than the validation images.

(a) (b)

AP50 AP50

C
ou
nt

Figure 7. The histograms of AP50 of images in the training set (a) and validation set (b).
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Figure 8 shows some more examples of pseudo-labeled positive and negative images.
As it can be seen, targets in the images labeled as “Positive” (in the first row) can be easily
recognized by the baseline object detector with high AP50 scores. In contrast, targets in the
images labeled as “Negative” (in the second row) are hard to recognize with the baseline
detector. When zoomed in to those missing-detection areas (shown in green rectangles),
lots of small objects, including pedestrians and motors, have been missed by the baseline
object detector.

Po
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tiv
e

N
eg
at
iv
e

AP50=0.9950 AP50=0.9852 AP50=0.9611

AP50=0.1950 AP50=0.1849

Figure 8. Examples of positive and negative image samples obtained by applying the baseline model.
Positive image samples contain few, sparsely distributed, large sized objects in the first row. Negative
image samples contain large number of objects, and crowded and small objects.

5.3.5. Analysis of Performance Gain and Complexity of DyCC-Net

The performance gain is brought by multiple factors. In this section, we dive in and
unveil the detailed performance gains contributed by each factor. This is shown in Table 4.
In this table, DyCC-Net w/o DyCC (YOLOv5+tinyHead+CC) means that a prediction
head [53] for low-level feature maps and CC are integrated into YOLOv5. As shown in the
the last row of the table, that our DyCC-Net can reduce the computation costs of DyCC-Net
w/o DyCC by about 10% (FLOPs of 456.17G vs. 505.46G), while achieving similar detection
performance (a Recall of 57.01% vs. 57.16% and an AP50 of 59.72% vs. 59.98%). Moreover,
the size of input images also affects the detection accuracy of drone-view object detection
because drone-captured images typically contain a large number of small objects, which
may become detectable when the image resolution becomes higher.

We also compare the training time of our DyCC-Net with the baselines. For fair
comparisons, all models were trained with a batch size of four on one NVIDIA RTX3090
GPU. The training time of a model is the time interval between the start of training and
when the model converges and achieves the detection accuracy AP50 in Table 4. The last
column in Table 4 shows that the training time gradually increases with a few factors,
i.e., input image size, extra modules, and our DyCC module. However, in Section 5.4 (3),
our approach has significantly decreased the computation cost and inference time, which is
critical for the practical application of such embedded systems.

Table 4. The analysis of detection accuracy of the proposed DyCC-Net.

Method Image Size Recall [%] AP50 [%] FLOPs (G) Training Time (h)

YOLOv5 640× 640 41.59 42.40 68.28 8.3
YOLOv5 1556× 1556 53.76 55.60 392.89 23.0

YOLOv5 + tinyHead 1556× 1556 56.34 58.59 440.08 32.7
DyCC-Net w/o DyCC 1556× 1556 57.17 59.98 505.46 60.0

DyCC-Net 1556× 1556 57.01 59.72 456.17 91.7
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5.4. Comparison with SOTA Models

We now compare DyCC-Net with the SOTA models on VisDrone2021 and UAVDT in
Table 5. We present AP[%], AP50[%], AP75[%] and inference time reported in their original
papers. The results clearly demonstrate that DyCC-net obtains the best balance between
time efficiency and detection performance.

(1) Results on VisDrone2021: Table 5 compares the detection results of some detectors on
VisDrone2021, including one-stage detectors SSD [51] and YOLOv5 [52], and two-
stage detectors FPN [44] and FRCNN [50]. DyCC-Net achieves an AP of 40.07%,
AP50 of 59.72%, and AP75 of 42.14%, which outperforms the previous detectors. The
performance comparison with the SOTA detectors specially designed for aerial images,
namely UFPMP-Det [18], TPH-YOLOv5 [53], DSHNet [54], CRENet [49], GLSAN [12],
and ClustDet [17], is also presented in Table 5. DyCC-Net outperforms UFPMP-
Det [18] by large margins of 1.94% in AP75 and 0.87% in AP. Figure 9 shows the
detection results on aerial images. Please note, we do not utilize tricks, e.g., model
ensembles or oversized backbones, which are usually adopted in existing models for
drone-captured images.

(2) Results on UAVDT: Table 5 also presents the performance comparison of DyCC-Net
and SOTAs on the UAVDT dataset, i.e., UFPMP-Det [18], ClusDet [17], FRCNN [50],
GLSAN [12], and YOLOv5 [52]. DyCC-Net achieves an AP of 26.91%, AP50 of 39.63%
and AP75 of 31.44%, which outperforms UFPMP-Det [18] by large margins of 2.31%
in AP, 0.93% in AP50, and 3.44% in AP75.

(3) Overall Complexity: We show the inference time cost, in comparison to ClusDet [17],
CRENet [49], and UFPMP-Det [18], TPH-YOLOv5 [53] to evaluate the time efficiency
of DyCC-Net. All the models are evaluated using a GTX 1080Ti GPU, except for
CRENet [49] on a RTX 2080Ti GPU. Table 6 shows that, DyCC-Net reduces redundant
computation by input-aware inference and, thus, achieves a significantly faster in-
ference speed. Moreover, UFPMP-Det performs inference in a coarse-to-fine fashion,
where a coarse detector is used to find sub-regions containing small and densely
distributed objects, and then a fine detector is adopted to these areas to locate small
targets. To obtain detection performance comparable to DyCC-Net, UFPMP-Det has
to spend more time.

Table 5. Comparison of DyCC-Net with the SOTA models on UAVDT and VisDrone2021 datasets.
‘-’ denotes that the corresponding experimental statistics are not available. We highlight the top two
results in red and green.

Method Reference
VisDrone2021 UAVDT

AP(%) AP50(%) AP75(%) AP(%) AP50(%) AP75(%)

SSD [51] ECCV16 - 15.20 - 9.30 21.40 6.70
FRCNN [50] + FPN [44] CVPR17 21.80 41.80 20.10 11.00 23.40 8.40

YOLOv5 [52] Github21 24.90 42.40 25.10 19.10 33.90 19.60

DSHNet [54] WACV21 30.30 51.80 30.90 17.80 30.40 19.70
GLSAN [12] TIP20 30.70 55.60 29.90 19.00 30.50 21.70
ClustDet [17] ICCV19 32.40 56.20 31.60 13.70 26.50 12.50
CRENet [49] ECCV20 33.70 54.30 33.50 - - -

TPH-YOLOv5 [53] ICCVW21 35.74 57.31 - - - -
mSODANet [56] PR22 36.89 55.92 37.41 - - -
UFPMP-Det [18] AAAI22 39.20 65.30 40.20 24.60 38.70 28.00

DyCC-Net Ours 40.07 59.72 42.14 26.91 39.63 31.44
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Figure 9. Visualization of the detection results obtained with our DyCC-Net.



Remote Sens. 2022, 14, 6313 17 of 19

Table 6. Comparison of different methods in inference time cost (s) on VisDrone. ‘-’ denotes that the
corresponding experimental statistics are not available. ‘*’ means that authors do not release their
source codes.

Method Inference Time (s) Params (M) FLOPs (G)

ClusDet [17] 0.273 - -
TPH-YOLOv5 [53] 0.305 60.45 498.85

CRENet [49] * 0.901 - -
UFPMP-Det [18] * 0.152 - -

DyCC-Net (Ours) 0.105 46.11 456.17

6. Conclusions

In this paper, we have proposed DyCC-Net, which can perform input-aware inference
for effective UAV object detection by dynamically adapting its structure to the input
image. Our DyCC-Net can reduce the computational cost by input-aware inference without
sacrificing prediction accuracy. To address the non-differentiability of path selection, we
have introduced Gumbel–Softmax to perform gradient backpropagation during training.
Moreover, we have proposed Pseudo Learning to make a more robust and accurate selection
of paths based on diverse inputs.

We have evaluated DyCC-Net on two drone-captured datasets and compared DyCC-
Net with 10 SOTA models. Experiment results have demonstrated that the proposed DyCC-
Net has achieved high time efficiency while preserving the original accuracy. Compared
with the SOTA drone-view detectors, the proposed DyCC-Net has achieved comparable
accuracy with less inference time costs. Moreover, extensive ablation studies have further
demonstrated the effectiveness of each module of DyCC-Net. Our DyCC-Net offers the
potential to reduce computational cost and can be efficiently deployed on drones. Finally,
to further address the issue that large inputs bring large computation cost, we plan to
investigate spatial-wise DyNNs to explore “spatially dynamic” computation to further
reduce the computational cost by processing a fraction of pixels or regions in an image.
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