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Abstract: Increases in temperature have potentially influenced crop growth and reduced agricultural
yields. Commonly, more fertilizers have been applied to improve grain yield. There is a need to
optimize fertilizers, to reduce environmental pollution, and to increase agricultural production. Maize
is the main crop in China, and its ample production is of vital importance to guarantee regional food
security. In this study, the RGB and multispectral images, and maize grain yields were collected
from an unmanned aerial vehicle (UAV) platform. To confirm the optimal indices, RGB-based
vegetation indices and textural indices, multispectral-based vegetation indices, and crop height were
independently applied to build linear regression relationships with maize grain yields. A stepwise
regression model (SRM) was applied to select optimal indices. Three machine learning methods
including: backpropagation network (BP), random forest (RF), and support vector machine (SVM)
and the SRM were separately applied for predicting maize grain yields based on optimal indices.
RF achieved the highest accuracy with a coefficient of determination of 0.963 and root mean square
error of 0.489 (g/hundred-grain weight). Through the grey relation analysis, the N was the most
correlated indicator, and the optimal ratio of fertilizers N/P/K was 2:1:1. Our research highlighted
the integration of spectral, textural indices, and maize height for predicting maize grain yields.

Keywords: maize grain yield; unmanned aerial vehicle (UAV); vegetation indices and textural indices;
machine learning

1. Introduction

Climate change has significantly influenced the growth of crops, thus reducing agricul-
tural yields and threatening food security [1–3]. Maize is one of the three staple foods, and
timely prediction of maize grain yield is essential for ensuring food security [4]. Farmers
usually apply more fertilizers to improve agricultural production per unit of arable land,
and therefore, reduce the negative impacts from climate change. Currently, the main chal-
lenge in agriculture is to feed the present and future generations by increasing agricultural
production while caring for the valuable environment [5]. Excessive application of fertiliz-
ers does not improve agricultural production, and it does increase environmental risks and
reduce the biodiversity of agricultural environments [6]. Therefore, timely prediction of
maize grain yields is essential for selecting new cultivars for breeding, for optimizing fertil-
izer applications, and further, for guaranteeing regional food security by timely allocating
food [7]. Optimizing the proper amounts of fertilizers and adjusting in-season fertilization
would help to achieve sustainable agriculture.
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So far, the common approaches for yield predictions are destructive sampling, the
use of a deterministic crop simulation model, and the use of empirical relationships built
using remote sensing platforms [8]. Destructive sampling is the most precise method
for yield prediction, but it is labor intense since it is difficult to perform at a large scale
within a limited time period. A crop simulation model can simulate the soil–plant–climate–
agronomy interactions and can help to quantify factors impacting crop production with
accurate climatic forecasts [9]. A simulation model also needs detailed site-specific input
data such as soil property, cultivar, and daily weather information, which are very difficult
to collect [10]. Alternatively, empirical methods based on satellite-based remote sensing
(SRS) have achieved a good level of yield prediction. However, SRS is often limited by
weather conditions, coarse spatial resolutions, and its limited applicability beyond the year
in which the empirical relationship is developed [11,12]. Images of important phenological
stages are hard to acquire as the limitation of traditional satellite remote sensing such as
long-time revisit and coarse spatial resolution [13]. Fortunately, with the development
of light sensors and wireless communication technology, unmanned aerial vehicle (UAV)
platforms have attracted great attention due to their advantages of light weight, ease of
deployment, and cloudless, and therefore, they have become alternatives to SRS [14–17].

UAVs mounted with multi-sensors can be applied to acquire images covering the
entire growth stages of maize in a short time period. The high-throughput data can be used
to analyze the impacts of climate and management practices on crop yield.

Vegetation indices (VIs) are commonly applied for monitoring growth conditions and
predicting agricultural yields. For example, the normalized difference vegetation index
(NDVI), ratio of vegetation index (RVI), and difference index (DI) have been commonly
applied for predicting rice grain yields [18]. Varieties of VIs calculated from both RGB
images and multispectral images have been evaluated to confirm the optimal applications
of N [19]. The currently applied VIs have commonly been influenced by the problem of
saturation, and thus, they have failed to detect crop sensitivity to dynamic environmental
and climatic changes. Especially, the most commonly applied VIs have low accuracies
in monitoring growth conditions during the reproductive stages [20]. In addition, the
potentials of textural indices (TIs) such as contrast, correlation, energy, and homogeneity
for predicting maize grain yield have been less reported [21,22]. Therefore, there is a need
to investigate the potential ability of VIs, TIs, and crop phenotype for timely and precise
maize yield predictions.

Machine learning methods have commonly been applied in remote sensing domains
for image classification and regression. The SPAD values of maize have been precisely
monitored using machine learning methods, namely, support vector machine (SVM) and
random forest (RF) [23]. The MRBVI has been proposed to estimate SPAD values, and the
index with other commonly applied indices has performed well for predicting maize grain
yield using backpropagation neural network model (BP), SVM, RF, and extreme learning
machine (ELM) [7]. Various machine learning methods including ridge regression (RR),
SVM, RF, Gaussian process (GP), and K-neighbor network (K-NN) have been applied for
predicting the leaf area index, as well as the fresh weight and dry weight of maize, and the
results have shown relatively high accuracy [24]. Multi-source environmental data applied
with machine learning methods (i.e., SVM and RF) have been adopted to predict wheat
yield in China, and the results indicated that the RF achieved the highest accuracy [25].

To date, only a few studies have explored the integration of multi-indicators (i.e., RGB-
based VI, multispectral-based indices, RGB-based textural indices, and crop height) for
predicting maize grain yields. In this paper, RGB-based VIs, RGB-based TIs, multispectral-
based VIs, and maize height were innovatively applied to predict maize grain yield using
traditional regression method and machine learning approaches. The main objectives were:
(1) to evaluate the potential ability of VIs, TIs, and crop phenotype (maize height) for
predicting maize grain yields; (2) to confirm optimal indices for predicting maize grain
yield prediction; (3) to predict maize grain yields based on the integrated indices using
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machine learning methods; (4) to confirm the most optimal amounts and ratios of N, P, and
K for achieving sustainable agriculture.

2. Materials and Methods
2.1. Study Area

The data collection was conducted in Nanpi Eco-Agricultural Experimental Station
(NEES) (38.00◦N, 116.40◦E) in 2019 (Figure 1). The maize cultivar (Zhengdan 958) was
planted on 22 June 2019, and different amounts N, P, and K were applied on 20 plots to
optimize the usage of different varieties of fertilizers. One-third of the fertilizers were
treated ten days after emergence, another one-third of the fertilizers were treated at booting
date, and the remaining fertilizers were treated at heading date (Table A1).
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Figure 1. The geo-location of the Nanpi Eco-Agricultural Experimental Station (NEES) and the
detailed setting of 20 plots with different treatments of fertilizers. (a) the geographical location of
experimental station, (b) the study area from UAV view, (c) the 20 plots for image clipping.

In this study, a DJI Phantom 4 Pro V2.0 was applied for collecting RGB images, and a
Mini MCA 6 Camera (MMC) mounted on a DJI M600 Pro UAV platform was conducted to
collect multispectral images (Figure 2). The detailed information of the cameras and the
deployment of data collection were introduced in previous studies [7,14,26].
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Figure 2. The UAV and cameras applied for data collection: (a) DJI M600 Pro UAV; (b) Mini MCA 6
Camera; (c) DJI Phantom 4 Pro V2.0; (d) ground control points.

2.2. Data Collection and Preprocessing

During the entire growth stages of maize, the images were collected on cloudless
weather conditions between 11:30 and 12:30 (local time). The maize was seeded on
22 June 2019 and harvested on 5 October 2019; 173 and 278 were the corresponding day of
year (DOY), respectively. For the UAV image collection, data collection of the DJI Phantom
4 Pro V2.0 were applied on 188, 195, 203, 209, 230, 237, 244, 250, 257, 264, and 273 DOY and
data collection of the MMC were applied on 230, 237, 250, 258, 264, and 273 DOY. To ensure
high quality of image acquisition, the forward and side overlaps were set as 85 and 80%
for the RGB images acquisition, and 80 and 70% were set for the multispectral image
acquisition. Four ground control points (GCPs) were pre-set before the growing season,
and the precise locations were obtained using a real-time kinematic (RTK) S86T system
(Figure 2d) [23,27]. The single RGB images and multispectral images of each flight were
independently mosaicked and processed within Pix4D Mapper under a standard procedure
(Lausanne, Switzerland) [28,29]. The images were clipped within IDL (version 8.5) [30]. The
spatial resolution of RGB images and multispectral images were 1 and 5 cm, respectively.

Maize grain yields of 20 plots were measured using the format of hundred-grain
weight. To reduce the accidental errors of measurement, maize grain yields in each plot
were measured three times to avoid accidental errors, and marked as maize grain yield1,
maize grain yield2, and maize grain yield3 (Table A1). The final maize grain yield of each
plot was obtained as the average of maize grain yield1, maize grain yield2, and maize grain
yield3. Through long-time ground observations, it was confirmed that the tasseling dates
of most plots happened from 230 to 237 DOY.

2.3. Methods

The workflow was divided into parts: (1) calculating RGB-based VIs, RGB-based TIs,
multispectral-based VIs, and maize height; (2) selecting optimal indices and optimal stages
for predicitng maize grain yields; (3) predicting maize yield using intergrated optimal
indices and machine learning and statictical approaches, i.e., BP, SVM, RF, and stepwise
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regression model (SRM); (4) optimizating the amounts and varieties of fertilizers using a
grey relation analysis. The detailed information is shown in Figure 3.
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Figure 3. The workflow for predicting maize grain yield and optimizing fertilizers.

2.3.1. The Extractions of Spectral Indices/Textural Indices and Maize Height

The RGB images were independently applied to extract the RGB-based VIs, and the
first step was to extract the pure pixels only containing maize. Commonly, the D-values
between the excess green vegetation index (EXG) and the excess red vegetation index (EXR)
have been applied to differentiate maize and soil [31]. The positive D-values were assigned
as maize, and the remainder were assigned as soil.

EXG = 2×G− R− B (1)

EXR = 1.4× R−G (2)

where R, G, and B denote the original red, green, and blue bands, respectively, of the RGB
images. Then, the commonly applied RGB-based VIs were calculated based on RGB images
only containing maize (Table 1).

Table 1. The commonly applied RGB-based vegetation indices.

Indices Formulations Reference

CIVE 0.441 × R − 0.881 × G + 0.385 × B + 18.78 [32]
RGRI R/G [33]
GLI (2 × G − R − B)/(2 × G + R + B) [34]

GRAY 0.2898 × R + 0.5870 × G + 0.1140 × B [35]
VARI (G − R)/(G + R − B) [36]
RGDI (R − G)/(R + G) [37]
IKAW (R − B)/(R + B) [37]

NGRDI (G − R)/(G + R) [38]
NGBDI (G − B)/(G + B) [37]
GBDI G − B [37]
GRRI G/R [39]
GCC R/(G + B + R) [40]



Remote Sens. 2022, 14, 6290 6 of 19

Table 1. Cont.

Indices Formulations Reference

MRBVI (R × R − B × B)/(R× R + B× B) [7]

COM
0.25 × (2 × G − R − B) + 0.3 × ((2 × G − R
− B) − 1.4 × R − G) + 0.33 × (0.441× R −

0.881 × G + 0.385 × B + 18.787)
[41]

Similarly, commonly applied multispectral-based VIs were extracted (Table 2). The
reflectance of soil was quite different from the reflectance of maize in the red band (720 nm)
and the near-infrared band (800 nm) [42–44]. Then, the pixels that only contained maize
and the pixels that only contained soil were sampled, and the reflectance of each was
obtained using IDL. It was found that the reflectance lower than 0.04 in the red band and
higher than 0.4 in the near-infrared band were defined as maize, and the remaining pixels
were defined as soil. Then, various multispectral-based VIs were calculated based on pixels
that only contained maize.

Table 2. The commonly applied multispectral-based vegetation indices. B, G, R, edge, and n800 each
represented blue, green, red, red edge, and near infrared bands of the Mini MCA 6 Camera.

Name Formulations Reference

MCARI1 ((n800 − edge) − 0.2 × (n800 − R)) × n800/edge [45]
MEVI 2.5 × (n800 − edge)/(n800 + 6 × edge − 7.5 × G + 1) [46]
NRI R/(edge + n800 + R) [47]

NREI edge/(edge + n800 + G) [46]
NGI G/(edge + n800 + G) [48]

GRDVI (n800 − G)/
√
(n800 + G) [46]

GOSAVI (1 + 0.16) × (n800 − G)/(n800 + G + 0.16) [49]
NDVI (n800 − R)/(n800 + R) [50]
SAVI (n800 − R) × (1 + 0.5)/(n800 + R + 0.5) [51]

OSAVI (n800 − R × (1 + 0.16))/(n800 + R + 0.16) [49]
IPVI (n800)/(n800 + R) [52]

RDVI (n800−R)√
(n800+ R)

[53]

TNDVI
√
(n800− R)/((n800 + R) + 0.5) [54]

VIOPT (1.45 × (n800 × n800 + 1))/(R + 0.45) [55]
MTCI (n800 − edge)/(edge − R) [56]
RVI n800/R [55]

NDVI*RVI ((n800 − R)/(n800 + R)) × (n800/R) [57]
GSAVI 1.5 × (n800 − G)/(n800 + G+0.5) [58]
GRVI n800/G [59]
GDVI n800 − G [60]

GWDRVI (0.12 × n800 − G)/(0.12 × n800 + G) [46]

The commonly applied TIs such as contrast, correlation, energy, and homogeneity can
be extracted from the gray level co-occurrence matrix (GLCM) [61,62], and the red band
has been reported to contain slightly more information than the green and blue bands.
Therefore, we only applied the red band for extracting the textural information [63]. Since
the spatial resolutions of RGB images were higher than multispectral images, the GLCM
was calculated using the red bands from RGB images [44,63]. The digital height model
(DHM) was obtained using D-values of digital surface model (DSM), to be more specific,
the maize height was obtained by subtracting DSM at later growth stages and DSM at
earlier stage of growth stage. Thus, the average values of the DHM in each plot were
obtained for different growth stages.
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2.3.2. The Selection of Indices and Optimal Growth Stages

The linear regression model (LRM) was separately applied between multi-indicators,
namely RGB-based VIs, multispectral-based VIs, RGB-based textural indices, DHM, and
maize yields. The indices with higher values of coefficients of determination (R2) were
confirmed using the stepwise regression model (SRM). The SRM was applied to select the
suitable indices for maize yield prediction with high R2 (p-values significant). Then, the
selected indices of all categories were integrated for predicting maize yields. The main
purpose of the LRM was to confirm the optimal indices. Evaluating the performance of
different indices was not easy, since there was only a limited number of datasets, and to
fairly evaluate these indices the selected datasets should be the same for different indices
and growth stages. Therefore, we applied all datasets for indice selection, and all sample
numbers were used.

2.3.3. The Maize Grain Yield Prediction Using Machine Learning Approaches and Stepwise
Regression Model

A backpropagation network (BP) is a typical artificial neural network (ANN) that
builds maps between independent and dependent variables iteratively. It has been widely
applied to solve problems such as pattern recognition and classification, nonlinear feature
extraction, prediction, and function approximation [64]. During the training phase, the BP
adjusted the weights while mapping the model output and actual output by minimizing
the errors [65,66]. A support vector machine (SVM) that contains linear, polynomial,
splines, and radial basis function networks can be applied to handle nearly all problems
of regression [67]. Random forest (RF) can automatically measure the contribution of
independent variables and adjust the tree structure of the model. A RF classifier can build
massive and multi-layers of trees for simulating (regression and classification), and it can
also test the relatively importance of independent variable.

In this study, the selected indices were integrated for predicting maize grain yields
using advanced machine learning methods and the traditional stepwise regression model
(SRM) method. To be more specific, the optimal indices were treated as the independent
variables and the corresponding maize grain yields of each plot were treated as the depen-
dent variables. In order to fully use the dataset, a 10-fold cross-validation was applied.
The whole dataset was divided into 10 parts, i.e., 9 parts for training the model and 1 part
for model validating. For the BP, the parameters were set as: maximum training times,
10,000; minimum error of training target, 1e-6; learning rate, 0.001; and maximum number
of confirmation failures, 1000. For the RF, the number of trees was set as default 500, the
bootstrap was set as true, and the number of variables used for the binary tree in the node
was set as max of floor (D/3). For the SVM, the kernel-type was set as linear, u’*v; c cost
and g gamma were optimized using the grid search method (x and y each ranged from −5
to 5 with an interval of 0.1); the SVM type was set as epsilon-SVR; and the p epsilon was
set as 0.01 [68,69]. For the SRM, the multiple linear regression method was applied.

The commonly applied indicators R2 and root mean square error (RMSE) were adopted
to evaluate model performance [23]. The built-in model with the lowest RMSE and highest
R2 was retained for further maize grain yield mapping. For different sources of data,
the RGB images were resized to the same resolution of the multispectral images. The
coefficients in the well-built models were each applied to predict the maize grain yield
using the selected indices at optimal growth stages.

2.3.4. The Confirmation of Optimal Amounts and Combinations of Fertilizers

The different amounts and combinations of N, P, and K and maize grain yields were
applied for further analysis to confirm the optimal amounts and combinations of fertilizers.
A grey relation analysis (GRA) is commonly conducted in agriculture for assessing the
relationships of correlated variables [70,71]. In particular, a GRA is an excellent method
for calculating the grey relational degree and determining the contribution measure of
the main behavior of a system or the influence degree between system factors. A GRA
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was applied to assess the relative importance of fertilizers to maize grain yields. The
independent variables were the amounts of fertilizers of 20 plots in sequences, and the
dependent variables were the corresponding maize grain yields in sequences. The values of
the GRCsfor the fertilizer were compared, and the most important fertilizers were obtained.
The ratios of fertilizers were applied and the suggested usages of fertilizers were confirmed.

3. Results
3.1. The Linear Regression Analysis between Indices and Maize Grain Yields

The RGB images and multispectral images acquired at different growth stages of maize
were processed under a standard procedure using the approach introduced in the Methods
section (Figures A1 and A2). To better show the difference between different growth stages,
the images were all shown in the RGB color system for comparison. The tasseling dates of
maize in all plots mostly happened from 230 to 237 DOY.

The RGB-based VIs of 20 plots during the entire growth stages of maize were linear
regressed with maize grain yields. The RGB-based VI with regression equations, R2 and
p-values are shown in Table 3. It can be obtained that R2 ranged from 0.748 to 0.809,
indicating that RGB-based VIs were closely correlated with maize grain yields. It can be
deduced that the RGB-based VIs may have great potential for predicting maize grain yields.

Table 3. The linear regression analysis of RGB-based VIs and maize grain yields during the entire
growth stages.

Indices Regression Equations R2 p-Values

CIVE Y = 0.036X + 34.025 0.769 p = 0.108
GRAY Y = 0.001X + 32.416 0.755 p = 0.130

NGBDI Y = 26.132X + 44.874 0.796 p = 0.075
GBDI Y = −0.046X + 39.382 0.748 p = 0.141
GCC Y = 15.204X + 23.992 0.764 p = 0.117

IKAW Y = −37.040X + 33.304 0.807 p = 0.063
MRBVI Y = −18.541X + 33.241 0.809 p = 0.059

The multispectral-based VIs during the entire growth stages was also linear regressed
with maize grain yields. The multispectral-based VIs with regression equations, R2, and
p-values are shown in Table 4. It can be obtained that the R2 of multispectral-based
VIs ranged from 0.780 to 0.826, and these values were slightly higher than those of
RGB-based VIs.

Table 4. The linear regression analysis of multispectral-based VIs and maize grain yields using data
of 20 plots during the entire growth stages.

Indices Regression Equations R2 p-Values

NDVI Y = 72.072X − 42.252 0.826 p < 0.001
SAVI Y = 39.965X − 29.690 0.781 p < 0.001

OSAVI Y = 44.018X − 38.885 0.798 p < 0.001
IPVI Y = 144.143X − 124.006 0.822 p < 0.001
GRVI Y = 40.699X − 29.189 0.781 p < 0.005
GDVI Y = 170.356X − 198.655 0.824 p < 0.001

VIPLOT Y = 9.475X − 62.144 0.786 p < 0.050
NDVI*RVI Y = 27.987X + 4.711 0.780 p < 0.050

The TIs including contrast, correlation, energy, homogeneity and the DHM were inde-
pendently extracted from the RGB images, and a linear regression analysis was conducted
between these indices and maize grain yields. The linear regression results using textural
indices and DHM are shown in Table 5. It can be observed that the R2 values ranged from
0.779 to 0.901, and the R2 values were larger than the values of the multispectral-based
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VIs, except for energy. Thus, the textural indices were closely correlated with maize grain
yields. The DHM also had a close relationship with the yield, of which the R2 was 0.857.

Table 5. The linear regression analysis of textural indices, DHM, and maize grain yields during the
entire growth stages.

Indices Regression Equations R2 p-Values

Contrast Y = −12.589X + 32.348 0.833 p < 0.050
Correlation Y = 3.682X + 33.892 0.901 p < 0.050

Energy Y = −6.335X + 33.495 0.779 p = 0.095
Homogeneity Y = 13.150X − 47.351 0.878 p < 0.050

DHM Y = −0.477X + 24.012 0.857 p < 0.050

3.2. The Selection of Optimal Growth Stage for Maize Grain Yield Prediction

The RGB-based VIs of 20 plots at each growth period were linearly regressed with
maize grain yields (Figure 4). It can be observed that the R2 using data collected from
230 to 273 DOY were commonly larger than those during the period from 188 to 209 DOY.
The data acquired on 250 DOY achieved the highest R2, of which the value was 0.71 for
NGBDI and GBDI. The data collected from 230 to 273 DOY were more correlated with
maize grain yields than the data collected from 188 to 209 DOY. The RGB-based VIs from
230 to 273 DOY were selected for maize grain yield prediction.
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The multispectral-based VIs of 20 plots at different growth periods were separately
linear regressed with maize grain yields (Figure 5). The data collected on 237 DOY were
more correlated with maize grain yields. The tasseling dates ranged from 230 to 237 DOY
for 20 plots, and the higher R2 values achieved from 230 DOY indicated that the accuracy of
yield prediction using data collected from tasseling date to maturity date was higher. The
multispectral-based VIs from 230 to 273 DOY were selected for further predicting maize
grain yields.
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3.3. The Maize Grain Yield Prediction of Maize Using Machine Learning Methods and Traditional
Regression Method

The selected RGB-based VIs, multispectral-based VIs, RGB-based textural indices, and
DHM at optimal growth stages were integrated to predict maize grain yields using three
machine learning methods, i.e., BP, SVM, RF, and a traditional regression method, i.e., SRM.
Each model was independently applied to build the relationships between these integrated
indices and maize grain yields. The comparison of measured and predicted maize grain
yields are shown in Figure 6.
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For the machine learning-based methods, the R2 values using BP, RF, and SVM were
0.939, 0.963, and 0.815, respectively. Similarly, the RMSE values using BP, RF, and SVM
were 0.496, 0.489, and 0.823 g/hundred-grain weight, respectively. The BP and RF both
performed better than SVM, with higher R2 values and lower RMSE values. For the results
using SRM, the R2 was 0.912, and the RMSE was 1.772 g/hundred-grain weight. Therefore,
the machine learning-based methods have greater potential for predicting maize grain
yield, and the RF achieved the highest accuracy. The optimized parameters of the machine
learning-based models were applied for mapping maize grain yields (pixel-based optimal
indices collected at optimal growth stages) (Figure 7).
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3.4. The Optimization of Combinations and Rations for Fertilizers

The grey relation coefficients (GRCs) between each type of fertilizer and yields calcu-
lated using the grey relation analysis (GRA) are shown in Figure 8. The GRC values were
35.707, 34.435, and 29.857% for the maize grain yield1, 36.417, 32.606, 30.975% for maize
grain yield2, and 35.926, 33.084, and 30.989% for maize grain yield3. The results show that
N is the dominating influencing factor for the growth of maize.
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The changes in N, K, and P fertilizers with the corresponding variations of maize grain
yields are shown in Figure 9. It can be clearly noted that the impacts of different ratios of
fertilizer to maize grain yields varied significantly. For N, the maize grain yields increased
with the addition of N, until the ratios increased between 2 and 3 (Figure 9a–c). The optimal
application ratio of N was 2. For P and K, the maize grain yields merely changed with
the adding of these two fertilizers. Most of the circumstances in subplots from Figure 9d
to Figure 9i showed decreased maize grain yields due to the increased usage of P and
K. The optimal application ratios for P and K was 1. It can be deduced that the optimal
combination ratio of N/P/K is 2:1:1.
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4. Discussion
4.1. Yield Prediction Using Multi-Source Data from a UAV Platform

In this study, the RGB images and multispectral images covering the entire growth
stages of maize were collected from a UAV platform. The selected RGB-based VIs, TIs, and
DHM from RGB images, and the multispectral-based VIs were integrated for predicting
maize grain yields. The R2 values of yield prediction only using RGB-based VIs ranged from
0.748 to 0.809 during the growing season. The RGB-based VIs were closely correlated with
maize grain yields. The results were consistent with previous studies, where RGB-based VIs
from RGB images were proven to have great potential for agricultural yield predictions [7].
The multispectral-based VIs performed slightly better than the RGB-based VIs. This was
also consistent with previous studies, where multispectral-based VIs were found to have
greater potential than RGB-based VIs in predicting agricultural yields [72–74]. Unlike the
satellite-based images, the UAV-based RGB and multispectral images were commonly at
the centimeter level, and were merely influenced by the mixed pixels. The high-resolution
images from a UAV can be applied to derive high-resolution textural indices. We found
the TIs with the DHM also improved the accuracy of maize grain yield prediction, with



Remote Sens. 2022, 14, 6290 13 of 19

R2 values ranging from 0.779 to 0.901. The TIs actually expressed the dynamic changes of
maize in a different way from spectral indices [75–77]. The DHM was actually the crop
phenotype, and it was found to be very useful for predicting crop yields [78–80].

The R2 values between maize grain yields and indices were totally different for differ-
ent growth stages. The higher R2 values occurred from 230 to 237 DOY; this stage (tasseling
date) was in accordance with previous studies, and was found to be closely correlated with
maize grain yields [81–83]. Therefore, tasseling date is an important phenology for yield
prediction, and the data collected during this period are important for assessing maize
grain yields. Meanwhile, tasseling date has been widely proven to be an important period
for management practices such as the application of fertilizers [84–87]. Therefore, it was
recommended to integrate RGB-based VIs, RGB-based TIs, multispectral-based VIs, and
DHM (maize height) acquired from tasseling date to maturity date for predicting maize
grain yields.

N was found to be the most important fertilizer to increase maize grain yields. This
founding was in accordance with previous studies where the application of N was corre-
lated with maize grain yields [88–90]. Increasing the ratios of P and K was also greatly
correlated with maize grain yields. Therefore, it was suggested that the optimal ratio of
N/P/K was 2:1:1. Excessive application of fertilizers to agricultural land can cause uneven
distribution of resources, and can reduce the potential application of fertilizers to other
fields where materials are needed [91–94]. In addition, excessive application of fertilizers
can cause serious land degradation, endangering the environmental and ecological system,
and lead to a reduction in agricultural yields. There is a need to reduce the potential usage
of P and K, since the added P and K will reduce agricultural yields and also destroy valuable
cultivated land. This is very important to meet the requirement of sustainable agriculture.

4.2. The Limitations

Multi-sources of UAV images were applied for predicting maize grain yields using
traditional regression and advanced machine learning approaches. The data quality was
strictly controlled, but there were uncertainties that still remained from the data source and
data processing. First, there was a mismatch between the geometric registration between
the RGB images (1 cm) and multispectral images (5 cm), even though the RGB images
were resampled to the same spatial resolution as the multispectral images. This would
influence the extraction of various VIs, and would further influence the maize grain yield
predictions. Second, the images covering the entire growth of maize were collected under
similar imaging conditions, but there were slight differences in the solar radiation, wind,
air pressure, and atmospheric effects. These differences in environmental conditions would
influence the image collection. In addition, the long working time of cameras and the
hot temperature would create inevitable noise, especially in summer [95,96]. Third, the
applied machine learning methods were commonly used methods; more advanced machine
learning and deep learning methods that would certainly achieve high accuracy in yield
predictions could be explored in future analysis [97–99]. Finally, the number of sampling
plots was limited in this study, which may cause an overfitting problem. A larger number
of plots for exploring different amounts and combinations of fertilizers on maize grain
yield could be conducted in future analysis. Machine learning-based approaches using
more datasets may realize more reasonable and convincing results.

5. Conclusions

In this study, the multi-indicators, namely RGB-based VIs, RGB-based TIs, multispectral-
based VIs, and maize height from UAV data were applied for predicting maize grain yields.
The RGB-based VIs and multispectral-based VIs were proven to be closely correlated with
maize grain yields. The innovation of integration of commonly applied VIs, Tis, and crop
height for maize grain yield prediction significantly improved the accuracy. The data
collected from tasseling date to maturity date were more correlated with the maize grain
yield than other phenological growth stages. The tasseling date is an important phenology
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of maize that would promote the accuracy of yield prediction of summer maize. The
multi-indicators were integrated to predict maize grain yields using traditional regression
and advanced machine learning approaches. The machine learning approaches were com-
monly better than the traditional regression method, and R gained the highest accuracy
(R2 = 0.963 and RMSE = 0.489 g/hundred-grain weight). It is recommended to adopt
multi-data (spectral, textural indices, and maize height) from tasseling date to maturity
date for predicting maize grain yields based on RF.
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Table A1. The application of fertilizers in 20 plots. The number after NPK represents the actual
multiple applications of fertilizers. The plots correspond to the plots shown in Figure 1. The 1, 2, and
3 each represent 0.7, 1.4, and 2.1 kg of the elements, respectively.

Plots Combinations Grain Yield 1 Grain Yield 2 Grain Yield 3

1 N1P1K2 28.82 29.24 29.15
2 N3P1K1 29.48 31.08 29.84
3 N3P3K1 31.4 31.6 29.8
4 N2 + wheat-straw 32.02 31.7 32.1
5 N1P1K1 27.61 27.56 27.4
6 N3P3K2 32.6 32.5 32.62
7 N3P2K1 32.98 33.36 33.1
8 N2 + Organic material 33.18 31.1 32.44
9 N1P2K1 28.11 29.31 29.12
10 N2P2K2 31 30.08 31.25
11 N4P3K1 32.18 32.38 32.21
12 N3+ wheat-straw 30.71 33.8 31.48
13 N1P3K1 29.02 29.88 29.2
14 N2P1K1 32.5 31.72 32.16
15 N4P2K1 32.6 31.94 31.6
16 N3 + Organic material 32.4 33.18 34.13
17 N2P3K1 32.74 33.24 33.34
18 N2P2K1 31.8 29.72 31
19 N4P1K1 30.86 30.52 31.02
20 N4P2K2 31.71 30.84 31.09
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