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Abstract: Planetary rover systems need to perform terrain segmentation to identify feasible driving
areas and surround obstacles, which falls into the research area of semantic segmentation. Recently,
deep learning (DL)-based methods were proposed and achieved great performance for semantic
segmentation. However, due to the on-board processor platform’s strict comstraints on computational
complexity and power consumption, existing DL approaches are almost impossible to be deployed on
satellites under the burden of extensive computation and large model size. To fill this gap, this paper
targeted studying effective and efficient Martian terrain segmentation solutions that are suitable
for on-board satellites. In this article, we propose a lightweight ViT-based terrain segmentation
method, namely, SegMarsViT. In the encoder part, the mobile vision transformer (MViT) block in the
backbone extracts local–global spatial and captures multiscale contextual information concurrently.
In the decoder part, the cross-scale feature fusion modules (CFF) further integrate hierarchical
context information and the compact feature aggregation module (CFA) combines multi-level feature
representation. Moreover, we evaluate the proposed method on three public datasets: AI4Mars,
MSL-Seg, and S5Mars. Extensive experiments demonstrate that the proposed SegMarsViT was able
to achieve 68.4%, 78.22%, and 67.28% mIoU on the AI4Mars-MSL, MSL-Seg, and S5Mars, respectively,
under the speed of 69.52 FPS.

Keywords: Mars terrain segmentation; semantic segmentation; planetary exploration

1. Introduction

Intelligent environmental perception is a necessity for planetary rovers toward au-
tonomous driving, which provides crucial semantic information, e.g., identifying feasible
driving areas and surrounding obstacles. For such a panoptic perception mission, ter-
rain segmentation is the most critical procedure, which also can be viewed as a semantic
segmentation task. Semantic segmentation is a widely used perception method for self-
driving vehicles on earth that can assign a separate predefined class label to each pixel
of an image [1] it is the foundation of many high-level tasks that need to infer relevant
semantic information from images for subsequent processing. This applies on self-driving
vehicles on Mars as well. Therefore, this study explored the task of terrain segmentation on
the Martian surface, aiming to characterize semantic information from rover images. As
shown, the Figure 1a shows the Tianwen-1 Zhurong rover, China’s first Mars rover, which
is undergoing its fantastic exploration on the red planet. RGB sample images of the Mars
surface and the corresponding terrain segmentation annotation are depicted in Figure 1b,c,
respectively. It can be observed that semantic segmentation is a pixel-level dense prediction
task, which requires an in-depth understanding of the semantics of the entire scene and is
in some ways more challenging than those image-level prediction tasks.

Early image segmentation approaches dedicated to divide images into regions based
on little more than basic color and low-level textual information [2,3]. With the rapid
development of deep learning techniques in the 2010s, deep convolutional neural networks
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(CNNs) became dominant in automatic semantic segmentation technology due to their
tremendous modeling and learning capabilities, which strive to boost algorithm accuracy
on the strength of massively parallel GPUs and large labelled datasets [4,5]. Long et al. [6]
first proposed a fully convolutional network (FCNet), which is a revolutionary work and the
majority of following state-of-the-art (SOTA) studies are extensions of the FCN architecture.
One of the most pioneering works is UNet presented by Ronneberger et al. [7] for biomedical
image segmentation, which adopts the influential encoder–decoder architecture and proved
to be very useful for other types of image data [8–11]. Meanwhile, inspired by the high
precision that CNNs achieved in semantic segmentation, many CNNs-based approaches
were proposed for the Martian terrain segmentation (MTS) task. Rothrock et al. [12]
proposed a soil property and object classification (SPOC) system based on DeepLab for
visually identifying terrain types as well as terrain features (e.g., scarps, ridges) on a
planetary surface. They also presented two successful applications to Mars rover missions,
including the landing site traversability analysis and slip prediction. Iwashita et al. [13]
proposed TU-Net and TDeelLab robust to illumination changes via data fusion from
visible and thermal images. Liu et al. [14] proposed a hybrid attention-based terrain
segmentation network called HASS for unstructured Martian images. Claudet et al. [15]
employed advanced semantic segmentation algorithms to generate binary safety maps
for the spacecraft safe planetary landing problem. Furthermore, several existing studies
attempted to resolve the terrain segmentation issue by using wear-supervised techniques.
Wang et al. [16] adopted the element-wise contrastive learning technique and proposed
a semi-supervised learning framework for Mars imagery classification and segmentation
through introducing online pseudo labels on the unlabeled areas. Goh et al. [17] proposed
another semi-supervised Mars terrain segmentation algorithm with contrastive pretraining
techniques. Zhang et al. [18] proposed a novel hybrid representation learning-based
framework, which consists of a self-supervised pre-training stage and a semi-supervised
learning phase for sparse data. Li et al. [19] introduced a stepwise domain adaptation
Martian terrain segmentation network, which effectively alleviates covariate shift through
unifying the color mapping space to further enhance the segmentation performance.
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Figure 1. Planetary rover on Mars (a) and a sample image (b) along with its segmentation annotation
for terrain types (c).

Furthermore, data-driven deep learning generally refers to learning directly through
sufficient experience data. The level of success for deep learning applications is to a great
extent determined by the quality and the depth of the data being used for training. In this
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respect, Mars terrain segmentation is currently attracting more and more attention, and
scientific interest for deep learning-based segmentation datasets is growing rapidly. Several
large-scale 2D image sets were established for the Mars terrain segmentation problem, the
relevant information of which is listed in Table 1. Swan et al. [20] built the first large-scale
dataset, AI4Mars, for the task of Mars terrain classification and traversability assessment, of
which labels were obtained through a crowdsourcing approach and consisted four classes:
soil, bedrock, sand, and big rock. Li et al. [19] extensively released a Mars terrain dataset
annotated finely with nine classes, named Mars-Seg. Liu et al. [14] established a panorama
semantic segmentation dataset for Mars rover images, named MarsScapes, which provides
pixel-wise annotations for eight fined-grained categories. Zhang et al. [18] presented a
high-resolution Mars terrain segmentation dataset, S5Mars, annotated with pixel-level
sparse labels for nine categories. The Martian surface condition is complicated and the
corresponding annotation process is challenging. Hence, we thank all the above dataset
creators that enabled us to conduct the research for this paper.

Table 1. To the best of our knowledge, there are already four public datasets established for MTS task
up to now.

Dataset Year Classes RGB

AI4Mars 2021 4 1.6 k
Mars-Seg 2021 8 ~4.1 k
S5Mars 2022 9 6 k

MarsScapes 2022 8 ~18.5 k

In comparison to natural scene images, the Martian images have their particular
characteristics. Objects on the surface of Mars exhibit unstructured characteristics with
rich textures, ambiguous boundaries and diverse sizes, such as rocks and gravel [21].
Understanding unstructured scenes quite heavily depend on modeling the connection
between the target pixel and its relevant surrounding content to a certain extent. Therefore,
a limited receptive field is hard-pressed to meet demand, and several acquired rare target
instances available for training are in small numbers. Class imbalance remains a problem
in the MTS task. The above difficulties make it unreliable to directly apply the semantic
segmentation methods designed for natural images on Martian terrain segmentation tasks.

On the other hand, CNN-based semantic segmentation methods always made brilliant
achievements at the expense of high computational costs, large model size, and inference
latency. This situation prevented recent state-of-the-art methods from being applied to
real-world applications. Real on-board applications have a strong demand of semantic
segmentation algorithms to run on resource-constrained edge devices in a timely manner.
Therefore, deep models for the Mars terrain segmentation task should be efficient and
accurate. Considering the performance limitations of spacecraft equipment, it is essential
to develop efficient networks for accurate Mars terrain segmentation.

Toward this end, this paper proposes a novel lightweight Martian terrain segmentation
model, named SegMarsViT. In the encoder part, the mobile vision transformer (MobileViT)
backbone is leveraged to extract local–global spatial and capture high-level multiscale
contextual information concurrently. An effective layer aggregation decoder (ELAD) is
designed to further integrate hierarchical feature context information and generate powerful
representations. Moreover, we evaluate the proposed method on three public datasets:
AI4Mars, MSL-Seg, and S5Mars. Extensive experiments demonstrate that the proposed
SegMarsViT achieves comparable accuracy as the state-of-the-art semantic segmentation
method. In the meantime, SegMarsViT has much less computation burden with a smaller
model size.

The main contributions of this work can be summarized as follows:
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(1) To the best of our knowledge, this is the first effort toward introducing the lightweight
semantic segmentation model into the field of Martian terrain segmentation. We
evaluate several representative semantic segmentation models and conduct enough
comparable experiments. This is expected to facilitate the development and bench-
marking of terrain segmentation algorithms in Martian images.

(2) We investigate a novel vision transformer-based deep neural network SegMarsViT
for real-time and accurate Martian terrain segmentation. In the encoder, we employ
a lightweight MobileViT backbone to capture a hierarchical feature. Notably, the
proposed SegMarsViT is the first transformer-based network for the Martian terrain
segmentation task. In the decoder part, a cross-scale feature fusion (CFF) module and
a compact feature aggregation (CFA) technique are designed to strengthen and merge
the multi-scale context feature.

(3) We conduct extensive experiments on AI4Mars, S5Mars, and MSL-Seg datasets. The
results validate the effectiveness and efficiency of the proposed model, which can obtain
competitive performance with 68.4%, 78.22%, and 67.28% mIoU, respectively. In the
meantime, SegMarsViT has much less computation burden with smaller model size.

The remainder of this article is organized as follows: In Section 2, we will briefly
introduce some previous work related to lightweight semantic segmentation and vision
transformer. Section 3 describes the proposed method in detail. Section 4 provides overall
performance and comparison results of the proposed method with analysis and discussion,
and Section 5 concludes this study.

2. Related Work
2.1. Lightweight Semantic Segmentation

In real-world applications, such as robotics [22] and land resource monitoring [23],
it is hard to deploy high-precision, high-complexity, and time-consuming semantic seg-
mentation models for real-time inference speed in need. Hence, lightweight semantic
segmentation networks came into being. Several research works were proposed to address
the challenge of real-time semantic segmentation.

The standard convolution layer is the basic building layer in CNNs, which is compu-
tationally expensive. Real-time semantic segmentation pursues the fast data processing
capability of the network. In order to meet the requirements of real-time inference per-
formance and ensure high-quality prediction as much as possible, efficient convolution
operations are generally used. For example, DABNet [24] introduced the depth-wise
asymmetric bottleneck module, which increases efficiency through the combination of
depth-wise separable and asymmetric factorized convolutions. ESPNet [25] proposed an
efficient spatial pyramid module utilizing 1× 1 grouped convolution to reduce dimension
complexity and parallel dilation convolution modules to increase the effective receptive
field, which results in a very compact and significant network. In addition, many other
segmentation models, e.g., RTSeg [26] and EACNet [27], straightly employ the lightweight
backbone networks designed for classification tasks as the feature extractor to improve the
inference speed.

In addition to commonly used techniques for decreasing the latency and model size,
designing novel and lightweight architectures is another effective solution. BiseNetV1 [28]
is a two-branch architecture to reserve spatial feature information and enlarge the recep-
tive field, which consists of a context path based on Xception architecture and a spatial
branch based on strided convolution layers. Attention refinement modules (ARM) are
applied to encode global context. The improved version, BiseNetV2 [29], further simpli-
fies the architecture through utilizing the inverted bottleneck blocks of MobileNetv2 and
efficient convolutions and obtains more favorable performance. The real-time general pur-
pose semantic segmentation network (RGPNet) introduces a novel adapter module and a
lightweight asymmetric encoder–decoder architecture. The adaptor module intermediates
between encoder and decoder through the combination of features of three different levels.
The strategy of integrating multi-scale context information results in excellent segmenta-
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tion performance and the optimized progressive resizing training scheme makes RGPNet
achieve an effective balance between speed and accuracy.

2.2. Vision Transformer-Based Semantic Segmentation

In spite of the exceptional representational power, CNN-based approaches generally
exhibit limitations for modeling explicit long-range relations, due to the intrinsic local con-
nectivity mechanism of convolution operations. Recently, transformer became a “hotspot”
in the computer vision community, which was initially designed for sequence-to-sequence
prediction and was powerful at modeling global contexts [30]. To overcome the limitation
of the local receptive field of CNN, the latest efforts were focused on adapting transformer
models into the computer vision sector [31,32], named vision transformer (ViT). Many
scholars introduced the ViT mechanism into the semantic segmentation task. The two most
common ways to do this are applying ViTs in conjunction with CNNs and developing pure
ViTs. Wang et al. [33] proposed PVT, a pyramid vision transformer for dense prediction
tasks, which is a natural extension of ViT with pyramid structures. Zheng et al. [34] pro-
posed SETR, which is a hierarchical transformer from a sequence-to-sequence learning
perspective, and it shows that good results can still be obtained without relying on the
convolution operation. Huang et al. [35] designed a scale-wise intra-scale transformer,
named ScaleFormer, of which the elaborate hybrid CNN-transformer backbone can effec-
tively extract intra-scale local features and global information. Shi et al. [36] took the idea
of the SwinTransformer [37] and presented the hierarchical SSformer with an elaborate
and simple MLP decoder for semantic segmentation. Xie et al. [38] proposed SegFormer,
which comprises a novel hierarchically structured transformer encoder and a lightweight
all-MLP decoder, yielding great results. Hatamizadeh et al. proposed the UNetFormer [39]
with a 3D SwinTransformer [40]-based encoder and a hybrid CNN-transformer decoder,
which can achieve a trade-off performance between efficiency and accuracy for medical
image segmentation. Similarly, there are UNETR [41] and nnFormer [42] in the same vein.
Motivated by the astounding achievements of ViT, this paper presents the first study to
explore the potential of ViT and fulfill the local–global semantics research gap in the context
of Martian terrain segmentation.

3. Methodology

In this section, we first provide an overview of our method in the Section 3.1. Then,
we introduce the lightweight encoder and effective decoder in the Sections 3.2 and 3.3,
respectively. Finally, we present the loss function in the Section 3.4.

3.1. Framework Overview

The overall structure of the proposed SegMarsViT is illustrated in Figure 2. This paper
is dedicated to the encoder–decoder segmentation architecture through ViT modules. The
whole SegMarsViT is a novel combination of CNN and transformers to some extent, which
has the local advantage of CNN and the long-range dependency merit of a transformer.
The proposed network utilizes MobileViT backbone to extract corresponding features of
five stages (stage1~stage5), whose outputs are denoted as F1, F2, F3, F4 and F5, with scales
of 1

2 , 1
4 , 1

8 , 1
16 and 1

32 , respectively. In other words, the output feature maps Fi after each
stage are down-sampled with strides of 2i. After the backbone, we perform an efficient
stage-wise layer aggregation decoder, named ELAD, to generate segmentation outputs.
The novel ELAD is designed to make multiscale features more distinguishable to learn
representative features for SegMarsViT. In ELAD, a series of cross-scale feature fusion (CFF)
modules are proposed to further enhance the context modeling and boost the cross-scale
communication, which are built upon the top-down pathway. After obtained, we introduce
a compact feature aggregation (CFA) module to ensure that feature maps extracted from
different stages can be well merged. As shown in Figure 2, the proposed SegMarsViT is
asymmetric and the contracting path is deeper than the expansion path. In what follows,
we describe all the structures of the above-mentioned modules in detail.
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3.2. Lightweight MViT-Based Encoder

Context modeling in not yet proven to be critical for segmentation and the en-
coder progressively reduces the spatial resolution and learns more abstract visual con-
cepts with larger receptive fields. However, the encoder is always the most vital part
of the whole framework and accounts for the dominant proportion of model size and
computational budget.

Considering the strict complexity limitations on the spaceborne payload hardware, we
use MobileViT as the backbone to accelerate feature extraction and improve the real-time
performance of the proposed method. MobileViT is a lightweight and general-purpose
neural network architecture introduced by Apple ML researchers. We removed the last
pooling layers and all fully connected layers for image-to-image semantic segmentation
prediction. With a special perspective to encode both local and global representations
effectively, MobileViT is a hybrid network with both CNN and ViT-like properties. Mo-
bileViT improves its stability and performance through incorporating spatial inductive
biases of CNN in ViT. As can be seen in Figure 2, the architecture of MobileViT contains the
initial fully convolution layer, followed by several MV2 blocks and MViT blocks. Figure 3
visually depicts the design of the two main modules. The MV2 blocks (Figure 3a) come
from MobileNetv2 [43] and are mainly responsible for down-sampling in the backbone.
Even more to the point, unlike conventional ViTs, the elaborate MViT block (Figure 3b) can
learn local and global information with an effective receptive field of H ×W.
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Figure 3. Two types of building blocks in MobileViT backbone: (a) MV2 block; (b) MViT block.

The first two layers are a standard 3× 3 convolution layer and a 1× 1 point-wise expan-
sion layer, where the given input tensor X ∈ RH×W×C is projected to XL ∈ RH×W×d(d > C).
As is the first step of all the ViTs, XL is then split into N non-overlapping patches XU ∈
RP×N×d. Next, the standard transformer blocks of multi-headed self-attention (MHA) [44]
is applied to model long-range non-local dependencies as:

XG(p) = Transformer(XU(p)), 1 ≤ p ≤ P. (1)

Then XG ∈ RP×N×d will be folded to obtain XF ∈ RH×W×d as the order of unfolding
process. In the end, XF will be projected to low C-dimensional space with a point-wise con-
traction layer and integrate with the raw input tensor X via concatenation and convolution
operations.

The detailed configurations of the MobileViT model are shown in Table 2. The Mobile-
ViT models provide three different network sizes (s: small, xs: extral small, and xxs: extra
extra small). To obtain multi-scale terrain information, the hierarchical output of five stages
will be forwarded into the following decoder module.

Table 2. Detailed architecture of the lightweight backbone used in our SegMarsViT.

Layer Output Size Repeat
Channel

xxs xs s

Stage 1
Conv 3 × 3 H

2 ×
W
2 1 16 16 16

MV2 block H
2 ×

W
2 1 16 32 32

Stage 2
MV2 block H

2 ×
W
2 1 24 48 64

MV2 block H
4 ×

W
4 2 24 48 64

Stage 3
MV2 block H

4 ×
W
4 1 48 64 96

MViT block H
8 ×

W
8 1 48 64 96

Stage 4
MV2 block H

8 ×
W
8 1 64 80 128

MViT block H
16 ×

W
16 1 64 80 128

Stage 5

MV2 block H
16 ×

W
16 1 80 96 160

MViT block H
16 ×

W
16 1 80 96 160

Conv 1 × 1 H
32 ×

W
32 1 320 384 512
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Through leveraging the vision transformer to focus on modeling the global context at
all stages, the proposed SegMarsViT can better establish long-range semantic relationships
between feature representation. The capacity to model local–global context relationships of
images would benefit to learn more abstract semantic visual concepts through enlarging
the receptive field. Moreover, the mobile vision transformer is a lightweight and low-
latency architecture, which can meet the requirements of accuracy and model complexity in
practical satellite missions. The lightweight encoder, therefore, makes the network suitable
for real-time applications, as it provides rich semantic information.

3.3. Efficient Layer Aggregation Decoder

In order to further model and fuse multi-level information from the feature encoder, we
design an efficient layer aggregation decoder (ELAD) consisting of two primary elements:
cross-scale feature fusion (CFF) module and compact feature aggregation (CFA) module
in SegMarsViT, as shown in Figure 4. In ELAD, CFF modules are designed to interact
multiscale information and strengthen the feature representation learning of lightweight
backbone network, and the CFA module is conducted to efficiently aggregation multi-scale
deep features and obtain the final segmentation results.

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 19 
 

 

Stage 4 

MV2 block 
8 8

H W


 
1 64 80 128 

MViT block 
16 16

H W


 
1 64 80 128 

Stage 5 

MV2 block 
16 16

H W


 
1 80 96 160 

MViT block 
16 16

H W


 
1 80 96 160 

Conv 1 × 1 
32 32

H W


 
1 320 384 512 

Through leveraging the vision transformer to focus on modeling the global context 

at all stages, the proposed SegMarsViT can better establish long-range semantic relation-

ships between feature representation. The capacity to model local–global context relation-

ships of images would benefit to learn more abstract semantic visual concepts through 

enlarging the receptive field. Moreover, the mobile vision transformer is a lightweight and 

low-latency architecture, which can meet the requirements of accuracy and model com-

plexity in practical satellite missions. The lightweight encoder, therefore, makes the net-

work suitable for real-time applications, as it provides rich semantic information. 

3.3. Efficient Layer Aggregation Decoder 

In order to further model and fuse multi-level information from the feature encoder, 

we design an efficient layer aggregation decoder (ELAD) consisting of two primary ele-

ments: cross-scale feature fusion (CFF) module and compact feature aggregation (CFA) 

module in SegMarsViT, as shown in Figure 4. In ELAD, CFF modules are designed to 

interact multiscale information and strengthen the feature representation learning of 

lightweight backbone network, and the CFA module is conducted to efficiently aggrega-

tion multi-scale deep features and obtain the final segmentation results. 

 

Figure 4. Illustration of the proposed Efficient Layer Aggregation Decoder. 
Figure 4. Illustration of the proposed Efficient Layer Aggregation Decoder.

• Cross-Scale Feature Fusion: The utilization of our CFF modules allows high-level
context information to be delivered to multi-scale feature maps at different pyramid
levels, each of which contains four sub-branches. As can be seen, following the top-
down pathway, the input feature maps with coarser resolutions are firstly up-sampled
by a factor of 2 to obtain Ci. Meanwhile, we utilize the 1× 1 convolution layer for
the feature maps in the lower level Fi to unify the channel dimension. Then the up-
sampled feature maps Ci are concatenated and fused to the Fi. A 1× 1 convolution
layer is attached after fusion. Specifically, we have C1 = Conv1×1(Conv1×1(F1)⊕ C2),
where Conv1×1(·) represents a 1× 1 convolution and ⊕ denotes the concatenation
operation. In this way, the proposed CFF modules assist our model to enlarge the
receptive field through enabling each spatial location to view the local context in
different scale spaces.
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• Compact Feature Aggregation: After CFF, we perform multi-level feature integration
for predicting segmentation maps with fine details. To accomplish multi-level feature
fusion, we construct the compact feature aggregation (CFA) module. The output
of CFF consists of five fusion maps. We first reshape the high-level feature maps
{C1, C2, C3} to the same size as C4 and C5. Then, all these feature maps in the same
spatial resolution are concatenated and followed by a 1× 1 convolution for feature
fusion. By this means, our lightweight decoder merges multi-level features from top
to bottom till the segmentation map of size equal to input image is reconstructed.

3.4. Loss Function

We continue by introducing our loss function for optimizing the proposed SegMarsViT.
Our loss function combines the weighted intersection over union (IoU) loss and the
weighted binary cross-entropy (BCE) loss:

Loss = Lω
IoU + Lω

BCE (2)

where Lω
IoU and Lω

BCE represent the weighted IoU loss and BCE loss for the global restriction
and local (pixel-level) restriction. Different from the standard IoU loss, which was widely
adopted in segmentation tasks, Lω

IoU increases the weights of hard pixels to highlight
their importance. In addition, compared with the standard BCE loss, Lω

BCE pays more
attention to hard pixels rather than assigning all the pixels equal weights. The definitions
of these losses are the same as in [45,46], and their effectiveness was validated in the field of
semantic segmentation.

4. Results and Analysis

In this section, we first provide the experimental setup in the Section 4.1. Then the
Section 4.2 presents the results achieved with our model and a comparison made with other
segmentation models. In Section 4.3, we conduct comprehensive ablation studies.

4.1. Experimental Settings
4.1.1. Datasets

In order to demonstrate the proposed network’s performance, we extensively evaluate
our SegMarsViT on three publicly available MTS datasets, including AI4Mars-MSL, MSL-
Seg, and S5Mars. These three datasets consist of 17,030, 4155, and 6000 real images of Mars
with corresponding pixel-level labels. We offer a brief view in Table 3.

• AI4Mars-MSL: AI4Mars is the first large-scale semantic segmentation dataset build
for terrain-aware autonomy on Mars contains 17,000 images with a spatial resolution
of 1024 × 1024, which consists of 3-band RGB images taken by NASA’s Mars Science
Laboratory (MSL). It contains four classes: Soil, Bedrock, Sand and Big Rock.

• MSL-Seg: The MSL-Seg dataset contains 4184 images with the size of 560 × 500, which
consists of 3-band RGB images from the mars32k dataset (available at
https://dominikschmidt.xyz/mars32k/ (accessed on 20 February 2022)). It con-
tains eight categories: Martian soil, Sands, Gravel, Bedrock, Rocks, Tracks, Shadows,
and Background.

• S5Mars: The S5Mars dataset contains 6000 images with a spatial resolution of
1200 × 1200, which are collected by the color mast camera (Mastcam) from the Curios-
ity rover on Mars. Different from AI4Mars-MSL and MSL-Seg, the overall annotations
in S5Mars are employed in a sparse style, which only the pixels with enough human
confidence are labeled. It contains nine classes: Sky, Ridge, Soil, Sand, Bedrock, Rock,
Rover, Trace, and Hole.

https://dominikschmidt.xyz/mars32k/
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Table 3. Statistics of experimental datasets in this research.

Dataset Classes Annotated Images Image Size Split

AI4Mars-MSL 4 17,030 1024 × 1024 16,064:322:322
MSL-Seg 8 4155 560 × 500 2893:827:414
S5Mars 9 6000 1200 × 1200 5000:200:800

4.1.2. Implementation Details

We implement our experiments with the MMSegmentation [47] open source toolbox
and Pytorch [48] accelerate training via NVIDIA GPUs. During training, we applied data
augmentation operations through random mirror, random resize with ratio 0.5–2.0, random
horizontal flipping, random rotation between −10 and 10 degrees and random Gaussian
blur for all datasets. Particularly, we random crop to 512× 512 for AI4Mars, S5Mars, and
MSL-Seg datasets. The proposed model was trained for 400 epochs with a mini-batch size
of 16 over 4 GPUs RTX2080Ti. We use the SGD optimizer with the initial learning rate (LR)
1e−2. The polynomial LR policy [49] was used to update the learning rate and help the
model in faster convergence for improving performance.

4.1.3. Evaluation Metrics

For all experiments, we run the same training recipe three times and report several
widely used metrics, such as the mean of class-wise intersection over union (mIoU), pixel-
wise accuracy (pixelACC), the mean of F1 score (mFscore), and the mean of precision
value (mPrecision).

4.2. Comparison with SOTA Methods

In this paper, we compared the proposed SegMarsViT with existing lightweight se-
mantic segmentation methods. We evaluate SegMarsViT against eight SOTA natural image
semantic segmentation methods, including FCN [10], DeepLabV3+ [50], Segmenter [51],
PSPNet [52], PSANet [53], SegFormer [38], and FPN-PoolFormer [54].

4.2.1. Results on AI4Mars-MSL

Table 4 summarizes our results including parameters, FLOPS and other accuracy
metrics of different lightweight semantic segmentation methods on the AI4Mars-MSL
dataset. Red, blue, and green denote the best, the second-best, and the third-best results,
respectively. For AI4Mars-MSL, there is a relatively small amount of labeled terrain types.
With the computing power constraint of available GPUs, we mainly report the results
trained with a lightweight backbone. From the results, in comparison with several SOTA
approaches, our proposed SegMarsViT outperforms most of them. As shown, on AI4Mars,
SegMarsViT yields 68.4% mIoU using only 8.54 M parameters and 5.6 G FLOPs, achieving
competitive results in contrast to all other real-time counterparts in terms of parameters and
efficiency comprehensively. For instance, compared to SegFormer (MIT-B0), SegMarsViT
keeps 0.66% better mIoU.

Table 4. Comparison with state-of-the-art methods on AI4Mars-MSL.

Method (PubYear) Encoder pixelACC mIoU FLOPs (G) Params (M)

Segmenter (2021) ViT-s 92.04 66.85 17.93 26.03
SegFormer (2021) MIT-B0 92.76 67.74 6.39 3.72

FPN-PoolFormer (2022) S12 92.72 67.79 30.69 15.64
FCN (2016) MobileNetv2 92.27 67.12 39.6 9.8

PSPNet (2018) MobileNetv2 92.41 66.58 52.94 13.72
DeepLabV3+ (2018) MobileNetv2 91.17 62.04 69.4 15.35

PSANet (2018) ResNet50 86.83 54.6 194.8 54.07
SegMarsViT (Ours) MobileViT-s 92.46 68.4 8.54 5.61
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4.2.2. Results on S5Mars

Here, we show both quantitative and qualitative results on S5Mars. Table 5 shows the
comparative results on the test set of S5Mars. We achieve 78.22% in terms of mIoU, with
the standard MobileViT structure as the backbone. The depicted results demonstrate that
our model outperforms most of current real-time semantic segmentation works. Figure 5
shows the visual comparison of Martian terrain segmentation methods on five examples
from the S5Mars dataset. The examples include a diverse scene context and backgrounds.
The proposed methodology can achieve better or comparable performance in Martian
terrain segmentation. What should be noted is that the samples Figure 5a,b are of scenarios
in which rough and scattered terrains coexist. From the visual results, the proposed Seg-
MarsViT has less false-positive detection. As for the samples (c) and (d), unstructured scene
properties particularly stand out in the images. The proposed method can model contextual
information well under the circumstance of unstructured scenes on Mars, which benefit
from that ViT-based self-attention technique is applicable to explore spatial correlations.
While other competitors may not detect the whole semantic objects or even not find some
semantic objects in difficult scenarios, SegMarsViT can segment semantic regions with
more accurate results. Especially in the boundary part, the loss of spatial details leads to
the loss of accuracy. However, when the difference among foreground objects is relatively
small, such as the Figure 5e, some missed detections occur in the results and there is still
room for improvement.

Table 5. Comparison with state-of-the-art methods on S5Mars.

Method pixelACC mIoU mFscore mPrecision FLOPs(G) Params (M) FPS

Segmenter—ViT-s 90.99 77.15 84.21 85.4 17.93 26.03 48.44
SegFormer—MIT-B0 91.99 79.05 85.74 85.61 6.39 3.72 59.21

FPN—PoolFormer-s12 91.74 76.82 83.3 84.28 30.69 15.64 37.35
FCN—MobileNetv2 86.53 56.57 64.46 72.7 39.6 9.8 58.17

PSPNet—MobileNetv2 90.68 74.64 82.32 82.26 52.94 13.72 50.21
DeepLabV3+—MobileNetv2 89.64 69.5 78.22 80.94 69.4 15.35 37.64

FCN—HRNetv2-w18s 87.71 63.68 73.41 79.71 9.6 3.94 49.53
PSANet—ResNet50 89.11 72.18 80.78 81.96 194.8 54.07 17.64

SegMarsViT—MobileViT-s (Ours) 92.15 78.22 84.74 85.86 8.54 5.61 69.52

4.2.3. Results on MSL-Seg

Table 6 summarizes our results including FLOPS, frame per seconds (FPS), and other
four metrics to evaluate the segmentation accuracy on the MSL-Seg dataset. Compared
with other latest methods, the proposed SegMarsViT exhibited significant improvement
of 2.96% and 5.17% in terms of the pixelACC and mIoU, respectively. We further analyze
the classwise segmentation performance of the proposed SegMarsViT on eight classes, we
obtain classwise IoU on the test dataset, and is shown in Table 7. It can be observed that
IoU for few classes is low, e.g., the Martian soil and bedrocks. This is because the notion of
these classes is ambiguous in MSL-Seg. Their low IoU score is due to the low pixel count of
these objects in the training data.

Figure 6 shows the ground truth segmentation maps of five sample images along with
their predicted segmentation maps. It can be observed that the proposed SegMarsViT has
much better comparative results in scenes. As shown in the last two rows of Figure 6,
our method can work well on several kinds of complex scenarios with noisy informa-
tion, while others may fail in such scenarios. It can be seen from the overall detection
effect that the main Martian terrain feature can be extracted. However, missed detections
and error detections of some objects existed, and the segmentation accuracy needs to be
further improved.
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Table 6. Comparison with state-of-the-art methods on MSL-Seg.

Method pixelACC mIoU mFscore mPrecision FLOPs (G) Params (M) FPS

Segmenter—ViT-s 84.39 66.2 78.32 76.4 17.93 26.03 48.44
SegFormer—MIT-B0 83.84 64.37 76.99 74.74 6.39 3.72 59.21

FPN—PoolFormer-s12 83.9 63.41 76.56 76.03 30.69 15.64 37.35
FCN—MobileNetv2 81.67 54.96 68.32 77.72 39.6 9.8 58.17

PSPNet—MobileNetv2 82.32 60.62 74.2 71.1 52.94 13.72 50.21
DeepLabV3+—MobileNetv2 82.47 59.08 72.78 70.56 69.4 15.35 37.64

FCN—HRNetv2-w18s 82.59 58.57 71.98 75.44 9.6 3.94 49.53
PSANet—ResNet50 83.23 62.43 75.41 73.47 194.8 54.07 17.64

SegMarsViT—MobileViT-s (Ours) 86.05 67.28 78.69 78.75 8.54 5.61 69.52

Table 7. Classwise IoU of the proposed SegMarsViT on MSL-Seg dataset.

Martian Soil Sands Gravel Bedrock Rocks Tracks Shadows Unknown mIoU

41.3 77 82.43 47.91 74.39 54.22 89.23 71.78 67.28

To further analyze the model efficiency, we summarize the efficiency-related metrics
on the three datasets mentioned above and state them in Figure 7. As shown, the proposed
SegMarsViT has the fewest parameters among all the models. These metrics are crucial
for Martian terrain segmentation on satellite, which has limited storage. Here, frames
per second (FPS) is an average speed that per second with size 512 × 512. Data and
parameters load time is not considered, and the employed single GPU is NVIDIA 3070Ti
with 8-G storage. The time spent per image of our SegMarsViT is less than other semantic
segmentation methods. In conclusion, our method achieves the state-of-the-art performance
in Martian terrain segmentation and meanwhile is much more efficient than methods with
comparable accuracy.
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Compared with other regular semantic segmentation methods, the proposed SegMarsViT is competitive.

4.3. Ablation Studies
4.3.1. Effect of Backbone

We first analyze the effect of increasing the size of the encoder on the performance
and model efficiency. MobileViT-xxs, MobileViT-xs, and MobileViT-s are the series of
mobile transformer encoders with the same architecture but different sizes (as illustrated
in Table 2 of Section 3.2). Table 8 summarizes the comparison results for three datasets.
It can be observed that both the largest model SegMarsViT-s and the super small model
SegMarsViT-xxs achieve close to or exceeding SOTA performance. Furthermore, the super
small model SegMarsViT-xxs has good performance, and the number of parameters and
FLOPs are 1.84 M and 1.16 G, along with 66.81%, 74.83%, and 65.80% mIoU on the three
datasets, respectively. Because the model parameters of the backbone network are smaller
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and the structure is compact, the pressure on computing resources is smaller. Hence, the
proposed model can be better applied to engineering.

Table 8. Evaluation of encoder with different model sizes for SegMarsViT.

Encoder
Complexity AI4Mars S5Mars MSL-Seg

FLOPs Params FPS pixelACC mIoU pixelACC mIoU pixelACC mIoU

MobileViT-xxs 1.16 G 1.84 M 110.1 91.92 66.81 89.34 74.83 83.17 65.80
MobileViT-xs 2.23 G 4.61 M 80.3 91.99 67.73 91.58 76.32 84.35 66.83
MobileViT-s 8.54 G 5.61 M 69.5 92.46 68.4 92.15 78.22 86.05 67.28

4.3.2. Effect of ELAD

In this subsection, we test the proposed ELAD with different decoders. As mentioned
earlier, the proposed efficient layer aggregation decoder (ELAD) consists of stagewise CFF
modules and one CFA module in a nutshell, which are constructed in the way shown in
Figure 8. In addition, we select two representative decoders (Figure 9a,b) for test: the
All-MLP decoder, termed AMD, first proposed in SegFormer [38], and the classic decoder
of the U-shaped network [11], termed UNetD. In practice, we use the official code provided
by the authors to implement our experiments. From Table 9, with the same encoder, e.g.,
MobileViT-s encoder, we find that the proposed ELAD produces higher performance.

Compared with AMD, the proposed ELAD achieves through introducing the CFF
modules to build internal communications between the adjacent feature stages. The experi-
mental results in Table 9 verify the significant effect of our CFFs on better fusing feature
maps at different scales from another perspective, and this is exactly the common point
of ELAD and UNetD. Both consist of an information fusion path for modeling a more
representative and robust context. The key difference is the way they implement feature
fusion across adjacent stages. The comparison results on Table 9 show that our ELAD has
the least FLOPs with comparable parameters, which are the vital part of the construction
for the lightweight segmentation network.
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Table 9. Ablation studies for decoder on MSL-Seg dataset.

Encoder Decoder pixelACC mIoU FLOPs(G) Params (M)

MobileViT-s AMD 85.66 66.69 13.14 5.09
MobileViT-s UNetD 85.48 66.83 12.85 6.23
MobileViT-s ELAD 86.05 67.28 8.54 5.61
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4.3.3. Effect of Components in Decoder

In this subsection, we design ablation experiments on SegMarsViT to examine the
validity of CFF and CFA modules.

(1) Baseline: MobileViT-s + ELAD (Without CFA).
(2) SegMarsViT: MobileViT-s + ELAD (CFF + CFA).

Table 10 reports the ablation studies of the baseline and our model on the MSL-Seg
test set. We can see that incorporating both the CFF and CFA modules results in consistent
and significant increase over the baseline. In particular, when compared with the baseline
model, mIoU and PixelACC of the SegMarsViT with both CFF and CFA blocks integrated
are improved by 4.06% and 2.62%, respectively. The great improvement of SegMarsViT
proves the gain effect of their combination.

Table 10. Ablation results on MSL-Seg dataset.

Method
Modules

pixelACC mIoU FLOPs(G) Params (M)
CFF CFA

Baseline - X 83.43 63.22 7.54 5.0
SegMarsViT X X 86.05 67.28 8.54 5.61

5. Conclusions

In this paper, we propose SegMarsViT, a lightweight network for the real-time Martian
terrain segmentation task. We adopt a deployment-friendly MobileViT backbone to extract
discriminative local–global context information from multi-scale feature space. Further, an
effective cross-scale feature fusion module was designed to encode context information
in the multi-level features, with a cross-scale feature fusion mechanism applied to help
further aggregate feature representations. In the end, a compact prediction head is used
to aggregate hierarchical features and help enhance feature learning, yielding run-time
efficiency. Empirical results validate the superiority of the proposed SegMarsViT over
mainstream semantic segmentation methods. The ablation study verifies the effectiveness
of each module. More specifically, MobileViT helps obtain the semantic properties of terrain
objects in terms of morphology and distribution, while the compact decoder can lead to both
high efficiency and performance. Through the comparison of parameters, FLOPs and FPS,
the SegMarsViT further demonstrates its advantages in terms of space and computation
complexity. All of the results fully demonstrate the capability of the SegMarsViT in efficient
and effective Martian terrain segmentation, which provides significant potential for the
further development of MTS task.

One potential limitation is that there’s an enormous gap between high-end GPU and a
low-memory spacecraft device. Our future work will experiment on a realistic hardware
platform to evaluate the model efficiency. Energy consumption and practical performance
will be our primary focus. Moreover, we will proceed to refine our approach and be
committed to investigate MTS methods for more challenging cases, e.g., multi-source
heterogeneous data and a multi-task perception system.
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