
Citation: Zhang, Y.; Nian, B.; Zhang,

Y.; Zhang, Y.; Ling, F. Lightweight

Multimechanism Deep Feature

Enhancement Network for Infrared

Small-Target Detection. Remote Sens.

2022, 14, 6278. https://doi.org/

10.3390/rs14246278

Academic Editor: Qi Wang

Received: 21 November 2022

Accepted: 8 December 2022

Published: 11 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Lightweight Multimechanism Deep Feature Enhancement
Network for Infrared Small-Target Detection
Yi Zhang 1,† , Bingkun Nian 2,† , Yan Zhang 1,*, Yu Zhang 1 and Feng Ling 1

1 National Key Laboratory of Science and Technology on Automatic Target Recognition, Collage of Electronic
Science and Technology, National University of Defense Technology, Changsha 410073, China

2 The 32nd Institute of China Electricity Science and Technology, Shanghai 210808, China
* Correspondence: atrthreefire@nudt.edu.cn
† These authors contributed equally to this work.

Abstract: Specific to the problem of infrared small-target detection in complex backgrounds, a
multimechanism deep feature enhancement network model (MDFENet) was proposed. A lightweight
multimechanism attention collaborative fusion module was proposed to efficiently fuse low-level
features and high-level features to solve the problem that small infrared targets are easy to annihilate
in the deep layer of the network. Based on the analysis of the background and target data, a
normalized loss function was proposed, which integrates the segmentation threshold selection
into the network and normalizes the probability of the network output to simulate a step function
and reflect relative differences. Aiming at the sparseness of infrared target features, we used the
subpixel convolution method to upsample the features to obtain high-resolution feature images while
expanding the size of the feature map. We conducted detailed comparison and ablation experiments,
comparing MDFENet with ALCNet, APGCNet, and other state-of-the-art networks to verify the
effectiveness and efficiency of the network. Results show that the MDFENet algorithm achieves the
optimal result in the balance of detection efficiency and lightweightedness on two datasets.

Keywords: small infrared target detection; lightweight; multimechanism attention collaborative
fusion module; normalized loss function

1. Introduction

Infrared small-target detection is a significant challenge faced in infrared image pro-
cessing. It is widely used in many fields such as precision guidance [1], early warning
systems [2], and maritime surveillance [3]. Compared with other imaging methods, infrared
imaging has the characteristics of long detection distance, all-weather application, strong
anti-interference ability, and clear images [4]. However, small infrared targets often have
fewer pixels, and the characteristics of shape, texture, and color are missing. Moreover, the
target is often submerged in complex backgrounds and greatly influenced by changes in
the surrounding environment. Therefore, separating infrared small targets from complex
background clutter is challenging and has attracted extensive research in recent years.

There are two main methods of infrared small-target detection: model-driven and
data-driven methods. Model-driven methods were developed in depth in the past decades,
and several types of systematic methods have been proposed. The main methods are based
on background suppression [5–8], human visual system [9–13], and optimization [14–16].
Background suppression-based methods consider the target to break the continuity of
the image [17], and use filtering and morphological methods to suppress the background
and separate the targets. Human visual system methods assume that there is a large local
contrast between the target and the background; therefore, areas with high local contrast
may be targets. Optimization-based methods adopt the concept of the matrix. That is,
the target analogy is a sparse matrix, and the background analogy is a low-rank matrix,
continuously optimizing the separation of low-rank and sparse matrices to achieve target
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detection. However, these methods focus on the intrinsic characteristics of the target, adopt
different assumptions, rely heavily on prior knowledge, and manually set functions. They
have difficulties in dealing with changes in the characteristics of real scenes. When a real
scene does not reach the detection conditions, the detection results will be poor. Despite the
continued development of new algorithms, there are still problems such as low detection
accuracy, high environmental impact, and poor robustness [18].

In contrast with model-driven methods, data-driven methods have not developed
rapidly due to the lack of datasets but have achieved better results than model-driven meth-
ods. In infrared small-target detection networks, researchers focus on introducing attention
mechanisms [17], combining model- and data-driven methods [1,19] and multiscale feature
fusion [20]. Other methods—asymmetric context modulation module (ACM), cascaded
channel and spatial attention module (CSAM), attention guided context block (AGCB),
and feature pyramid network(FPN)—have immensely contributed to the development
and prosperity of infrared small-target detection. Although data-driven infrared small-
target detection has been developed from different angles, most of the methods still use
general target detection algorithms without improving the loss and other modules of the
adjusted algorithm, ignoring the inherent physical characteristics of infrared small targets.
Moreover, small infrared targets are very different from general targets in terms of size
and color characteristics. Directly applying these methods without combining the physical
characteristics of small infrared targets for infrared small-target detection tends to lead to
the loss of deep small targets.

To overcome the above defects, inspired by [19], we proposed a lightweight multi-
mechanism deep feature enhancement network (MDFENet) algorithm. The motivations of
our method, based on data analysis, can be summarized as follows.

1. The target occupies a small proportion of the whole infrared image (generally less
than 0.12%) and lacks color and fine structure information (e.g., contour, shape, and
texture).Therefore, it is not advisable to blindly increase the network depth and
increase the extraction ability of small target features. This will not only increase the
computational burden, but also make the model file increase rapidly.

2. Using traditional loss functions, such as Soft-IoU, and using marked images (the
background is 0, and the target is 1), essentially defines a fixed threshold of 0.5.
However, because of the lack of infrared small target features, complex background,
and variety of small targets, the network may not have the ability to make the target
approach 1 and the background approach 0. For example, the background may be 0.2,
and the target, 0.5. Thus, we must relativize the difference between the background
and the target and simulate the effect of the step function.

3. Unlike the segmentation of large targets, in the segmentation of small infrared targets,
the target features may be submerged or may disappear in the clutter in the deep
layer of the network. Moreover, we believe that shallow features may play a more
important task in the recognition of small infrared targets. Therefore, we must detect
targets in low-level feature maps and enhance high-level semantic features.

4. Infrared small target segmentation is primarily used in the military field, which
requires a small number of network calculations and a small model file. Therefore,
we must design a lightweight network.

Based on the above motivation, the main contributions of our proposed method are as
follows.

1. In this paper, ResNet20 is selected as the backbone network, and the encoder–decoder
structure is adopted. There are shortcut connections used in ResNet20. These shortcut
connections can fuse features with different resolutions to a certain extent, which
helps to alleviate the deep annihilation problem of infrared small target and keep
the gradient stable. To minimize unnecessary floating-point operations, we refer to
ALCNet and reduce the four-layer structure of the traditional ResNet to three layers.
Thus, the floating-point operation is controlled at 4.3 G, and the model size is 0.37 M.
It can be embedded in aviation equipment.
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2. A multimechanism attention collaborative fusion module is proposed, including a
weak target channel attention mechanism and pixel attention mechanism. Most of
the existing modules are devoted to the development of more complex attention
mechanisms, which are not suitable for infrared small-target detection. Lightweight
attention mechanisms, such as efficient channel attention network (ECA-Net) [21]
cannot effectively form attention to small targets because of the lack of some features
of infrared small targets. To solve the above problems, the multimechanism attention
collaborative fusion module adopts the concept of multimechanism collaborative fea-
ture fusion under the guidance of an attention mechanism and makes improvements
in target detection in two aspects. First, a global maximum pooling and sigmoid
function are used to enhance the semantic features of small targets and an uncom-
pressed channel convolution is used to extract the channel attention, which effectively
retains deep semantic information. Secondly, under the guidance of deep semantic
features, the detail features of infrared small targets are retained and enhanced by
pixel attention, and the underlying features are modulated by multiplying elements
so that the network dynamically selects relevant features from the bottom.

3. The loss function in the general network is no longer suitable for the end-to-end
detection method that combines model- and data-driven methods. Therefore, we
propose a normalized loss function. It normalizes the network output with the
maximum and minimum probability, ensures that the loss function focuses on the
relative value between pixels, and improves the convergence efficiency of the network,
which is also a key factor in improving the efficiency of the model- and data-driven
end-to-end detection methods.

4. To address the problem that the small infrared target has few pixels and the difficulty
in extracting high-resolution effective features, subpixel convolution upsampling is
used to enhance the feature utilization and the low-resolution feature representation
is converted into high-resolution identifiable feature representation to improve the
detection accuracy of the network.

To evaluate the effectiveness of MDFENet, we conducted several ablation experiments
on different network layers. We also compared MDFENet with several model-driven and
advanced data-driven methods on the open SIRST dataset [22] and the improved IDTAT
dataset [23]. Furthermore, we made improvements to the IDTAT dataset: from the original
22 real infrared sequences, 10 infrared sequences with complex backgrounds and weak
targets were selected and the targets were marked at pixel level. The 10 sequence images
were combined to form an experimental dataset. The experimental results showed that
each module of MDFENet is effective and that the normalized loss (NL) function can more
accurately adapt to the combination of model- and data-driven methods.

2. Related Work
2.1. Single-Frame Infrared Small-Target Detection

As a difficult task in target detection, small-target detection has been of major concern
to researchers. With many research achievements, infrared small-target detection is an
important branch of small-target detection. The traditional single-frame infrared small-
target detection focuses on locating the target position and regards the detection problem
as an image-anomaly detection problem under various assumptions. Typical methods
include a detection algorithm based on filtering [24,25], local contrast [9,10], and image
data structure [14,15]. These methods are generally based on the gray feature difference
between the small target and background. A saliency map can be obtained by saliency
detection, local contrast measurement, sparsity, and low-rank matrix factorization. Adap-
tive threshold segmentation is then used to separate infrared small targets from saliency
images. LCM [9] achieves target enhancement and background suppression by redefining
contrast by the ratio of the maximum value of the central subblock to the mean value of
the eight directional subblocks in the field. MPCM [10], on this basis, defines the con-
trast difference to achieve the enhancement of light and dark targets. FKRW [26] uses the
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heterogeneity and compactness of the target region to achieve target enhancement and
clustering suppression and combines the random walk algorithm and facet kernel filter
to construct a new local contrast operator for small-target detection. IPI [14] combines
local patch construction with the optimization of separated low-rank matrix and sparse
matrix to obtain stronger robustness. PSTNN [18] combines the rank of the partial sum of
tensor nuclear norm as a low-rank constraint and effectively maintains the goal. Although
the traditional single-frame infrared small-target detection has been greatly developed
and has the characteristics of a simple algorithm and easy implementation, the features
designed according to prior knowledge are not as robust to changes in diversity; it is
difficult to adapt to the complex background and too sensitive for the hyperparameters of
the algorithm. To address this problem, researchers applied deep learning methods that
have made breakthrough progress in image classification and target detection to infrared
small-target detection and their performance was superior to traditional methods. The
first infrared small-target detection algorithm based on a neural network was proposed by
Liu et al. [27]. They detected targets by using a five-layer multilayer perception network.
The first segmentation-based infrared small-target detection method was proposed by
Dai et al. [22]. In contrast with traditional detection methods, which detect whether there
are targets at a specific location, segmentation-based infrared small-target detection can
accurately segment small targets through pixel-level annotation on the dataset to achieve
higher detection accuracy. They designed an asymmetric context module (ACM) to achieve
a cross-layer fusion, which uses the asymmetric structure to fuse the underlying semantics
with the deep semantics to obtain more efficient feature representation. On this basis,
Dai et al. further proposed the ALCNet algorithm [19], which combines the advantages of
model-driven and data-driven models to overcome the problem of infrared small targets
lacking fixed features. By using generative adversarial networks, Wang et al. [28] divided
the generator into two subtasks of missed detection and false alarms and proposed MDvsFA
cGan to detect small targets. Zhao et al. [29] proposed IRSTD-GAN, which takes infrared
small targets as special noise and predicts them from the input image based on the data
distribution and hierarchical features learned by generative adversarial networks.

2.2. Multiscale Feature Fusion Guided by Attention Mechanism

In neural networks, different layers retain different image features: the bottom layer
retains detailed features, such as edges and contours, which are conducive to target posi-
tioning, and the deep layer retains abstract semantic features, which are conducive to the
understanding of the target. To achieve more accurate positioning and segmentation, ad-
vanced networks adopt multiscale feature-fusion strategies, which fuse low-level detailed
features with deep semantic features to form feature representations with fine-grained
information and rich semantic information. Ronneberger et al. [30] proposed the U-NET
network, which extracted features through an encoder–decoder structure and fused low-
and high-level features through channel splicing. Lin et al. [31] proposed FPN, upsampling
the deep features followed by top-down connections to the underlying features to achieve
element-level addition, which makes full use of the bottom positioning details based on
obtaining the deep semantic information and greatly improves the ability of small-target
detection. Moreover, because of the excellent performance of the attention mechanism,
Li et al. [32] introduced the attention mechanism based on FPN and weighted the channels
of the underlying feature graph after the deep features were globally pooled to guide the
fusion of information at different levels.

Because of its excellent performance, the attention mechanism is widely used in neural
networks, and various attention mechanisms continue to be developed, such as SEnet [33],
CBAM [34], ECA-Net [21], and SCNet [35]. SEnet generates the optimal feature map by
squeeze and excitation. CBAM enhances feature maps from two perspectives, through a
channel attention module and a spatial attention module. ECA-Net uses the 1D convolution
generating channel attention mechanism to reduce the computation while maintaining
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a good enhancement effect. SCNet uses a self-correcting convolution to realize feature
enhancement without additional parameter numbers.

2.3. Loss Function

The loss function is an indispensable part of neural networks, which is used to measure
the gap between the output value of the network and the real value and show the direction
of model optimization. Most neural networks are typically trained by using a simple
loss function (such as Softmax loss) or a loss function that directly optimizes a specific
performance metric (such as mAP optimization). In infrared small-target detection tasks,
the part of the image pixels occupied by the target is very small, and the pixel ratio
between the target and the background is seriously unbalanced. Therefore, the method of
directly optimizing the specific performance index is better than the method of optimizing
the simple loss function. This study uses a direct optimization method for the specific
performance index intersection over union (IoU).

As for the direct optimization method of the IoU index, Yu et al. [36] proposed an
IoU loss function for object-detection tasks. Taking the IoU index as the loss function, the
predicted value and the real value are approximated continuously. Rezatofighi et al. [37]
proposed the generalized IoU loss function to solve the problem of the predicted value of
the IoU loss function not reflecting the distance between the real value and the predicted
value when these did not intersect. The generalized IoU loss function not only focuses
on the overlap region between the network output value and the real value, but also
on other noncoincidental regions to better reflect the degree of overlap between the two.
Zheng et al. [38] proposed the distance-IoU loss function, which further considered the
distance between the predicted value and the true value, and the overlap rate and the
scale, to make the predicted value regression more stable. They further proposed the
complete-IoU loss function based on the distance-IoU loss function, which considered the
aspect ratio to improve the convergence speed and improve the model performance. In
the segmentation task, Rahman et al. [39] proposed the soft-IoU loss function, a direct IoU
optimization method, which measures the coincidence degree between the network output
value and the real value through the pixel-level IoU score, and achieved good performance
in the segmentation task.

3. Proposed Method

The current infrared small target segmentation faces a very difficult problem with
regard to how to improve accuracy when performing network migration. Researchers
continue to increase the number of layers of the network and add attention modules to
improve the performance of the network. However, the performance improvement from
these methods is minimal because of the few characteristics of infrared small targets, ex-
tremely complex background environment, and many types of small targets. Consequently,
the amount of calculation and the size of the network increase rapidly. We believe that
this is because of weak target learning, which tends to lead to the fixed distribution of the
network. Thus, to solve this problem, we pay more attention to the overall image features
in the network design, not just the individual infrared small target features.

3.1. Network Structure

The overall network structure of MDFENet is shown in Figure 1. The network is
primarily composed of an improved ResNet-20 backbone network, multiscale local contrast
(MLC) module, subpixel convolution upsampling, MAFM, and FPN mechanism. First, in
the coding phase, the infrared image I was input into the improved ResNet-20 backbone
network. The detailed configuration of the backbone network is shown in Table 1. The
feature map is obtained through two downsamplings in the first layer of Stages 2 and 3.
Thereafter, in the phase of nonlinear feature extraction, the feature map is input into the
MLC module, which is proposed by ALCNet. Through slicing and cyclic displacement,
the feature maps x1, x2, and x3 with fused local contrast are obtained. In the decoding
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phase, the feature map is upsampled through subpixel convolution, and the deep feature
map is upsampled to the same size as the feature map of the previous layer, and then input
into the MAFM module. MAFM is introduced in detail in Section 3.2, which includes the
weak target channel attention mechanism and the pixel attention mechanism. The two
attention mechanisms enhance deep semantic features and low-level detailed features,
respectively. The upsampled deep feature map has the same size as the feature map of the
previous layer. After the weak target channel attention mechanism, it can be fused with
the previous layer feature map enhanced by the pixel attention mechanism by using the
element-by-element multiplication method. After two upsamples and the MAFM module,
the predicted feature map is obtained, and the size of the predicted feature map is equal to
the original image. Finally, the binary map is output in the predicted feature map to realize
infrared small-target detection.

All the above modules consider the overall characteristics, not just the characteristics of
a single infrared small target. To some extent, this alleviates the difficulty of infrared small
targets with few features and complex environments. In addition, to avoid small-target
features being submerged by the background due to convolution in the deep network, we
reduce the number of subsampling layers as much as possible.

Figure 1. Overall structure of the MDFENet network.

Table 1. MDFENet backbones.

Stage Output Backbone

conv-1 256× 256 3× 3conv, 16

Stage-one 256× 256
[

3× 3conv, 16
3× 3conv, 16

]
× b

Stage-tow 128× 128
[

3× 3conv, 32
3× 3conv, 32

]
× b

Stage-three 64× 64
[

3× 3conv, 64
3× 3conv, 64

]
× b

3.2. Multimechanism Attention Collaborative Fusion Module (MAFM)

Inspired by EAC [21] and FFA-NET [40], we propose a new attention-guided feature
fusion module MAFM to fuse the underlying details and deep semantic information.
The module consists of two parts: WCA and PA, and the feature fusion is performed by
elementwise addition.

Although our MAFM fusion module looks very similar to BLAM (used in ALCNet [19])
and ACM [22], it is fundamentally different in terms of the design concept. Our proposed
MAFM tends to use the form of feature enhancement, whereas ACM is an equal fusion of
low-level semantics and high-level semantics. This is the essential difference. Moreover,
the difference between MAFM and BLAM lies in the understanding of low-level semantics
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and high-level semantics. We believe that low-level information shows more location
information of small targets, whereas high-level information represents the possibility of
existence. Therefore, it is very reasonable to use low-level semantics as the base. Moreover,
because of the sparse infrared small target semantics and the complex environment, the
high-level semantics distribution is prone to overfitting the classifier. We use subpixel
convolution and feature enhancement to express it as a possibility. It can effectively avoid
the above problems and effectively utilize high-level semantics

The overall module F(x, y) ∈ RH×W×C is shown in Figure 2, and the formula is as
follows,

F(x, y) = y + (x · σ(C1D(τ(σ(x))))) · σ(β(PWConv2(δ(β(PWConv1(γ(y))))))), (1)

where σ, τ, C1D, β, PWConv, δ and γ are sigmoid function, global maximum pooling,
1D convolution, BN, pointwise convolution, ReLU function and global average pooling,
respectively. F(x, y) ∈ RH×W×C has the same size as the input X, Y ∈ RH×W×C, where x is
the feature map output after high-level convolution, and y is the feature map output by
low-level convolution, described with the concept of modularity and can be expressed as
follows:

Z(X, Y) = Y + P(X)⊗ L(Y). (2)

Figure 2. Illustration of different fusion methods. Although the three fusion structures look very
similar, they are fundamentally different in terms of design concepts.

This module fuses low-level detail features of the image with deep semantic features.
Because of their lack of intrinsic features, small infrared targets will be submerged in the
deep layers of the network. Therefore, this study selects the underlying feature map Y as the
fusion benchmark and then uses the weak target channel attention mechanism to perform
semantic enhancement on the deep feature map X by using global maximum pooling. The
obtained result P(X) is regarded as the probability of the small target appearing in the
receptive field, which is used as the weight of the underlying feature L(Y) to guide the
network to dynamically select detailed features from the underlying layer. After adding the
local contrast to the original bottom feature map and deep feature map, MAFM enhances
the bottom detail feature by using PA, and the deep semantic feature using WCA and the
enhanced semantic feature guides the network to dynamically select detail features. Finally,
a complete fused feature map Z′ is obtained, and ψ is the subpixel convolution:

Z′ = MLC(Y) + P(ψ(MLC(X)))⊗ L(MLC(Y)). (3)

3.2.1. Weak Target Channel Attention Mechanism

With the deepening of network layers, neural networks can better understand the
meaning of scenes and extract better semantic features, which helps the network distinguish
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background clutter from the target. However, with the deepening of the network, the
possibility of losing the target information increases. To solve this problem, we propose
WCA to enhance the deep semantic information and guide the network to dynamically
select the underlying details. Its process is shown in Figure 3.

We denote the output of the convolution block in the previous layer as χ ∈ RC×H×W ,
where C, H, and W are the number of channels of the feature map, height, and width. Then,
the weight p(χ) of the WCA channel can be obtained by using the following formula:

p(χ) = σ(C1D(τ(σ(χ)))). (4)

τ is the global maximum pooling, and τ(χ) = max(χi,j,k), i ∈ H, j ∈ W, k ∈ C. σ is the
sigmoid function, and C1D is the 1D convolution.

Figure 3. Difference between WCA and ECA. The WCA proposed by us is improved based on ECA.
ECA can be better applied to large targets, but additional improvements are needed for small targets.
It is mainly reflected in the addition of the sigmoid function and the global max pooling function.

The existing complex attention mechanisms perform poorly in infrared small-target
detection, and lightweight attention mechanisms, such as ECA [21] cannot effectively form
attention for small targets lacking in features. WCA combines the concept of lightweight
attention mechanism, uses σ(χ) to normalize feature maps, and uses global maximum
pooling to highlight deep semantic information to achieve effective attention for small
infrared targets. At the beginning of the WAC, because the discrimination based on local
contrast is based on the relative difference rather than the absolute value between pixels,
σ(χ) is used to normalize the feature map in this study. Moreover, it is not appropriate to
use global average pooling γ(χ) = 1

W×H ∑W,H
i=1,j=1 χi,j because of the few intrinsic features

and weak semantic information of infrared small targets. However, under the concept of
treating small targets as local sparse matrices, small targets should have singular values in
the local image; therefore, we use the global maximum pooling to enhance the small infrared
target. Moreover, inspired by [21],we note that avoiding a reduction in the number of
channels to preserve information is more important than considering channel compression
without a linear relationship; thus, the number of channels is not compressed in the weak
target channel attention mechanism designed in this study.
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3.2.2. Pixel Attention Mechanism

In the task of infrared small-target detection, the targets are small areas in the entire
image, with missing shape and texture features. Therefore, we select pointwise convolution
(PWConv) to aggregate local context, which interacts with the spatial information of the
local channel so that the network pays more attention to the information features with local
high contrast, to highlight the small infrared targets. As shown in Figure 4, the local feature
context L of a pixel can be represented by pixel attention as follows,

L(Y) = σ(β(PWConv2(δ(β(PWConv1(γ(Y))))))), (5)

where γ, PWConv, β, δ, and σ, represent global average pooling, pointwise convolution,
BN, ReLU function, and sigmoid function, respectively. The PWConv1 and PWConv2
constitute a bottleneck structure. The pixel information of local channels is aggregated
by pointwise convolution, and small infrared targets are strengthened at the pixel level,
effectively solving the problem of small-target pixels and missing shape and texture features.
In particular, the attention weight map L(Y) has the same shape as the deep reinforcement
feature map P(X), so it can be fused with P(X) by using the method of element multiplication.
The deep semantic information can guide the network to dynamically select the bottom
detail information to further enhance the bottom small target. We have

Y′ = P(X)⊗ L(Y). (6)

Figure 4. Illustration of pixel attention mechanism. The PA module is mainly used to reweight the
feature map.

3.3. Subpixel Convolution Upsampling

After the feature maps x1, x2, and x3 of different sizes are generated through the
ResNet backbone network, upsampling is required to adjust the size of the feature map
for feature fusion through MAFM. The sampling methods commonly used with bilinear
interpolation, such as the nearest neighbor and mean value interpolation method, have poor
ability to retain image detail information because the target details information demand
is higher in infrared small-target detection tasks. Therefore, inspired by [41], introducing
the concept of superresolution, the subpixel convolution technique was used to obtain
the sampling. This method takes a low-resolution feature map as input and obtains a
high-resolution feature map through multichannel pixel reorganization and convolution. It
combines individual pixels on the low-resolution multichannel feature map into a high-
resolution unit of the feature map; each pixel on the low-resolution feature map acts as a
subpixel on the high-resolution feature map. It can concatenate r2-channel low-resolution
feature maps into single-channel high-resolution feature maps. r represents the multiple of
upsampling of the image. This approach is shown in Figure 5.
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Figure 5. Subpixel convolution upsampling. Subpixel upsampling is mainly used to reconstruct
high-quality feature maps in the decoder stage.

3.4. Normalized Loss Function

Although ALCNet and other methods that combine model- and data-driven detection
of small infrared targets integrate the physical mechanism of the model-driven methods
and the feature learning ability of the neural networks, they fail to fully consider the
influence of adding a local contrastive feature refinement layer on other structures of the
network and directly adopt structures, such as general loss functions, resulting in limited
functions of these structures. Moreover, in the task of infrared small-target detection using
local contrast, small target, and background recognition generally depend on a relative
value relationship, but the traditional loss function uses the loss caused by the difference of
absolute value, which is different from the contrast-based method. The traditional loss for
image output values pi,j is defined as follows:

pi,j = σ(MAF( f , θ)). (7)

The distribution of pi,j is the same as the sigmoid activation function, but its response
to the loss caused by the target and background is different. Therefore, we proposed a new
measurement method called normalized loss function. First, the output pi,j ∈ RH×W of the
last layer of the network is probabilized as follows:

pi,j =
eσ(MAF( f ,θ)) −min(eσ(MAF( f ,θ)))

max(eσ(MAF( f ,θ)))−min(eσ(MAF( f ,θ)))
. (8)

MAF( f , θ) is normalized by using maximum and minimum probability. Maximum and
minimum normalization reflects relative differences and is not affected by the absolute
values; it can make the background tend to 0 and the small infrared target tend to 1, to
calculate the loss more accurately.

After probabilizing pi,j together with solving the imbalance problem between the
target and background, we improve the Soft-IoU loss function into a normalized loss
function, which is defined as follows,

ιso f t−iou(p, y) =
∑i,j pi,j · yi,j

∑i,j pi,j + yi,j −∑i,j pi,j · yi,j
, (9)

where yi,j ∈ RH×W is the label image, whose value is 0 or 1, pi,j ∈ RH×W is the probabilistic
output. By transforming the prediction into probability, the relative Soft-IoU loss function
that is formed can be accurately adapted to the detection method based on local contrast
and has certain universality. Moreover, it can accurately reflect the position and shape of
the segmented small targets.
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4. Experiments and Results

In this section, we evaluate the effectiveness of MDFENet through experiments. First,
we describe the experimental setup, including the datasets, comparison network, evalu-
ation metrics, and implementation details. Then, we visually and numerically compare
MDFENet with other model- and data-driven methods to further evaluate the performance
of MDFENet. Finally, the ablation of each module of the network is studied to verify its
effectiveness.

4.1. Experimental Settings

• Dataset: We adopted an open-source infrared small target dataset SIRST and a dataset
IDTAT from the National University of Defense Technology. SIRST contains raw
images and pixel-level labeled images, including 427 different images and 480 scene
instances from hundreds of real videos. We divided SIRST into three sets: training
set, validation set, and testing set allocated as 50%, 20%, and 30%, of the total data,
respectively. The SIRST dataset is shown in Figure 6, where it can be seen from
(c)(g)(h)(i)(j) that the overall image is dark, and the small target is in a complex
background. The background is fuzzy, and there are clouds, Rayleigh noise, and
other clutter interference. From IDTAT, we selected folders 6–12, 15, 17, and 21 with
relatively complex backgrounds and 5993 pictures. The IDTAT dataset is shown in
Figure 7, and its scenes are diverse and very complex. The dataset was divided
into training and testing sets at a ratio of 8:2. To make the dataset applicable to the
evaluation index of the network, we improved the dataset and marked the selected
images at the pixel level. The experiment shows that the improved IDTAT can be
effectively applied to the network.

• Comparison Network: To prove the effectiveness of MDFENet, we compared the
proposed method with other model- and data-driven methods. From the data-driven
methods, we selected FPN [31], the attention local contrast network [19], and the
attention-guided pyramid environment network [17]. We select these data-driven
methods for comparison because our network was inspired by the above networks
and proposed our new models and ideas on this basis. Therefore, we select the above
networks as the baseline to make a fair comparison and prove the superiority of
our proposed models and ideas. These methods have the same optimizer and other
hyperparameters as the proposed method. In the traditional method, two classical
methods and two new methods are selected, which are MPCM algorithm [10], IPI
algorithm [14], PSTNN algorithm [18], and FKRW algorithm [26]. MPCM and IPI
are classical algorithms in infrared small-target detection and have a relatively wide
influence. PSTNN and FKRW are advanced model-driven methods in recent years,
and their comparison can better prove the superiority of our method.

• Evaluation Metrics: This algorithm is a segmentation-based target-detection algorithm,
and the result is a segmented binary image. Therefore, we do not consider traditional
infrared small-target detection evaluation indicators, such as background suppression
factor and signal-to-noise ratio, to be applicable. Instead, we used FLOPs, Params,
IoU, and the normalized intersection over union (nIoU) to objectively evaluate the
performance of the proposed network. FLOPs and Params are the key metrics by
which to evaluate network speed and lightweightness. IoU is an important metric in
pixel segmentation tasks to evaluate the shape detection ability of an algorithm. nIoU
is an infrared small-target detection evaluation metric proposed by [19] , which can
better balance the metrics between model- and data-driven methods, which is defined
as

nIoU =
1
N

N

∑
i

TP[i]
T[i] + P[i]− TP[i]

, (10)

where T, P, and TP denote true, positive and true positive, respectively.
• Runtime and Implementation Details: Table 2 shows the computational complexity

and running time of deep-learning methods. ResNetFPN, ALCNet, AGPCNet and
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our proposed MDFENet methods based on deep learning are trained on a laptop
computer with Nvidia GeForce RTX 2080 Super GPU and 8 G GPU memory, and the
code is written in Python 3.8 language using the Pychram 2021 IDE and PyTorch 1.8
framework. When we implemented these methods, we used the ADAM optimizer,
where the weight decay coefficients were set to 0.0001. The initial learning rate was
0.001, and the decay strategy of poly was used. The batch size was set to 8. The
loss function for each method was normalized Soft-IoU. SIRST dataset was trained
for 300 epochs, and the IDTAT dataset was trained for 40 epochs. The model-driven
methods, MPCM, IPI, PSTNN, and FKRW were run on a laptop computer with
2.20 Ghz CPU Intel(R) Core(TM) i7-10870H and 16 G main memory. The code was
implemented in MATLAB R2021b. The specific experimental parameter settings of
each method during implementation are shown in Table 3.

Figure 6. Partial presentation of the SIRST dataset. The images (a–x) come from several different
scenes and the number of pixels occupied by the target is very small. The small red box in the image
is the area where the target is located, and it will be enlarged and displayed in the big red box in the
upper right corner.

Figure 7. Partial presentation of the IDTAT dataset. The images (a–t) come from several different
scenes and the number of pixels occupied by the target is very small. The small red box in the image
is the area where the target is located, and it will be enlarged and displayed in the big red box in the
upper right corner.
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Table 2. Computational complexity and running time of deep learning algorithms.

ResNetFPN ALCNet AGPCNet MDFENet

FLOPs 16.105 G 4.336 G 50.602 G 4.348 G

Params 0.546 M 0.372 M 12.360 M 0.383 M

Times(s) 0.0261 0.0223 0.0462 0.0231

Table 3. Hyperparameter settings of model-driven methods.

Method Hyperparameter Settings

MPCM N = 1, 3, . . . , 9
IPI PS: 50 × 50, stride: 10, λ = L

min(m,n)1/2 , L = 4.5, t f : k = 10, ξ = 10−7

PSTNN patchSize = 40, slideStep = 40, lambdaL = 0.7
FKRW K = 4, p = 6, β = 200, window size = 11 × 11

4.2. Comparison to State-of-the-Art Approaches

To demonstrate the superiority of our method, we compared MDFENet with other
state-of-the-art data-driven based methods and traditional model-driven methods in
both quantitative and qualitative aspects, and the results are shown in Tables 2 and 4,
Figures 8–14.

Quantitative results: Tables 2 and 4 present the results of the different methods. Clearly,
our proposed MDFENet network was at the forefront of lightweight methods and achieved
the best detection results; the improvement effect was noticeable. From the quantitative
results, the performance of data-driven algorithms was better than those of model-driven
algorithms, and the performance of the model-driven algorithms was not ideal. The reason
lies in two aspects.

1. The model-driven algorithms have strong assumptions about the environment
whereas the environments of SIRST and IDTAT datasets are complex and changeable;
therefore, the assumptions of the model-driven algorithms are not fully satisfied, leading
to poor performance.

2. The classical infrared small-target detection method does not completely segment
the target but detects the position of the target. The target detected by these methods is
often incomplete; therefore, the performance is poor.

Model-driven algorithms face a more serious problem—the generation of false alarms,
which causes many problems when directly applied to the field of early warning. In
contrast, because data-driven methods are not bound by model assumptions, the results
of the network depend on the learned features, which can achieve accurate segmentation
and reduce false alarms. Moreover, data-driven methods can perform feature fusion.
The existing networks have feature fusion modules, but the method of feature fusion is
different. The multimechanism attention collaborative fusion module designed in this
study for the characteristics of small infrared targets with few intrinsic features and small-
target proportions was effective. Experimental data show that our proposed network
outperformed other advanced deep learning methods in suppressing the background,
accurately detecting targets, and segmenting targets.

Qualitative results: As shown in Figures 8–13, we present the detection results of
images with very small dim targets and very complex backgrounds in the dataset and
compare the detection results of the eight methods. The target area is enlarged for better
display. Red and blue quadrangles represent correct targets and false alarms, respectively.

As can be seen from the results, our MDFENet achieved accurate target localization
output and shape segmentation. Model-driven methods are sensitive to noise and detected
more false alarm areas. Other state-of-the-art data-driven-based methods suffered from
missed detections and false-alarm regions under the condition that small targets were
extremely weak, and our MDFENet was more robust to these complex scenes. Furthermore,
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from the perspective of shape segmentation, our MDFENet produced more accurate shape
segmentation and achieved better performance than other advanced data-driven methods.

Figure 8. Detection results of infrared small targets in Scene 1 using different detection methods. The
target area is enlarged for better display. Red and blue squares represent correct targets and false
alarms, respectively.

Figure 9. Detection results of infrared small targets in Scene 2 using different detection methods.

Figure 10. Detection results of infrared small targets in Scene 3 using different detection methods.

Figure 11. Detection results of infrared small targets in Scene 4 using different detection methods.
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Figure 12. Detection results of infrared small targets in Scene 5 using different detection methods.

Figure 13. Detection results of infrared small targets in Scene 6 using different detection methods.

Figure 14. ROC curve on dataset.

Table 4. Performance comparison results with other model- and data-driven methods.

Dataset Metric PSTNN FKRW MPCM IPI ResNetFPN ALCNet AGPCNet MDFENet

SIRST IoU 0.596 0.205 0.493 0.720 0.757 0.762 0.799 0.809
nIoU 0.577 0.253 0.351 0.650 0.751 0.761 0.795 0.808

IDTAT IoU 0.019 0.019 0.013 0.017 0.761 0.803 0.779 0.825
nIoU 0.010 0.008 0.009 0.023 0.759 0.801 0.778 0.823

The best performance values are shown in bold. The following tables are the same.

4.3. Ablation Study

To better show the performance of each part of the MDFENet network, we carried out
ablation experiments by removing or replacing several specific parts of MDFENet.
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1. Influence of multimechanism attention collaborative feature fusion module. Tables 5 and 6
present the different feature fusion methods and strategies we adopted. Figure 15
show the structure diagrams of each fusion method. We selected the bottom-up atten-
tional module (BLAM) and asymmetric contextual modulation (ACM) and multimech-
anism top-down attention module (MTAM) and multimechanism reverse attention
module (MRAM) integrating channel attention mechanism [21]. We replaced the
MAFM with the above modules to verify the effectiveness of the MAFM. As shown in
Tables 5–7, SIRST and IDTAT were selected as the datasets. Our proposed MAFM has
the optimal effect.

Figure 15. Architecture of various fusion modules. (A) Bottom-up attentional module (BLAM).
(B) Asymmetric contextual modulation (ACM). (C) Multimechanism top-down attention mod-
ules(MTAM). (D) Multimechanism reverse attention module (MRAM).
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Table 5. Performance comparison of different fusion modules on the SIRST dataset.

Manner IoU nIoU
b = 1 b = 2 b = 3 b = 4 b = 1 b = 2 b = 3 b = 4

BLAM 0.745 0.769 0.781 0.799 0.758 0.772 0.779 0.785
ACM 0.754 0.763 0.784 0.796 0.749 0.756 0.780 0.795
MTAM 0.748 0.773 0.778 0.788 0.749 0.771 0.777 0.781
MRAM 0.735 0.760 0.771 0.796 0.734 0.764 0.769 0.793
MAFM 0.756 0.787 0.802 0.809 0.757 0.782 0.799 0.808

Table 6. Performance comparison of different fusion modules on the IDTAT dataset.

Manner IoU nIoU
b = 1 b = 2 b = 3 b = 4 b = 1 b = 2 b = 3 b = 4

BLAM 0.806 0.810 0.805 0.812 0.805 0.808 0.804 0.812
ACM 0.803 0.814 0.815 0.819 0.802 0.814 0.815 0.818
MTAM 0.811 0.815 0.818 0.820 0.809 0.814 0.818 0.819
MRAM 0.808 0.810 0.819 0.813 0.807 0.810 0.818 0.819
MAFM 0.810 0.826 0.823 0.825 0.808 0.824 0.821 0.823

Table 7. Ablation study on the whole network.

Backbone BLAM MAFM Sub-Pixel NL SIRST IDTAT

IoU nIoU IoU nIoU

ResNet-20 X 0.762 0.761 0.803 0.801
ResNet-20 X 0.766 0.771 0.806 0.805
ResNet-20 X X 0.780 0.775 0.817 0.816
ResNet-20 X X X 0.809 0.808 0.825 0.823

2. Influence of sub-pixel convolutional upsampling. A high-resolution prediction map
can effectively improve the effect of infrared small-target detection. In this study, we
used subpixel convolution in a superresolution reconstruction task to improve the
resolution of the prediction map. We studied and compared subpixel convolution
and linear interpolation in this study. As shown in Table 7, the subpixel convolu-
tion network performance is outstanding. This is because of the traditional linear
interpolation in spatial information only and in the neural network; correlation and
interaction between each channel cannot be ignored, and the subpixel convolution
can be a relatively good application of these relations through channel expansion. It
is then reconstituted into the image space and the information between channels is
effectively used to achieve better results than traditional sampling.

3. Influence of normalized loss function. In the traditional IoU and nIoU calculation,
the loss calculation of the network output results directly after the sigmoid and the
labeled image cannot accurately reflect the error. The normalized probability function
greatly reduces the redundant information in the image, suppresses the background,
enhances the target, and enables the network to learn more accurate information.
The results are presented in Table 7. The performance of the network was greatly
improved after the normalized loss was adopted.

5. Conclusions

In this study, a new detection method, MDFENet, was developed. The network was
based on combining data- and model-driven methods by using lightweight structure design.
MAFM was constructed to enhance the fusion of multiscale features and make full use of
infrared small target detail features and semantic features. This study draws on the concept
of superresolution and adopts a subpixel convolution method for feature upsampling to
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improve the resolution of the feature map and further improve the detection accuracy.
Finally, the normalized loss function was designed to normalize the network output by
maximum and minimum probability so that the network could make use of the relative
difference between the target and the background during detection. This enabled the model
to calculate the loss more accurately and improved the network performance. Experimental
results on two datasets—the SIRST dataset, and the improved IDTAT dataset—showed
that each module of the MDFENet network was effective. The network outperformed the
traditional model- and advanced data-driven methods, suggesting that the fusion of the
features of different layers after the attention weighting can more effectively improve the
performance of the neural network to detect small infrared targets. Additionally, methods
that combine model- and data-driven detection should design a specific normalized loss
function, which may have better detection results.

However, our method is essentially a single-frame target detection based on segmen-
tation. Compared with the multiple-frames-based sequential detection method [42–45],
it cannot maximize the information between the target and the background and the ac-
cumulation of motion energy. In addition, although our approach achieves an excellent
balance between lightweightness and detection performance, its efficiency and stability in
actual deployment have not been proven. In future work, we will further study how to
apply the proposed feature-fusion enhancement strategy and standardized loss function
to improve the feature fusion efficiency and detection capability of multiframe sequence
detection methods and focus on the application of high-efficiency infrared small-target
detection network in actual deployment.
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