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Abstract: In pursuit of Sustainable Development Goals (SDGs), land cover change (LCC) has been
utilized to explore different dynamic processes such as farmland abandonment and urban expansion.
The study proposed a multi-scale spatiotemporal pattern analysis and simulation (MSPAS) model
with driving factors for SDGs. With population information from the census, multi-scale analysis
criteria were designed using the combination of administrative and regional divisions, i.e., district,
province, nation and ecological region. Contribution and correlation of LCC or population were
quantified between multiple scales. Different kinds of driving factors were explored in the pattern
analysis and then utilized for the definition of adaptive land suitability rules using the Cellular
Automata-Markov (CA-Markov) simulation. As a case study of the MSPAS model, Nepal entered into
a new era by the establishment of a Federal Republic in 2015. The model focused on four specific land
cover classes of urban, farmland, forest and grassland to explore the pattern of Nepal’s LCC from
2016 to 2019. The result demonstrated the performance of the MSPAS model. The spatiotemporal
pattern had consistency, and characteristics between multiple scales and population were related
to LCC. Urban area nearly doubled while farmland decreased by 3% in these years. Urban areas
expanded at the expense of farmland, especially in Kathmandu and some districts of the Terai region,
which tended to occur on flat areas near the existing urban centers or along the roads. Farmland
abandonment was relatively intense with scattered abandoned areas widely distributed in the Hill
region under conditions of steep topography and sparse population. The MSPAS model can provide
references for the development of sustainable urbanization and agriculture in SDGs.

Keywords: MSPAS; SDGs; spatiotemporal pattern; multi-scale analysis; land suitability with driving
factors; CA-Markov; urban expansion; farmland abandonment

1. Introduction

LCC is widely studied in the social and environmental phenomena [1,2]. In recent
years, great LCC has occurred around the world due to population explosion, climate
change and other problems, especially in some developing countries. It also brings some
consequences [3], such as natural disasters [4], carbon emissions [5], air pollution [6], water
degradation [7] and so on. Nowadays, sustainable development has been accepted by
countries worldwide [8,9]. The 2030 Agenda for Sustainable Development includes 17
SDGs and 169 targets for the period 2016–2030. Among these goals, SDG 2 [10] focuses
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on sustainable agriculture, which aims to end hunger, achieve food security, double the
agricultural productivity and increase incomes of small-scale food producers. SDG 11 [11]
proposes to enhance inclusive, sustainable and safe urbanization and reduce the adverse
environmental impact of urban areas. The above goals are also highly relevant and essential
to other SDGs, including SDG 8 for economic growth, SDG 9 for infrastructure and SDG 15
for life on land. Asia and Africa have been hot spots of SDGs because hunger and poverty,
effects of climate change or extreme events, growth of population and urbanization in these
areas are greatly higher than the rest of the world [12]. The urban growth has been multiple
times greater than previous estimates of the worldwide cities with an unprecedented global
urbanization [13].

Remote sensing data has been widely used in geographic simulation [14,15], LCC
monitoring [16–19] and SDGs, with advantages of large area coverage and short revisit
time. It can provide rich temporal, spatial and spectral information for different land
covers [20–22]. Several methods have been developed to simulate LCC quantitatively
and spatially. As a stochastic model, the Markov chain calculates transition probabilities
between various land cover classes based on data of two times [23,24] and is well fit for
prediction over a short time period. However, it only estimates the magnitude of transition
and neglects spatial information. A cellular automaton is a bottom-up and discrete model
with the ability to simulate many complex processes [25–27], which considers the effect
of neighborhood spatially. Based on CA, SLEUTH uses slope, land use, exclusion, urban
extent, transportation and hill shade as inputs to monitor urban change [28]. CA-Markov
combines the advantages of CA and Markov chain models, which is much suitable for the
simulation of spatiotemporal change [29,30]. It can also integrate different driving factors
simultaneously. For SDGs, remote sensing data are commonly utilized for generating indi-
cators and evaluating the achievement of targets in SDGs [31], including multi-resolution
indicators, environmental indicators and integrated indicators [32].

There are three points of significance and necessity in this work. (1) Most methods
analyze the LCC spatiotemporal pattern at a single scale of district [33], province [34],
region [35] or nation [36], which neglect that these scales are related to each other and act
together to form the pattern of a country. The significance of multi-scale analysis is as
follows. The policy design and making are always based on administrative or regional
divisions, which need guidance and emphasis according to the situation in different places.
For a country, it should be clear which province needs to be highly concerned due to
its worse situation of ecological or developmental problems than other provinces. The
diversities of all districts in a province also influence urban planning and function. As
references for policymaking and allocation of resources or government spending, studies
on multi-scale LCC can reflect the intensity of ecological and socio-economic processes
or problems in different provinces, districts and regions with the demand of protection
and governance. Farmland to urban is related to urban planning and farmland to forest
corresponds to arable land protection. Land management is always divided into multiple
levels and conducted in nations, provinces or districts. How to establish and quantify the
connection of LCC between different scales is a question worth discussing. (2) For driving
factors, the administrative scale is closely related to political and socio-economic factors
such as population, transport and economy [37], while the regional scale is relevant to
ecology and geography. Driving factors lead to the similarities and diversities of LCC at
multiple scales, and various land cover types also have different sensitivities to the same
driving factor. There are large diversities of driving factors for land covers in different
areas. For instance, LCC of urban areas is sensitive to population and transport, while
LCC of forests mainly depends on natural factors. It is necessary to analyze the impact
of driving factors on specific land cover and spatiotemporal patterns [38,39], and then
utilize the analysis result for a better simulation. The population can significantly influence
LCC by human activities, especially for urban [40] and farmland areas, with a high speed
of variation in a short time [41]. Many countries have attached great importance to the
population factor and conducted a census. Quantifying the relationship between LCC and
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population can better explore the interaction between the human and ecology systems.
(3) In regard to SDGs, many researchers study them from the perspective of land change,
land suitability, land management and efficiency [12], which are highly related to food
security and production, urban planning, land systems and other issues about SDGs. Land
cover data can provide multi-scale spatial information and multi-temporal monitoring for
the assessment of SDGs [32]. The calculation and generation of many targets and indicators
of SDGs rely on the area of land cover and the population, and dynamic sustainable devel-
opment is further influenced by LCC. Several related issues have drawn wide attention.
Firstly, many farmlands are abandoned [42] and gradually turn into forest or grassland,
corresponding to conversion from farmland to forest or grassland and food security of
SDG 2. At the same time, urban expansion has risen rapidly at the expense of farmland,
corresponding to conversion from farmland to urban area and the sustainable urbanization
of SDG 11 [43,44]. Understanding LCC in urban area and farmland is crucial to supporting
the SDGs for a specific country.

Therefore, the study proposed a multi-scale spatiotemporal pattern analysis and
simulation model, named the MSPAS model, with driving factors. The model was divided
into an analysis part and a simulation part. Corresponding to the above three points of
significance and necessity, the innovations of the model are as follows: (1) With population
information from the census, multi-scale analysis criteria for LCC spatiotemporal patterns
were designed based on administrative and regional divisions, i.e., district, province, nation
and ecological regions. The contribution and correlation of LCC or population between
different scales were calculated for the quantification of the multi-scale connection. The
spatiotemporal pattern was analyzed quantitatively and spatially with driving factors.
(2) The impacts of different driving factors on specific land cover were explored in the
analysis part and then utilized for the definition of a novel adaptive land suitability rule in
the CA-Markov simulation part. (3) The MSPAS model was applied to SDGs by combining
the LCC pattern with factors of policies and planning. The MSPAS model for LCC is based
on the administrative and regional divisions, which can be utilized in many countries with
international applicability.

2. Study Area and Materials
2.1. Study Area

As a landlocked country between China and India, Nepal was affirmed as a federal
democratic republic (FDR) in 2015 and changed dramatically in its administration and
development pattern. The GDP and total population of Nepal have achieved a pretty
steep growth from 2016 to 2019, which were much faster than the past years, and can be
references for supposing that land cover of Nepal has a potential to change greatly in a
different way. The research took Nepal as a case study for the MSPAS model. Located in
South Asia, the country is divided into three ecological regions as shown in Figure 1. In the
north of Nepal, the Mountain region constitutes the central part of the Himalayan range.
Covering 68% of the whole area, the Hill region is situated in the middle of Nepal with
an altitude between 1000 m and 4000 m. With flat terrain, fertile soil and suitable climate,
the Terai region has an altitude between 67 m and 300 m above sea level and provides the
largest share of agriculture production among three regions, accommodating 50.3% of the
national population in 2011.
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Figure 1. Study area and population number of seven provinces and districts from the census in 2021.
The boundary information is from the official boundary of Nepal.

For multi-scale administrative divisions, Nepal was divided into 7 provinces, 77
districts and 753 local units. In each of the 7 provinces, the most populous district was
chosen as an interest district based on population information from census, i.e., Morang in
Province No.1, Dhanusa in Madhesh, Kathmandu in Bagmati, Kaski in Gandaki, Rupandehi
in Lumbini, Surkhet in Karnali and Kailali in Sudurpashchim. For ecological divisions,
Kailali, Rupandehi, Morang and Dhanusa are located in the Terai region, and Kathmandu,
Surkhet and Kaski are in the Hill region. Located in different provinces and regions,
the interest districts can be utilized for the analysis of multi-scale change patterns with
certain representativeness. The environmental condition, population number and economic
development of the seven districts vary dramatically. Most districts in the Terai region
have larger populations than ones in the Hill region. Kaski is near the Mountain region and
covers several large mountains. As Nepal’s capital, Kathmandu has the highest population,
while Surkhet has the lowest one in the seven districts.

2.2. Data

In the study, two kinds of data were utilized, as shown in Table 1. One is a land
cover dataset from remote sensing images, the other one is data of driving factors. Land
cover data from 2016 to 2019 were gathered from The International Centre for Integrated
Mountain Development (ICIMOD), which are classified into nine different classes: urban,
farmland, grassland, forest, water body, snow and glacier, riverbed, bare soil and bare
rock. Snow and glacier, bare soil and bare rock are mostly in the Mountain region but
rarely exist in the seven study districts. Water body and riverbed influence the distribution
of urban area and farmland, but change slightly in a short period of time. As shown in
Figure 2, the major land cover classes in seven districts consist of urban area, farmland,
forest and grassland. Therefore, this study analyzed change and interaction between the
major four land cover classes by using the data of nine classes from ICIMOD. Driving
factors consist of slope, elevation, road, river, population and policies. Topography data
was obtained from ASTER GDEMV2 and OpenStreetMap provided the information on
rivers and roads. Population distribution data in 2016 was mapped by WorldPop with
a resolution of 100 m. All data covered the same area with the same resolution of 30 m
after image resampling. Statistical population number was counted by the government
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of Nepal at district, provincial and national scales, and GDP data was gathered from The
World Bank. Political factors from the government of Nepal were relevant to SDGs and the
development of urban or agricultural areas.

Table 1. Data utilized in the study.

Category Data Source Property

Physical

Land cover maps ICIMOD Land cover classification

Topography ASTER GDEMV2 Elevation and slope

River OpenStreetMap Accessibility to water resource

Socio-economic

Road OpenStreetMap Accessibility to transport

Population distribution WorldPop Spatial distribution of population

Population number Central Bureau of Statistics
(CBS), Government of Nepal District, provincial and national population

GDP World Bank Economy

Political Policy and planning Government of Nepal Political information about SDGs,
agricultural and urban areas

Figure 2. Land cover of the seven interest districts in 2016.

3. MSPAS Model with Driving Factors
3.1. Multi-Scale Analysis Criteria for the LCC Spatiotemporal Pattern

As shown in Figure 3, multi-scale analysis criteria are designed with the population
factor to explore the patterns of LCC between different spatial scales. GDP and population
information provide the preliminary references for study time and area. Multi-scale analysis
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is based on administrative division and regional division. Administrative division can be
divided into nation, province and district, while regional division can utilize ecological or
geographical zones. The most populous district in each of the provinces is selected as an
interest district. The ecological region where the majority of interest districts fall is regarded
as the corresponding region of this district, and then interest districts can be reclassified
into several categories by the ecological regions they belong to. This new classification
synthesizes both socio-economic and physical factors from the above administrative and
regional divisions, which becomes the base of pattern analysis at the district scale. After
overlaying different divisions onto the LCC map and population data, the areas of various
kinds of LCC and population number at the scale of nation, province, region and district
are obtained. Firstly, the spatiotemporal pattern at a single scale such as interest district or
nation is explored spatially and quantitatively to find the characteristics and consistency,
respectively. Secondly, the contributions of LCC or population are calculated to quantify
the connection between multiple scales in Equations (1) and (2). There are four situations
of contribution between multiple scales being explored in the study: interest district’s
contribution to its corresponding province (DP), combined districts’ contribution to nation
(CN), province’s contribution to nation (PN) and region’s contribution to nation (RN).
Multi-scale contributions can reflect the importance of components in the first smaller
scale to the whole part in the second larger scale for specific land change or population.
The combined districts represent the sum of all interest districts in a country. Thirdly, in
Equation (3), the correlations between multi-scale contributions are calculated to quantify
the relevance between different land change types in the four situations. Population is also
considered in the correlation analysis.

Cmn
AB =

Smn
A

Smn
B

× 100% (1)

where A is the first smaller scale and B is the second larger scale, Cmn
AB means LCC contri-

bution from class m to class n between scale A and scale B, Smn
A is the area of land change

from class m to class n at scale A and Smn
B represents the same meaning at scale B. For

instance, scale A is the interest district and scale B is its corresponding province in DP,
while scale A is one ecological region and scale B is the whole country in RN. In CN, Smn

A
is the sum of land change area in all interest districts and Smn

B is the land change area of
the whole country. All the area information is obtained by overlaying the LCC map onto
administrative or regional divisions.

CPAB =
PA
PB

× 100% (2)

where PA is the population at scale A and PB is the one at scale B and CPAB means
population contribution between scale A and scale B.

r = ∑ (x − x)(y − y)√
∑ (x − x)2∑ (y − y)2

(3)

where x, y are the two types of LCC contributions or population contribution in one specific
situation of DP, CN, PN or RN, x and y are the mean value of variations. r is the correlation
between two variations, which reflects the connection between different LCC or population
contributions in the situation.
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Figure 3. Flowchart of MSPAS model.

3.2. Driving Factors and Adaptive Land Suitability Evaluation

To understand dynamic LCC more comprehensively, different kinds of driving factors
are utilized in the two parts: the spatiotemporal pattern analysis part and the land suitability
evaluation of the CA-Markov simulation part. In the analysis part, the interest districts are
selected by population factors from the census, while ecological divisions are closely related
to slope and elevation. Multiple maps of driving factors are overlaid onto the LCC maps
to analyze the characteristics of land change. The spatial relation between driving factors
and LCC distribution can reflect the impact of these factors on specific land cover. After
obtaining the relationship between LCC and driving factors in the analysis part, important
factors for specific land cover are determined and then utilized for adaptive land suitability
evaluation in the simulation part. The factors of policies and planning are finally gathered
to apply the MSPAS model to land management and SDGs for a country.

The adaptive land suitability rule is proposed to solve large diversities of driving
factors for various land covers in different areas, which quantifies the suitability and impact
of selected driving factors by the histogram of the actual situation. In multi-criteria analysis,
the key steps of developing the land suitability rule are fuzzy evaluation and weight
definition for driving factors. The membership functions of fuzzy evaluations include
sigmoidal, J-shaped and linear functions, which can describe monotonically increasing,
decreasing and symmetric relations, and obtain standardized factor maps by the definition
of control points. Then, the weights need to be set to indicate the importance of each
factor, and finally, the land suitability for a specific land cover is evaluated. Note that the
appropriate ranges of one driving factor for different land covers are not the same, and
the situations of driving factors also vary greatly in different areas. The adaptive land
suitability rule is proposed to solve the problem. The control points and fuzzy function are
adjusted to match the specific actual situation in the target district and vary with the change
of land cover class, instead of being fixed and the same in all places. As shown in Figure 4,
elevation and slope of farmland or urban areas in one district are masked and extracted
separately, and then statistical histograms are obtained as references for the definition of
control points. The function with control points is designed to fit with the histogram as
well as possible. For instance, the starting control point of the decreasing function for the
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slope factor is designed to be consistent with the highest value of the histogram, which is
adaptive to the change of target area and land cover class. Weight definition can utilize
the result of a driving factor’s impact on LCC from the analysis part. A greater impact
corresponds to a higher weight. Land suitability maps are finally obtained as the input of
the CA-Markov model.

Figure 4. Adaptive land suitability rule with driving factors. Kathmandu is taken as an example.
(a) Driving factors for an urban area. (b) Driving factors for farmland. Note that the figure is utilized
to describe the adaptive land suitability rule here, and the determination of driving factors for Nepal
is introduced in Section 4.4.

3.3. Simulation of LCC Using a CA-Markov Method

A CA-Markov method is employed to simulate the spatiotemporal process of LCC
based on the combination of CA and Markov chain models [45]. Markov chain utilizes a
transition probability matrix between two states to predict land cover change quantitatively,
which is very suitable for short term prediction. The next state of time t + 1 is only deter-
mined by the state of time t with no relation to historical state. However, it neglects the
spatial distribution of land cover and is unable to consider the impact of spatial knowledge
on LCC. According to Tobler’s first law of geography, i.e., “everything is related to every-
thing else, but near things are more related than distant things.” [46], the impact of a nearby
area on the target area should also be considered. CA is a dynamic and discrete model,
which consists of four fundamental parts: cell state, cell space, neighborhood and transition
rule [47,48]. Based on transition rule, the next state of a center cell is determined by its
initial state and adjacent cells in the neighborhood. Integrated with transition probability,
the CA-Markov model takes the effect of neighborhood into account, which can better
simulate complex spatiotemporal process. The model is expressed using Equations (4)–(6).

P =

P11 · · · P1n
... Pij

...
Pn1 · · · Pnn

 (4)

Ct+1 = P × Ct (5)

St+1 = f (St, N) (6)

where P is the transition probability matrix; Pij represents the transition probability from
land cover class i to class j, n is total number of land cover classes, Ct is the vector of land
cover class state at time t and Ct+1 represents the state at time t + 1. In the formula of CA, f
represents the transition rule, N is the neighborhood, St is the state of center cell at time t
and St+1 is the state of one at time t + 1.
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4. Results

Focusing on four land cover classes of urban, farmland, forest and grassland, the
model explored four kinds of LCC types in Nepal: forest to farmland, farmland to urban,
farmland to forest and farmland to grassland. In the analysis part, spatiotemporal patterns
of LCC were firstly analyzed at the single scales of nation and district, respectively, in
Sections 4.1 and 4.2. In Section 4.3, the multi-scale contributions of DP, PN, CN and RN
and their correlations were calculated to quantify the connection between different scales.
The analysis part explored the relationship between driving factors and LCC, then specific
factors for the land covers of urban and farmland were determined. In the simulation part
of Section 4.4, these factors were employed in the proposed adaptive land suitability rule
of the CA-Markov method to simulate the dynamic process.

4.1. Spatiotemporal Pattern of LCC at National Scale

The conversions between urban, farmland, forest and grassland are shown in Table 2.
Urban area nearly doubled from 2016 to 2019 with a high dynamic degree. Most of the
expansion was derived by conversion from farmland to urban areas in each year. Compared
to grassland and forest, farmland played a significant role in urban expansion. The change
of urban area was not steady. After the rapid increase from 2016 to 2018, change in 2018–19
was very slight. Urban area achieved great growth, but the opposite change from urban
to forest, farmland or grassland was very small. Urban expansion corresponded to a
decline in farmland area with steady loss rate. Farmland has decreased by 3% over the
three years studied. Conversion from farmland to forest and grassland was more stable
than from farmland to urban, which contributed about 7‰ to forest area and more than
3‰ to grassland in each year. Forest and grassland were cultivated and changed into
farmland, while abandoned farmland turned into forest and grassland gradually. To sum
up, farmland was lost quantitatively in the interaction with forest and grassland. Change
in the spatial distribution of these land covers was also active annually under frequent
mutual conversion. Forest areas expanded and some of them derived from farmland, while
grassland reduced every year. The decline of grassland area in 2018–2019 was relevant to
the transformation to bare rock beyond the study.

Table 2. Dynamic degree of land covers and transition between urban, farmland, forest and grassland
from 2016 to 2019 (unit: ‰). In the transition from 2016 to 2019, the number represents the proportion
of transition area to total area of the specific land cover in the former year. Dynamic degree reflects
the change rate of land area during the years, which is influenced by all other land cover classes.
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    2017 
2016  

Forest Urban Farmland Grassland 
    2018 
2017 

Forest Urban Farmland Grassland 

Forest 993.12  0.74  6.25  9.82  Forest 992.92  5.59  9.56  5.42  
Urban 0.0001  990.88  0.02  0.03  Urban 0.0002  991.28  0.02  0.03  

Farmland 7.08  144.85  980.69  3.30  Farmland 6.57  648.51  974.03  3.73  
Grassland 3.19  15.32  1.51  890.22  Grassland 4.98  37.12  1.83  894.28  
    2019 
2018 

Forest Urban Farmland Grassland Dynamic degree of land covers (‰)  

Forest 990.59  0.10  7.66  15.44  Year Forest Urban Farmland Grassland 
Urban 0.0008  991.92  0.04  0.04  2016–17 3.46  166.35  −10.71  −7.95  

Farmland 7.32  0.69  980.91  4.91  2017–18 4.68  710.55  −13.74  −4.06  
Grassland 1.77  1.24  1.90  840.16  2018–19 −0.23  −3.31  −8.76  −78.05  

4.2. Spatiotemporal Pattern of LCC at District Scale

Based on administrative and regional division, the interest districts were selected
and classified into three categories: Terai districts, Kathmandu and Hill districts. Morang,
Dhanusa, Kailali and Rupandehi were referred to as Terai districts, while Surkhet and Kaski



Remote Sens. 2022, 14, 6295 10 of 25

were categorized as Hill districts in the study. Due to political and historical particularity,
the capital Kathmandu in this study was separate from the Hill districts. The spatiotemporal
pattern analysis at district scale was based on the above classification. Different kinds of
driving factors were combined with LCC to explore their effects on urban and farmland
areas, such as population, roads, elevation, slope and rivers.

4.2.1. Quantitative Transition Analysis

From Figure 5, urban area expanded while farmland had a loss in all seven interest
districts from 2016 to 2019, which was in line with the changing trend at national scale.
Kathmandu and the Terai districts had much area of urban expansion. With a reduction in
quantity, the change of farmland was opposite that of urban area, due to transition from
farmland to urban area and to forest. With the highest original farmland area, Morang
lost the largest area of farmland among seven districts. It is notable that the decrease of
farmland in the Hill districts was relatively severe compared with the slight increase of
urban area. Kathmandu and the Hill districts had a smaller original area of farmland than
the Terai districts, but their losses of farmland were huge and even higher than the latter,
which means that the decline of farmland was obvious in these districts.

Figure 5. Change of urban and farmland area in seven interest districts from 2016 to 2019.

From Figure 6, the internal proportion of farmland to urban areas was the largest in the
four kinds of LCC for Kathmandu and the Terai districts, which means that urban expansion
at the expense of farmland was obvious in these districts. The Hill districts had the highest
area of conversion from farmland to forest in seven districts, even though their original
farmland area was the least. Therefore, farmland abandonment was more prominent
in the Hill districts. Additionally, a mutual transition between farmland and forest also
accounted for a larger internal proportion in the two districts of Surkhet and Kaski than
the other districts. From the perspective of internal LCC composition, LCC between urban
area and farmland was active in Kathmandu and the Terai districts, while conversion
between farmland and forest was relatively intense in the Hill districts. Moreover, the area
of farmland to forest was higher than forest to farmland in most districts, and they had
correlation with each other in quantity.
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Figure 6. The composition of four kinds of land cover changes in seven interest districts from 2016
to 2019.

4.2.2. Spatial Transition Analysis

Maps of various driving factors such as elevation, road and river were overlaid onto
LCC maps to analyze the characteristics of change patterns and the impact of driving factors
spatially. From Figures 2 and 7, it can be seen that spatiotemporal patterns of LCC were
different in seven interest districts from 2016 to 2019. Urban expansion was more likely to
occur near the existing urban centers. As the hub of Nepal’s urbanization, Kathmandu had
an obvious urban encroachment on nearby farmland, which mainly happened on the flat
area outside the urban core. Some abandoned farmland existed on the surrounding hills
and changed into forest. The Terai districts all had vast plain and farmland areas with road
networks or rivers across them. Transition from farmland to urban area mostly occurred
along the roads, especially in the intersection and convergence parts. A large proportion of
urban expansion happened in the southwest Dhanusa, Morang and Kailali with a dense
road network. Rupandehi also had a marked increase of urban area near the riverbed and
road. Based on the existing built-up areas, there was small-scale urban expansion widely
scattered throughout the flat plains in Terai, such as the middle of Morang and Kailali.
As for farmland abandonment, it mainly happened on the border of forest and farmland,
including the boundary area of vast forests in the north of Dhanusa, Rupandehi and the
middle of Morang. One of the special circumstances was the northern area of Morang
and Kailali, which was scattered with small farmland in the forest and hill. Unlike large
arable land in the southern plain, farmlands in the north of the two districts were relatively
smaller than the southern ones, corresponding to more fragmented abandoned areas and
active interaction between farmland and forest. Overall, urban expansion was more intense
than farmland abandonment in these districts.

With higher elevation, steep slope and smaller population in the Hill region, Surkhet
is in the west of Nepal, and Kaski is near the Mountain region. In these Hill districts,
conversion from farmland to urban area was concentrated in a limited spatial extent of
area near the urban centers with intensive road networks. Farmland of the Hill districts
differed from that of the Terai districts in the spatial distribution and size, which was much
smaller or presented many fragmented patches on the vast forest or hill [49]. This form
corresponded to a higher risk of farmland abandonment with more active conversion from
farmland to forest or grassland. The abandoned areas from farmland to forest in the Hill
districts also exhibited scattered fragments and were widely distributed in the stretch of
large forests or remote mountainous areas. In addition, there were obvious areas converted
from forest to farmland around the river of Surkhet. Overall, farmland abandonment in the
Hill districts was more widespread and severe than that in Terai.
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Figure 7. Spatial distribution of four kinds of land cover changes from 2016 to 2019. Maps of
river, road and topography are overlaid on it. The Terai districts are Morang, Dhanusa, Kailali and
Rupandehi. The Hill districts are Surkhet and Kaski.

4.3. Multi-Scale Contribution and Correlation

Multi-scale contribution and correlation were employed for DP, PN, RN and CN. From
DP in Figure 8, the contribution of variation from farmland to urban area was relativity
larger than the other three variations and closer to the value of population, which implied
that contribution of urban expansion was prominent in most interest districts with close
relation to population. Note that population contribution was mostly higher than the LCC
contribution with the possibility of a population agglomeration effect in the interest district,
such as the situation of Kathmandu. Change from farmland to forest in Surkhet had the
most contribution to provincial change, corresponding to its problem of farmland loss.
From PN, the proportions of four variations were around the value of population, reflecting
a better correlation between population and LCC. In seven provinces, Province No.1 took
up a large proportion of forest to farmland, and Bagmati had the highest contribution of
farmland to urban or forest. As dominant and important areas for these kinds of LCC, the
two provinces also had more population than the others with frequent human activities.
Most provinces of Nepal are located in multiple ecological regions homogeneously, except
for Madhesh. All of Madhesh was in the Terai region and its contribution of population was
far above LCC. From CN in Figure 9, the combined land change and population of the seven
interest districts played a significant role in the national ones with good representativeness
of the country. Populous districts were more likely to have an active change and interaction
between urban area, farmland and forest. With the value of 19%, CN in urban change was
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higher than forest or farmland change, which also showed the impact of population on
urban expansion.

Figure 8. District’s contribution to province (DP) and province’s contribution to nation (PN) from
2016 to 2019. The contribution represents the proportion of specific land change area or population at
the first, smaller scale to the one at the second, larger scale.

Figure 9. Seven districts’ combined contribution to nation (CN) from 2016 to 2019. It shows that the
total area and change of the seven districts’ urban, farmland and forest areas occupied a part of the
national change.

From Table 3, the relationship of conversions between farmland, forest and grassland
was close. For instance, correlation between farmland to forest and forest to farmland was
above 0.90 in both DP and PN, and the one between farmland to grassland and forest to
farmland was 0.70 in DP and 0.58 in PN. Contribution of farmland to urban area had a
positive relevance of 0.75 with farmland to forest in PN, and the correlation between forest
to farmland and farmland to urban was 0.53 in PN. The results showed that some land
changes were not isolated processes and had correlation with each other. Additionally,
population was more relevant to farmland to urban areas than other LCCs, which reached
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the value of 0.62 for PN and 0.54 for DP from the 2011 census. It demonstrated that the
population factor was more sensitive to urban expansion.

Table 3. Correlation matrix of different LCC types’ contributions between multiple scales. DP means
the correlation in district to province and PN means the correlation in province to nation.

Correlation in DP
and PN

Forest to Farmland Farmland to Urban Farmland to
Grassland Farmland to Forest

DP PN DP PN DP PN DP PN

Forest to farmland 1.00 1.00

Farmland to urban 0.21 0.53 1.00 1.00

Farmland to grassland 0.70 0.58 0.61 0.08 1.00 1.00

Farmland to forest 0.91 0.91 0.05 0.75 0.66 0.32 1.00 1.00

2011 Population 0.15 0.02 0.54 0.62 −0.01 −0.63 −0.18 0.31

2021 Population 0.20 −0.02 0.57 0.62 0.09 −0.65 −0.16 0.28

From Table 4, the values of RN in various regions showed larger internal diversity than
DP and PN. The Hill region had the largest contribution in forest to farmland and farmland
to grassland or forest, while urban expansion was prominent in Terai. The Mountain
region had the smallest effects on farmland to urban and forest areas. The correlation of
LCC between farmland, forest and grassland was high, which reached up to 1.00 between
farmland to forest and forest to farmland. This was consistent with DP and PN. The
correlation between population and farmland to urban areas in RN was also high.

Table 4. Region’s contribution to nation (RN) from 2016 to 2019.

Contribution RN (%) Forest to Farmland Farmland to Urban Farmland to
Grassland Farmland to Forest

Terai 12 50 7 13

Hill 80 45 74 76

Mountain 8 5 19 11

Correlation in RN Forest to farmland Farmland to urban Farmland to grassland Farmland to forest

Forest to farmland 1.00

Farmland to urban 0.45 1.00

Farmland to grassland 0.98 0.25 1.00

Farmland to forest 1.00 0.43 0.98 1.00

2011 population 0.40 1.00 0.20 0.38

2021 population 0.29 0.98 0.08 0.27

4.4. LCC Simulation Result

A CA-Markov simulation was utilized to predict land cover of 2019 based on the data
of 2016 and 2017. The transition probability calculated by Markov chain represents the
probability that one land cover class will change to other class. Note that the areas of the
four land cover classes differ widely in the seven districts. Farmland dominates in Morang,
Dhanusa and Rupandehi, while Kaski, Kailali and Surkhet have more forests. Dense urban
areas are concentrated in Kathmandu. With no consideration of spatial information, the
Markov probability is influenced by the base area of land cover, which means it can only
reflect the possibility of conversion rather than total area of change. As shown in Table 5,
urban area was relatively persistent, more than 84% of which in most districts was likely
to remain the same in the next year. Forest was as stable as urban with about an 83%
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unchanged probability, although it changed into farmland greatly in some districts, such as
Kathmandu and Morang. Compared to urban and forest areas, farmland and grassland
were more active in LCC, with lower unchanged probabilities. Farmland had a potential to
turn into forest and be abandoned, especially in the Hill district with a probability of more
than 10%. Probability of transition from farmland to urban area reached up to 16.26% in
Kathmandu, which was also high in Rupandehi. Kathmandu and Rupandehi were more
populous than other districts with a higher possibility of urban expansion. There was also
a large mutual transformation between forest and grassland.

Table 5. Transition probability matrix of seven districts calculated by Markov chain (unit: %). Urban,
farmland, forest and grassland are chosen from nine land cover classes of ICIMOD data.

Morang Forest Urban Farmland Grassland Dhanusa Forest Urban Farmland Grassland

Forest 83.54 0.06 11.19 4.94 Forest 83.81 0.00 0.53 15.57

Urban 0.10 84.03 5.07 7.27 Urban 0.01 84.00 11.41 0.01

Farmland 6.00 3.33 83.58 0.87 Farmland 1.87 2.59 83.56 0.08

Grassland 8.70 6.89 3.20 73.47 Grassland 18.48 0.03 0.16 79.46

Kathmandu Forest Urban Farmland Grassland Rupandehi Forest Urban Farmland Grassland

Forest 82.94 0.58 14.63 1.85 Forest 84.51 0.04 7.36 7.04

Urban 0.98 84.73 10.13 3.77 Urban 0.01 84.23 10.21 0.01

Farmland 7.38 16.26 76.16 0.19 Farmland 4.54 5.31 83.81 0.42

Grassland 6.66 17.01 2.23 74.09 Grassland 34.04 0.57 7.03 56.06

Kaski Forest Urban Farmland Grassland Surkhet Forest Urban Farmland Grassland

Forest 84.00 0.01 8.60 6.96 Forest 84.10 0.02 9.77 5.97

Urban 0.11 82.57 8.50 0.62 Urban 0.09 84.59 4.64 3.03

Farmland 16.25 2.04 79.88 1.31 Farmland 14.07 1.85 81.50 2.11

Grassland 2.08 0.12 0.59 70.06 Grassland 14.19 0.02 9.32 75.42

Kailali Forest Urban Farmland Grassland

Forest 84.36 0.01 7.08 6.91

Urban 0.04 84.60 6.45 0.94

Farmland 6.85 3.02 83.18 1.50

Grassland 15.73 0.06 3.77 76.32

Based on the analysis part, farmland and urban areas were influenced by different
driving factors, which could be utilized as suitability maps for land suitability evaluation
as shown in Figure 4. Ecological divisions of the Terai and Hill regions were closely related
to slope and elevation. The Hill districts, with a complex topography, had more farmland
loss than the Terai districts. Related to the growth of farmland, areas with a lower slope and
elevation tended to have a suitable climate, abundant labor force and better accessibility to
agricultural infrastructure or markets. Surkhet had obvious areas converted from forest to
farmland around the river, and distance to river was associated with the supply of water
resources for farmland. Therefore, slope, elevation and distance to river were gathered
as suitability maps for farmland. Population and transport condition were crucial to the
speed and size of urban expansion from the result of multi-scale spatiotemporal pattern
analysis. Correlation between population and urban expansion was higher than other
LCCs for DP, PN and RN. In addition, flat topography can influence the distribution of
urban concentrated areas and bring conveniences to expansion, and urban growth in the
Terai districts was a good example. To sum up, maps of population, distance to road and
slope were selected as suitability maps for urban area. The seven districts that lay in Nepal
from east to west and from Terai to Hill region had large diversities in the driving factors.
For instance, slope was higher in the Hill districts than Terai districts, and the appropriate
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range of slope for urban area was also different from the one for farmland. Therefore, the
adaptive land suitability rule was employed with the above driving factors.

In Figure 10, the prediction result was compared with land cover data of 2019 to
demonstrate the performance of the simulation part in the MSPAS model, i.e., the adaptive
land suitability rule with the CA-Markov method. In addition, the relationship between
the analysis part and the simulation part was also explored. Urban area was projected
to expand and occupy farmland from the previous extent in 2016, which was consistent
with the distribution of urban area in 2019. The prediction of urban expansion was close
to the actual change and particularly obvious in some urban concentrated areas, such as
the existing urban area of Kathmandu, the center of Surkhet, the southwest of Kailali and
Morang. However, the expansion was slightly excessive in some areas, e.g., a scattered
small-scale urban area in Morang. Compared with dense urban areas, these scattered areas
had lower expansion speed and a different change pattern. From Table 6, most districts
obtained PA and UA of more than 85% as a demonstration of proper performance. Owing
to the overestimated area of farmland, UA was relatively lower in Kathmandu, Kaski
and Surkhet than in other districts. These districts belonged to the Hill region with a
tendency of farmland loss by spatiotemporal analysis of the MSPAS model. The transition
probability of Markov reflected the magnitude of LCC quantitively, but neglected spatial
information, and the CA-Markov simulation added spatial information to the dynamic
process. Conversely, there also existed spatial effects of local differences and irregular
change which could influence the performance of simulation. The above results implied
that dynamic simulation and spatiotemporal analysis in the MSPAS model had relevance
to each other, rather than being two separate processes. From the result of the analysis
part, Hill districts had a higher possibility of farmland loss than others, and then farmland
area in these districts was over predicted in the simulation part. Scattered and small urban
areas had a lower expansion speed, which was overestimated by the Markov transition
probability of the whole area in the simulation part. The analysis part can provide references
for a better simulation in the MSPAS model.

Table 6. Producer’s accuracy (PA) and User’s accuracy (UA) of farmland simulated by the CA-Markov
model with the adaptive land suitability rule.

Districts (%) PA UA Districts PA UA

Morang 87.91 97.50 Dhanusa 85.19 99.44

Kathmandu 86.82 78.63 Rupandehi 86.71 99.44

Kaski 89.44 78.57 Surkhet 89.60 79.56

Kailali 90.64 91.95
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Figure 10. Land cover data of 2019 and the prediction of the CA-Markov simulation for 2019. The
results of Kathmandu, Kailali, Surkhet, Kaski and Morang are shown here.



Remote Sens. 2022, 14, 6295 18 of 25

5. Discussion
5.1. Performance and Theoretical Significance of the MSPAS Model

Taking Nepal as a case study, the research proposed a MSPAS model to explore the
spatiotemporal pattern of LCC based on multi-scale analysis criteria and simulating the
dynamic process. In the analysis part, the result showed that the LCC pattern had consis-
tency and characteristics between different scales. Urban area expanded while farmland
decreased in both the nation and seven interest districts, and conversion from farmland
to urban or forest areas accounted for a large proportion of LCC. There were also internal
characteristics at a single scale. The interest districts were divided into the Terai districts,
Hill districts and Kathmandu, which had large differences in spatiotemporal pattern and
driving factors. Dominant transition, size, fragmentation degree and distribution of the
changed area also varied in these districts. Urban expansion at the expense of farmland was
relatively intense in Kathmandu [50] and the Terai districts, while farmland abandonment
was prominent in the Hill districts [51].

In multi-scale analysis, contribution and correlation of LCC or population in PN, DP,
RN and CN were explored quantitatively. The result showed that multi-scale contribution
can measure the significance of components, first at the small scale to the second, large
scale for specific LCC dynamic processes, such as a district to its corresponding province
or a province to the whole country. Surkhet was crucial to its province in farmland to
forest from DP, and Bagmati contributed the most to the whole country in farmland to
forest or urban areas from PN, which should be taken seriously in farmland protection
and food security. With a large proportion of forest to farmland in PN, Province No.1
needed to keep the balance between ecological protection and agricultural development.
In addition, the factor of population was related to LCC, especially for urban expansion.
Seven populous interest districts played a greater role in urban change than farmland or
forest change from CN. The correlation can quantify the relationship between different
land change types or population at multiple scales and deeply imply the rule that LCC is
influenced by driving forces. For instance, correlations between contributions of forest to
farmland and farmland to forest were all higher than 0.9 in RN, DP and PN, which means
that mutual conversion between farmland and forest reached a balance between different
scales. There is a possibility that the two variations were both determined by the same
driving force, such us population and inner migration, and the LCC types influenced by
human activity were likely to have close correlation with each other. Population was more
relevant with farmland to urban areas than other LCCs because of its strong driving force
and sensitivity to urban expansion.

There existed diversities in multi-scale patterns. Most provinces of Nepal were across
two or three ecological regions homogeneously with a relatively small disparity in ecologi-
cal environment. However, seven interest districts had a large disparity in physical and
socio-economic driving factors. For instance, Kathmandu was dominant in urban expan-
sion, and farmland to forest was particularly severe in Surkhet. Multi-scale correlations
were affected by the inner disparities, which could explain that correlation between LCC
and population was mostly higher in PN than DP. Different countries had diverse character-
istics of administrative and regional divisions, which also influenced the multi-scale LCC
pattern and calculation of contribution or correlation. Most provinces in Nepal contained
two or three regions, while in other countries each province can be covered by only one
ecological or geographic region, such as plain or mountain. LCC patterns of provinces or
districts in the different regions of mountain, hill, plain and other categories had specific
characteristics. Mountainous area was prone to farmland loss and flat area corresponded
to urban expansion. Classifying the provinces or districts based on regional division and
studying their patterns in a specific country were worth exploring, such as the classification
of the Terai districts, Hill districts and Kathmandu in the research.

There were also consistencies and similarities across all scales of PN, DP, RN and
CN. For instance, farmland to forest and forest to farmland had a high correlation in
different multi-scale situations, and farmland to urban area was more relevant to population
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than other land changes. This meant that land changes were not isolated processes with
connection to each other across multiple scales. The patterns of the seven interest districts
in various ecological regions were consistent with the RN result. The combined interest
districts also played a significant role in the whole country with certain representativeness.
By exploring multi-scale patterns, a LCC at a lower scale can be utilized to deduce the
situation of one at a larger scale. The relationship between different land changes or
population can also be analyzed quantitatively for multi-level land management.

In the simulation part, the adaptive land suitability rule was defined using a CA-
Markov model due to the diversities of driving factors in different land covers and areas.
The result tested the performance of the simulation method with certain effectiveness,
which also showed that the simulation part had relevance to the spatiotemporal analysis
part in the MSPAS model. The spatial effect of local difference and irregular change
explored from the analysis part was consistent with the result of the simulation part, such
as farmland loss in the Hill districts and slower expansion in scattered small urban areas.
Spatiotemporal analysis focused on the change that has occurred, and dynamic simulation
was designed to predict the change in the future. How to add the knowledge from LCC
pattern analysis to the dynamic method for a better simulation is one of the future research
goals for this study.

5.2. Application of the MSPAS Model for SDGs

As a member committed to SDGs, Nepal took an early lead in launching the na-
tional SDG road map. In Nepal’s progress assessment report of SDGs from 2016 to 2019,
the progress of SDG 2 and SDG 11 remained slow and needs to be highly valued [52].
Development of SDGs and related limitations can be explored in Nepal with good represen-
tativeness. National Urban Development Strategy in 2017 proposed to balance regional and
national urban systems. The Land Use Act of Nepal in 2019 also emphasized to promote
the development of land management at multi-level political and administrative units, i.e.,
federal, provincial and local levels, which were consistent with multi-scale analysis of the
spatiotemporal pattern in this study. The MSPAS model can provide scientific references for
multi-level administration and land management in different countries to promote sustain-
able development of urbanization and agriculture. Policies, planning, relevent targets and
indicators were combined with the multi-scale and multi-temporal analysis result by the
MSPAS model, which explored the development and lessons for SDGs from the perspective
of land area, land change and the impact of driving factors on land suitability.

5.2.1. The MSPAS Model for SDG 11 in Urban Expansion at the Expense of Farmland

SDG 11 focuses on sustainable urbanization and inclusive cities. Urban expansion of
Nepal increased rapidly and contributed to 33% of national GDP [53]. According to the
2011 census, 17.1% of the Nepalese population lived in 58 designated urban areas, and
this number increased to 40% after the addition of 159 municipalities in 2014–2015 [53].
Based on the analysis result, the pace of urbanization in Nepal developed fast at the
expense of farmland loss. Existing research suggested that this change was widespread
over the past few decades [35]. The trend lasted into the years from 2016 to 2019 with
urban area almost doubling and expanding at both national and district scales in this
study. As shown in Figure 11, there was a negative correlation between the change of
urban and farmland, which implied that the increase of urban area was closely related
to the loss of farmland. It is necessary to make a trade-off between urban expansion and
the protection of farmland, corresponding to the balance between developing an urban
economy in SDG 11 and ensuring food production in SDG 2. Indicators of Target 11.1 for
inclusive urbanization and affordable housing achieved a better score than expected, while
Target 11.6 for the reduction of adverse environmental impact obtained worse results [52].
Overall, urban development in Nepal achieved positive results in terms of quantity, but
was not stable with some problems such as unplanned urban sprawl, lack of management
and environmental pollution.
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Figure 11. Correlation analysis between the change of urban area and farmland. The observations
are obtained from the seven interest districts of the study.

Various kinds of driving factors can influence the speed and spatial distribution of
the above expansion, including population, transport, topography and previous degree
of urbanization [54]. The study found that population was closely related to urban ex-
pansion [55]. Some populous districts had large areas converted from farmland to urban
area, such as Kathmandu and the Terai districts. As the hub of urbanization with a large
population and growth speed shown in Table 7, Kathmandu [56] had a compact and intense
expansion around the previous urban centers [57]. Province No.1 occupied the highest
percentage of national agricultural and forest GDP, and its populous district of Morang
also had the largest area of farmland in all seven districts. However, the problem of urban
encroachment on farmland was also obvious in these agricultural areas from the analysis
result of the MSPAS model. On the contrary, urban expansion was relatively slight in the
Hill districts with a small population and low growth. Dense population and frequent
human activities can provide strong driving forces for the interaction between urban, farm-
land and forest areas. Secondly, convenient transport was [58] relevant to the driving force
of neighborhoods, such as access to market centers or infrastructure, and flat topography
was suitable for urban expansion. Urban sprawl [33] in the Terai districts mostly presented
linear distribution along the road or small-scale fragments widely distributed in the flat
areas, while the expansion in the Hill districts was centralized in a small area [59] with
steep topography. Transport was prioritized as a major bottleneck for the development
of Nepal in SDG 9, and SDG 11 also sought to build safe and sustainable urban transport
systems. Nepal’s Strategic Road Network expanded the roads to 6979 km in 2017, which
could increase the connection between isolated districts and the rest of the area, spur farm
production by convenient transport and improve living conditions of poor households in
the remote areas.
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Table 7. Population number of the seven districts in 2011 and 2021 from the census of Nepal. National
GDP represents the proportion of agriculture and forestry GDP in the province to that of Nepal, and
provincial GDP means the proportion of agriculture and forestry GDP to the province’s total GDP.

Study District
Population Growth

in 10 Years
Province

GDP of Agriculture and Forestry (%)

2011 2021 Nation Province

Morang 965,370 1,147,186 181,816 Province No.1 21.53 36.37

Dhanusa 754,777 873,274 118,497 Madhesh 19.00 37.90

Kathmandu 1,744,240 2,017,532 273,292 Bagmati 17.09 12.96

Kaski 492,098 599,504 107,406 Gandaki 9.95 29.91

Rupandehi 880,196 1,118,975 238,779 Lumbini 17.31 30.18

Surkhet 350,804 417,776 66,972 Karnali 5.39 32.85

Kailali 775,709 911,155 135,446 Sudurpashchim 9.73 37.98

5.2.2. The MSPAS Model for SDG 2 in Agriculture and Forestry

SDG 2 aims to develop sustainable agriculture, double agricultural productivity and
achieve food security. For SDG 2, ensuring the area of cultivated land is a crucial task.
In Nepal, about two thirds of the national population were engaged in agriculture, and
farmland accounted for 24% of the whole area in 2019, contributing to 26% of GDP [60]. This
study has found that farmland area had a decline of 3% from 2016 to 2019. Although the
steady loss was related to urban expansion, farmland abandonment also led to the decrease
of arable land [61]. The phenomenon was particularly significant and widespread in the
Hill districts [36], which exhibited scattered small-scale patches of the forest and hill areas.
Different driving factors affected the change of farmland and forest [62]. From Table 7,
Gandaki and Karnali had low percentages of national GDP with great likelihood of a poor
agricultural condition. Their corresponding interest districts of Kaski and Surkhet had a
smaller area and size of farmland, but suffered more intense farmland abandonment than
others. In mountainous areas with steep terrain [63], poor transport conditions and sparse
population, farmlands are fragmented and far away from water resources or markets, which
means it is hard to maintain the normal agriculture activities and obtain high production.
Additionally, high altitude also leads to complex topography, unsuitable climate and a
short growing season with many restrictions on agriculture. Therefore, these farmlands
have a high possibility of abandonment.

Some abandoned farmland turned into forest or grassland and promoted forest growth
indirectly. The increase of forest also benefited greatly from the community level forest
management system and practice [64,65], which promoted a sustainable terrestrial ecosys-
tem and obtained encouraging progress for SDG 15. Nepal has built a network of protected
areas and it consisted of 12 national parks, 1 wildlife reserve, 1 hunting reserve, 6 conserva-
tion areas and 13 buffer zones, covering 23.39% of the whole country. ICIMOD and other
institutions also made contributions to the forest protection.

Some acts were developed by the Nepalese government to support agriculture into
a sustainable high growth development. National Land Use Policy in 2015 gave priority
to the protection of farmland by commercial farming and land consolidation. Then the
Land Use Act was endorsed in 2019 to regulate the management through land classification
based on topography and suitability, which attached great significance to the farmland.
However, most measures focused on land use management nationally and neglected
differences in a local level, such as geographical condition and population [66]. The
policy of land management should strengthen the interaction between different scales,
corresponding to the analysis of multi-scale spatiotemporal patterns in the study. The local
administration needs more capacity to develop land use plans with an active participation
of local people, communities and households. For food security, the target of per capita
food grain production has been achieved in SDG 2, but there still exists urgent problems
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for improvement. Target 2.1 for global food security developed slightly, and 7.8% of the
population suffered food insecurity. Target 2.4 for agricultural production and productivity
was also not encouraging [52].

5.2.3. The MSPAS Model for Migration and Natural Disasters

Moreover, urban expansion and farmland abandonment are not two completely iso-
lated processes which have interactions with each other by effects such as inner rural–urban
or mountain–plain migration. There is a steady trend that people migrate from mountain-
ous areas to plain areas for agriculture activities, or move from rural areas to urban areas.
The census in 2011 revealed that there were 1.5 million internal migrations in Nepal, 61%
of which immigrated to the Terai region [67]. Notably, people from rural areas accounted
for 77% of urban migrations [68]. Urban areas have better education opportunities, living
conditions and services than rural areas. Many young people and hill farmers become
inner migrants to diversify their sources of income. They may move to a new place with
better agricultural conditions and continue to farm, or give up and choose another job in
an urban area. The original farmland gradually turns into forest. This can explain the high
correlation of mutual conversion between farmland and forest, which is also consistent
with the phenomenon that area from farmland to forest was always more than the one from
forest to farmland in Figure 6. Natural disasters such as earthquake [69], flood [70] and
landslide [71] bring dramatic damage to the agriculture and urban development. With high
rainfall, steep terrain and the possibility of active earthquake, Nepal is vulnerable to natural
disasters. The earthquake of 2015 broke down the buildings, roads and infrastructure, and
affected agricultural activities for over a year [72]. Aiming at the problem, Target 2.4 of SDG
2 is devoted to building a sustainable food production system to improve the adaptation to
disasters, and Target 11.5 of SDG 11 focuses on the reduction of loss caused by disaster.

6. Conclusions

The study proposed a MSPAS model to analyze the multi-scale spatiotemporal patterns
of LCC and simulate the dynamic process by the adaptive land suitability rule with driving
factors. The model took Nepal as a case study and focused on LCC of four specific land
covers from 2016 to 2019, i.e., farmland, urban, forest and grassland. Contributions of DP,
PN, RN and CN were calculated, and correlations between different LCCs or population
were quantified. The results showed that urban area nearly doubled in Nepal, especially in
Kathmandu and the Terai districts, while farmland had a steady loss, and the area decreased
by 3% in these years. By population information from the census, the most populous district
in each province was chosen as an interest district. As the hub of urbanization, Kathmandu
expanded its urban area to the nearby farmland. Urban encroachment on farmland mostly
occurred along the roads in the Terai districts. Farmland abandonment was prominent and
intense in the Hill districts with steep topography and sparse population, most of which
presented scattered small-scale patches widely distributed in the hills and forests. The
performance of the MSPAS model showed that there were characteristics and consistencies
at different scales, and population was closely related to the LCC of urban expansion. The
impacts of physical and socio-economic driving factors on LCC were also analyzed. The
simulation result of the MSPAS model was consistent with the spatiotemporal analysis
result, which means that the LCC pattern from the analysis part can be utilized for a
better simulation. Finally, the model was applied to SDGs with political factors, which can
provide references for sustainable development of urban and agricultural areas in a specific
country. Future study will collect different kinds of data and driving factors to analyze
the spatiotemporal process. Exploring criteria to further quantify the impacts of various
factors is worth studying, which can utilize the quantitative and spatial correlation between
driving factors and LCC. The multi-scale situations can be expanded to more patterns,
such as province to region and district to region. Finally, how to utilize the knowledge
from the analysis part to better simulate the dynamic process is also a significant point of
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study. The application of the MSPAS model for SDGs can also be systematized and linked
to quantitative index and targets of SDGs [73].
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