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Abstract: Based on the optimal estimation (OE) theory and information content analysis method, we
discuss the ability to include the multi-angle satellite ultraviolet polarization channel to retrieve the
aerosol layer height (ALH) for ten typical aerosol types in the China region. We also quantitatively
evaluate the effects of polarization measurements and the number of viewing angles on ALH retrieval
under different conditions (aerosol model, aerosol optical depth, etc.). By comparing the different
degree of freedom for signal (DFS) results of ALH caused by the theoretical retrieval error changes
in different microphysical parameters in the aerosol and surface model, we identify the key factors
affecting ALH retrieval. The results show that the extended ultraviolet band provides important
information for ALH retrieval and is closely related to the scattering and absorption characteristics
of aerosol models. The polarization measurements in fine mode reduce the posterior error of ALH
retrieval by 6–39%; however, this is relatively small for coarse mode. In particular, when it is applied
to the transported dust and background dust aerosol types, the posterior error is only reduced by
1–8% after adding polarization measurements. For these two aerosol types with weak absorption
at the ultraviolet band, increasing the number of angles observed in addition to increasing the
polarization channel will more effectively improve ALH inversion. Compared with other aerosol
and surface model parameters, the retrieval errors for the total volume column, effective variance,
real part of the complex refractive index, and surface reflectance are the main factors affecting ALH
retrieval. Therefore, reducing the theoretical retrieval error of these parameters will be helpful.

Keywords: information content analysis; aerosol layer height; optimal estimation inversion;
multiangle polarimetric remote sensing; a posteriori error

1. Introduction

Aerosols are liquid or solid particles suspended in gas with a certain level of stability
that have significant impacts on the global radiative energy balance and climate change.
The aerosol vertical distribution is an important parameter associated with the retrieval of
highly precise aerosol microphysical properties (a previous study has shown the spectral
dependence of the radiation effect on the aerosol layer height) that plays an important
role in the study of radiative forcing [1]. For example, it is necessary to consider aerosol
scattering in trace gas and ocean color retrieval and modify the aerosol vertical distribution
parameters accordingly [2–4]. The aerosol layer height (ALH) is a major determining factor
in the passive remote sensing monitoring of atmospheric fine particulate matter, such
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as PM2.5, near the ground. One such approach is the spaceborne PM2.5 remote sensing
method (PMRS) [5,6]. ALH is commonly used in model calculation, while in the passive
remote sensing measurements, it can be always be replaced by planetary boundary layer
height (PBLH). The planetary boundary layer is the lowest layer of the atmosphere and,
which contains the vast majority of aerosols of the low troposphere [6,7]. At the same
time, the height information on smoke, volcanic, and dust aerosols can provide the initial
conditions for the modeling of their emissions and the physics of plume formation [8–10].
Consequently, it is imperative to observe the vertical distribution of aerosols on a global
scale in order to validate transport models and better understand the impact of aerosols on
the climate and environment of the Earth [10,11].

Satellite remote sensing offers the possibility of measuring aerosol height information
on a global scale. Active remote sensing measurements, such as ground-based, flight-based,
and space-based measurements, can effectively measure the vertical distribution of aerosols.
For instance, Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) can measure the
backscatter at each vertical layer, resulting in detailed aerosol extinction coefficient profiles
based on the backscatter ratio [12]. Passive remote sensing measurements, while not having
the same accuracy or resolution as active remote sensing, can provide considerable spatial
coverage and higher temporal resolution by using ultraviolet (UV), visible/near infrared
(VNIR), and thermal infrared (TIR) band observations [10]. In passive remote sensing,
most studies focus on the O2 A band [12–14]. Comprehensive studies have shown that
the vertical distribution of oxygen absorption bands is generally stable and not affected
by the emissions [13], which is one of the important ways to retrieve ALH. In practice, it
is challenging to reach an agreement between the retrieved aerosol height from real O2 A
band measurements and LIDAR measurements, which depend on ad hoc assumptions.
Often, higher spectral resolution sensors are used or, given the advantage of reducing
interference from the surface, measurements are combined with the O2 B band to improve
the retrieval accuracy [14]. The stereoscopic technique, which relies on the principle of
parallax, is applicable for the retrieval of plume-type aerosols with discernable textures,
while it is not affected by complex aerosol microphysical properties and radiative transfer
computation [15,16].

Applying the UV-A band (315–400 nm) is another approach for ALH passive retrieval,
because in the ultraviolet and near-ultraviolet bands, the elevated aerosol layer partly
shields the polarization signal from Rayleigh scattering, providing sensitivity to the aerosol
layer height [17,18]. On the other hand, the aerosol information will be improved when
the surface albedo decreases, and the lower surface reflectance in the UV wavelength is
also beneficial for the retrieval of ALH. A previous study performed retrievals with Re-
search Scanning Polarimeter (RSP) measurements in the near-ultraviolet and blue spectral
bands. The validation against measurements from a CALIOP showed good agreement
with an absolute ALH difference of less than 1 km. The study also indicates the possibility
for future satellite instruments to better retrieve aerosol height information if they may
include wavelengths shorter than 410 nm [10]. There are some existing sensors that already
include polarization channels in the single-angle UV band, such as the Ozone Monitoring
Instrument (OMI) [19], Particulate Observing Scanning Polarization (POSP), and so on [20].
However, there is a lack of evidence that multi-angle polarization measurements are better
for ALH inversion in UV than near UV. More and more multi-angle polarized instruments
are being launched in China for remote sensing studies of atmospheric aerosol proper-
ties [21–24]. Since the inversion of the aerosol layer height in the UV band often requires
additional constraints, the aerosol model should be assumed in the inversion algorithm in
advance, which may introduce errors [25]. Multi-angle polarization provides just enough
observational information to improve the accuracy of the inversion.

In this paper, we focus on the typical aerosol types in China and further quantitatively
investigate the influence of multi-angle polarization measurements on the retrieval of ALH
based on these models. The aim of this study is to determine whether the multi-angle
polarization measurements of the UV band can provide enough information to retrieve
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ALH and to investigate how UV multi-angle polarization observations can be used for
remote sensing inversion of ALH of different aerosol types. We also demonstrate the
influence of aerosol and surface model parameter errors by the degree of freedom for
signal (DFS) of ALH retrieval under different conditions (aerosol loads, model types, multi
viewing observation and so on). The results of this study could be used to develop the next
generation spaceborne polarimetric sensors and corresponding ALH retrieval algorithms.

2. Materials and Methods
2.1. Optimal Estimation Theory

Following the optimal estimation (OE) theory [26], ALH retrieval is the process of
obtaining the best matching ALH parameter based on satellite observations. The forward
model can be described as

y = F(x, b) + ε (1)

where x is a state vector, b comprises parameters that are not present in x but have a
quantitative impact on TOA measurements, y is an observation vector, F is a forward
model, and ε represents an experimental error term that integrates observation noise and
forward model uncertainty.

Meanwhile, the maximum likelihood analysis of x can be described as

x̂ = xa +
(

KTS−1
ε K + S−1

a

)−1
KTS−1

ε (Y−Kxa) (2)

where the superscript “−1” is the inverse operation of the matrix, Sa is the error covariance
matrix of the a priori estimate xa, and K is the Jacobian matrix, which consists of the partial
derivatives of F(x) with respect to x and describes the sensitivity of the forward model to
the state vector. Sε is the covariance matrix of the error. The a priori estimate provides
constraints for the retrieval of the optimal estimation algorithm to prevent the generation
of unreasonable results.

In Equation (2), x̂ corresponds to the minimum value of the scalar-valued cost function
after convergence, and the scalar-valued cost function J is used as the form of

J = (y−Kx)TS−1
ε (y−Kx) + (x− xa)

TS−1
a (x− xa) (3)

The posteriori error is also known as the theoretical retrieval error. It can be calculated
by combining the prior error with error propagation, which can be written as

Ŝ =
(

S−1
a + KTS−1

ε K
)−1

(4)

This indicates that the statistical uncertainties in retrieved x̂ due to noise in measure-
ments and error propagation, as well as the posterior errors (absolute errors), are equal to
the square root of the diagonal elements.

Besides the posterior error covariance matrix, another key parameter that measures the
amount of information about the parameters recovered from observations is the averaging
kernel function A:

A =
∂x̂
∂x

=
(

KTS−1
ε K + S−1

a

)−1
KTS−1

ε K (5)

The degree of freedom for signal (DFS), also known as the trace of the averaging
kernel matrix A, denotes the amount of information about the retrieved parameters that
can be explored from the satellite data. When the matrix is the identity matrix, the retrieved
state can fully reflect the true state; Typically, we may assume that the parameter can be
retrieved when the DFS result is >0.5 [27,28]. Each diagonal element, in turn, describes
the information contained in each retrieved parameter, given that the averaging kernel
specifies the relative weight of information about the state vector contained in satellite
measurements as well as from a priori measurements [29]. Considering that the averaging
kernel describes the relative weight of information about the state vector from the satellite
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measurements compared with that from the a priori measurements, the DFS value depends
on the a priori uncertainty assumption. In other words, a higher “degree of freedom
for signal” corresponds to a lower posterior error with the same a priori measurement.
Therefore, in this work, we quantified the ALH information supplied by UV band satellite
data by comparing the posterior uncertainty to the prior uncertainty. The model simulates
the Jacobians of the retrieved and supplementary parameters (K and Kb), whereas the error
covariance matrices are determined empirically (Section 3.2.3).

2.2. Radiative Transfer Simulation

The Unified Linearized Vector Radiative Transfer Model (UNL-VRTM) is used to sim-
ulate satellite observations and related weighting functions regarding parameters retrieved
for multi-angle viewing geometries. For UNL-VRTM to simulate TOA reflectance and
polarization, the sensor setup, atmospheric profile, aerosol characteristics, and surface
reflectance are also required as inputs. The vertical profiles of atmospheric temperature,
pressure, and trace gases are presumed to be based on the mid-latitude summer atmo-
spheric profiles from Optical Properties of the Atmosphere, Third Edition, AFCRL-72-0497.
The 49-layer standard atmospheric profile is mapped to the GEOS-5 vertical grids with
47 hybrid pressure-sigma layers to increase the vertical resolution [30]. Meanwhile, the
MT CKD model created by Mlawer, D.C. Tobin, and S.A. Clough is used to determine the
continuum absorption of water vapor [31]. The UNL-VRTM is based on the VLIDORT
model for calculating the Stokes vector [I, Q, U, V]T , and details about each module in
UNL-VRTM can be found in [32], where I represents the total radiant intensity, Q represents
the difference between the linearly polarized components parallel to and perpendicular to
the reference plane, U describes the linearly polarized irradiance on the polarization plane
at an angle of ±45◦ from the reference plane, and V describes the circular polarization. We
consider an observation vector comprising I and the degree of linear polarization (DoLP)
which can eliminate the influence of absolute calibration, where DoLP is defined by

DoLP =

√
Q2 + U2

I
(6)

Furthermore, the Jacobian matrix of the DoLP for each component of the state vector
can be described as

∂DoLP
∂x

= −
DoLP ∂I

∂xi

I
+

Q ∂Q
∂xi

+ U ∂U
∂xi

I
√

Q2 + U2
(7)

Using the superscripts v1–vM to note each viewing in multiple observations, the
measurement vector y can be described as

y =
[
Iv1
λ , . . . , IvM

λ , DOLPv1
λ , . . . , DOLPvM

λ

]T (8)

The Jacobian matrix calculation of y to x is performed by the UNL-VRTM. Combined
with the simulated propagation of errors and the posterior errors, DFS and a posterior
error of ALH under different aerosol types and observed geometry can be derived from
Equations (4) and (5). According to the results, we can carry out the sensitivity analysis.

3. Instrument and Simulation Assumptions
3.1. Observation Geometry Setting

The instrument in this study is a pre-developed sensor with extra capacity to measure
polarization at multi-angle observations in the UV band. We refer to it as Multi-Angle
Polarization Measurements with Ultraviolet band (MAPMU). Microphysical and optical
properties of aerosols are derived from multi-angle measurements in 11 spectral bands
from 388 to 2140 nm with bands near 388, 490, 670, 865, 1370,1640, and 2140 nm performing
polarimetric measurements in addition to radiance. The properties of MAPMU are listed
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in Table 1 and the fundamental simulation presumptions, such as the aerosol model, the
surface model, and the error covariance matrix, are discussed in this part.

Table 1. Basic characteristics of MAPMU.

Parameter Value Parameter Value

Spatial res. (m) 500 (vertical
resolution) Multi-angle 5

Instrument FOV ±45◦ Polarized angle 0◦, 60◦,120◦

Pol. Cal. Error ≤2% Stokes parameters I, Q, U

Rad. Cal. Error ≤5% Band width (nm) 20, 20, 20, 20, 10, 40,
20, 40, 40, 40, 40

Central
wavelength/nm

388 (P), 443, 490 (P),
670 (P), 555, 865 (P),
910, 1045, 1370 (P),
1640 (P), 2140 (P)

Four multi-viewing observation geometries were taken into consideration with the
combinations of various solar zenith angles (θ0), viewing zenith angles (θv), and relative
azimuth angles (ϕ) to represent the typical observations in various locations in order to
obtain synthetic MAPMU data for the information content analysis, just as listed in Table 2.
Here, summer low and summer high refer to observations at low and high solar zenith
angles, respectively. Figure 1a shows the polar-plot observational geometries, in which the
radius means the θv change from 0◦ to 60◦ with steps of 20◦, and the circle represents the
change in ϕ from 0◦ to 360◦. Correspondingly, Figure 1b plots the scattering angles based
on the observational geometries within the ranges of [137.76◦, 173.68◦], [105.05◦, 121.30◦],
[80.28◦, 109.40◦], and [104.04◦, 145.82◦].

Table 2. Multi-viewing observation geometries for forward simulations (corresponding to Figure 1).

Geometry
Scenarios

Solar Zenith
Range (◦)

Viewing Zenith
Range (◦)

Relative
Azimuth
Range (◦)

Scattering
Angle

Range (◦)

Geometry 1 54.12~54.79 44.39~64.09 5.78~330.03 137.76~173.68
Geometry 2 32.86~33.59 25.59~58.64 106.99~248.41 105.05~121.30
Geometry 3 53.18~53.74 28.8~61.06 97.15~229.85 80.28~109.40
Geometry 4 77.63~78.08 37.15~61.87 0.65~298.07 104.04~145.82
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of the sun for summer low, summer high, winter low, and winter high scenarios, respectively.



Remote Sens. 2022, 14, 6258 6 of 23

3.2. Simulation Assumptions
3.2.1. Aerosol Model

The optical and microphysical characteristics of global aerosols vary greatly throughout
both space and time. The climatic variables that control their removal and transport processes
have significant impacts on their vertical and horizontal dispersion. There is a large range
of values for the optical and microphysical characteristics of different forms of aerosol [33].
A theoretical analysis employing every form of aerosol is a difficult and unrealistic method.
In order to simplify this method, previous studies have often analyzed some typical aerosol
types (such as fine-dominated and coarse-dominated types) [7,28,34]. We hope to use a
more realistic aerosol model classification while building a more sophisticated ALH retrieval
framework for the Chinese region in order to explore the ability of UV multi-angle polarization
measurements to undergo ALH retrieval for different aerosol types.

Based on the ground-based remote sensing measurements of the Sun-sky radiometer
Observation NETwork (SONET), ten fundamental aerosol models used in China were
derived in a cluster study by Li et al., and the classifications are summarized in Table 3 [35].

Table 3. Aerosol model classification with SONET [35].

Mode Aerosol Type Description of Characteristics

Fine Mode

Urban polluted (F-ULW) Urban-polluted fine-mode aerosols with high
particle concentrations

Continental background (F-UHS) Background fine-mode aerosols with low
particle concentrations

Secondary polluted (F-BLW)
Secondary aerosols containing mainly polluted
particles with low refractivity and a higher
scattering capacity

Combined polluted (F-BNS) Mixture of direct anthropogenic emissions and
secondary aerosols with high light absorption

Polluted fly ash (F-BNM)
Mixture of anthropogenic-polluted particles
and fine fly ash particles with large submicron
fine particles

Coarse Mode

Summer fly ash (C-ULW)
Background of fly ash coarse particles with low
light absorption, for example, natural
emissions of primary organic aerosols

Winter fly ash (C-UHS)
Background of fly ash coarse particles with
high light absorption, for example, fly ash
polluted by anthropogenic components

Primary dust (C-UNW) Coarse particles of natural dust with a very
high volume concentration

Transported dust (C-BNM) Dust particles after long-term transportation
and sedimentation

Background dust (C-BHM) Background dust suspended over continental
regions with a large coarse standard mode

The ten clusters suggest five typical fine particle aerosol models and five coarse models,
including urban polluted, secondary polluted, combined polluted, polluted fly ash, and
continental background, summer fly ash, winter fly ash, primary dust, transported dust,
and background dust. Table 4 lists the details of the microphysical parameters, including the
total aerosol volume (V0), effective radius (reff) and variance (veff) as well as the refractive
index, as shown in the results in Figure 2. In the fine-particle size range, there are five
single-peak aerosol models (F-ULW, F-UHS, C-ULW, C-UHS, and C-UNW) and five double-
peak (F-BLW, F-BNS, F-BNM, C-BNM and C-BHM) aerosol models. It should be noted that
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the double-peak feature may not be obvious, because one small peak may be covered by
another big peak [35].

Table 4. Microphysical parameters of ten typical aerosol models in China.

Fine Modes

Type re f f rsm
e f f ve f f vsm

e f f
Refractive

Index V0 Vsm
0 Refractivity Absorptivity

F-ULW 0.175 \ 0.300 \ 1.414-0.007i 0.136 \ Low Weak
F-UHS 0.126 \ 0.334 \ 1.515-0.014i 0.063 \ High Strong
F-BLW 0.132 0.283 0.152 0.257 1.392-0.007i 0.087 0.069 Low Weak
F-BNS 0.103 0.204 0.089 0.334 1.459-0.016i 0.046 0.089 Normal Strong
F-BNM 0.124 0.387 0.189 1.766 1.477-0.011i 0.073 0.058 Normal Moderate

Coarse Modes

C-ULW 2.208 \ 0.522 \ 1.437-0.006i 0.089 \ Low Weak
C-UHS 2.558 \ 0.500 \ 1.522-0.015i 0.090 \ High Strong
C-UNW 1.970 \ 0.305 \ 1.495-0.003i 0.482 \ Normal Weak
C-BNM 1.211 2.973 0.345 0.552 1.492-0.009i 0.059 0.105 Normal Moderate
C-BHM 1.626 4.481 0.552 0.142 1.518-0.008i 0.121 0.076 High Moderate

V0 is the total aerosol volume (µm3/µm2), The subscript sm is for the submicron fine mode or super-micron
coarse mode.
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Figure 2. The aerosol volume size distributions for the ten aerosol types defined in Table 4.

The scattering phase matrix P is simulated using a linearized Mie code once these
microphysical characteristics have been input:

P =


P11 P12 0 0
P21 P22 0 0
0 0 P33 P34
0 0 P43 P44

 (9)

where P12 = P2 and P34 = P43. P11 is the normalized phase function that describes the
scalar component of particle scattering, whereas −P12/P11 is the polarized scattering that
corresponds to DoLP.

The single scattering albedo (SSA) in the UV and VIS bands for ten typical aerosol
models is also shown in Table 5. SSA represents the ratio of the scattering efficiency to the
total extinction efficiency. Compared with the VIS band (443 nm), the SSA in the UV band
is higher for the fine mode, while the SSA of the coarse mode is lower.
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Table 5. SSA of ten aerosol models at 338 nm and 443 nm.

SSA F-BLW F-BNS F-NM F-ULW F-UHS C-ULW C-BNM C-BHM C-UHS C-
UNW

SSA (388 nm) 0.9541 0.9020 0.9572 0.9277 0.9413 0.7642 0.7906 0.7666 0.6194 0.6338
SSA (443 nm) 0.9498 0.8895 0.9569 0.9261 0.9377 0.7817 0.8082 0.7842 0.6333 0.6496

Table 5 indicates stronger absorption for F-ULW, F-BNS, and F-BNS compared to
F-BLW and F-BNM. Similarly, weaker absorption is shown for C-BNM and C-BHM com-
pared to C-ULW, C-UHS, and C-UNW for the wavelength at 388 nm.

The wavelength-dependent P11 and−P12/P11 of various aerosol types vary with differ-
ent scattering angles, as shown in Figure 3a–d resulting in diverse scattering properties that
impact TOA measurements. Figure 3c,d additionally show four multi-viewing observation
geometries with varying sensitivities to TOA radiance and DoLP with respect to ALH. As
an example, when the scattering angle gradually moves closer to 180◦, the aerosol DoLP
(−P12/P11) with scattering angles for C-BHM and C-BNM is obviously different from the
other three coarse aerosol models, and the overall value is negative. This bimodal aerosol
model has the characteristics of Asia dust and transport dust. Due to the high aerosol layer
and special optical characteristics of the UV band, the absorption is weak.
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From the perspective of passive remote sensing, we assume that only one aerosol layer
is present in the atmosphere, and the definition of the aerosol height depends on how the
profile is represented. Meanwhile, the suitable choice of representation often depends on
the actual applications. It also depends on whether the measurement can meet the profile
model parameters which are in the state vectors to solve at the same time. In the simulation,
we assume that the profile of the aerosol extinction coefficient follows an exponential-decay
profile, which is often used in atmospheric correction algorithms and can be written in the
form of [7,32,36]: ∫ Z

TOA
τ(z)dz = τ0 exp

(
− z

H

)
(10)
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where τ0 is the columnar aerosol optical depth (AOD), and H is the scale height, which
represents the height of the aerosol layer when the columnar aerosol optical depth (AOD)
decays to 1/e of the ground. To simplify this, we only include H in our retrieval’s state
vector, while the other aerosol-related characteristics (AOD, effective radius, variance, and
refractive index) are specified as model parameters.

3.2.2. Surface Model

The surface reflectance has a significant impact on ALH information; hence, it is vital to
choose the proper surface reflectance model. Many studies have suggested that compared
with bare soil (bright surface case), surface types with relatively higher absorption (seawater,
vegetation, etc.) show higher sensitivity to the ALH [1,29]. However, the surface reflectance
of different types is relatively low at the UV band, and the difference is small. For instance,
we use the improved kernel-driven bidirectional reflectance distribution function (BRDF)
model of vegetated surface, which has been proven to provide a better retrieval performance
than the traditional Ross-Li model in the multi-angle polarization satellite observation
retrieval framework [37]. For surface reflectance, the used BRDF is

ρS(µ0, µv, φ, λ) = fiso(λ)[1 + k1 fgeom(µ0, µv, φ) + k2 fvol(µ0, µv, φ)] (11)

where µ0 and µv represent the cosine of the solar zenith angles and the viewing zenith angle,
respectively; fiso, fgeom, and fvol correspond to the isotropic, geometric-optical (Li-sparse
kernel), and volumetric (Ross-thick kernel) surface scattering, respectively. k1 and k2 are
the coefficients of the BRDF kernels at the given wavelength. In this paper, the surface
reflectance fiso was set to 0.0186, a value chosen from the surface reflectance databases
USGS and ASTER [38,39]. The values of k1 and k2 were chosen from Litvinov’s work as
equal to 0.087 and 0.668 [40].

3.2.3. Error Covariance Matrix

As described in Section 2, we constructed the inversion framework as described in [10].
The state vector has only one parameter, which is

x = [H]T (12)

At the same time, the other aerosol model surface parameters were retrieved from
other satellite channels with certain retrieval errors under the known inversion framework.
For the double-peak aerosol models, the vector is

b =
[
V0, Vsm

0 , reff , rsm
eff , veff , vsm

eff , mr, mi, msm
r , msm

i , ρs, k1, k2

]T
(13)

where V0 and Vsm
0 , reff and rsm

eff , veff and vsm
eff , mr and msm

r , mi and msm
i correspond to the

total aerosol volume, effective radius, variance, as well as the real and imaginary parts of
the refractive index in fine-mode (coarse-mode) or submicron fine mode (super-micron
coarse mode); ρs, k1, k2 are the improved BRDF model parameters.

For the error covariance matrix, here, we assume that σH = 75% H; and the prior error
covariance matrix is an identity matrix.

Sa =
[
σ2

H

]
, (14)

The prior error is 20% for V f
0 and Vsm

0 , and 10% for ρs. For the fine-mode, the a priori
errors reff, veff, mr, mi, k1, and k2 are 15%, 15%, 0.025, 50%, 15%, and 15%, respectively,
while for the coarse-mode, the a priori errors reff, veff, mr, mi, k1, and k2 are 35%, 35%, 0.04,



Remote Sens. 2022, 14, 6258 10 of 23

50%, 35%, and 35%, respectively. Here, the a priori error refers to the retrieval errors of
SONET [41,42]. The diagonal error covariance matrix of b (Sb) is

Sb = diag
([

(∆V0)
2 , (∆Vsm

0 )2, . . . , (∆msm
i )2, (∆ρs)

2, . . . , (∆k2)
2
])

(15)

The uncertainties of satellite measurements (Sy), as part of the observation uncertainty,
include systematic and random errors that occur during the instrument observation process.
For the MAPMU instrument, we estimated radiance and polarized measurement errors of
5% and 2%, respectively. The correlations of observations between multiple viewing angles
should be considered in multi-angle satellite observations, but polarization and intensity
measurements can still be assumed to be independent. Therefore, Sy is a 10 × 10 off-diagonal
matrix, and the details of the construction are shown in Equation (A1).

4. Results
4.1. Simulated TOA Results

To provide synthetic data from the MAPMU measurements, we defined the TOA
reflectance (RTOA) and polarized reflectance (RTOA

P ) as follows. All of the synthetic data
were cloud free. {

RTOA = π I/µ0

RTOA
P = π

√
Q2 + U2/µ0

(16)

Figure 4 illustrates the TOA normalized radiance and polarized radiance of different
multi-viewing observation geometries at 388 nm for the F-ULW and C-ULW aerosol types.
These two models (coappearance probability greater than 5%) also represent aerosol char-
acteristics in the China region. TOA measurements for the other seven aerosol types are
not shown in the figures for simplicity, although the characteristics are similar.
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Figure 4. Contributions of TOA reflectance and TOA polarized reflectance at 388 nm with vegetated
surface, and AOD = 0.6 at 550 nm. (a,b) correspond to the F-UHS aerosol type, while (c,d) correspond
to the C-ULW aerosol type.
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4.2. ALH Retrieval Capability for Typical Cases

In this section, we analyze the ability of MAPMU to detect ALH in the UV band.
Four multi-angle observation geometries were used for the forward simulations, and each
mean DFS of the observation geometries was calculated under the conditions of AOD = 0.6
(550 nm) and H = 2 km. Figure 5 further illustrates the DFS and posterior errors of ALH
retrieval for different aerosol models in the form of histograms, and the error bars correspond
to four multi-viewing observation geometries. The gray bottom column represents the prior
estimation error for the aerosol layer height, and the visible part of the gray bottom column
shows the reduction in the posterior error relative to the prior error in Figure 5c,d (absolute a
priori error is 1.5 km).
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Figure 5. The DFS and posterior error of H for different aerosol models with AOD = 0.6 for two
aerosol types over vegetation surfaces. The error bar are the mean value and standard deviation of
different geometries and the aerosol profile H is defined as 2 km. (a,c) represents fine mode aerosol
types and (b,d) represents coarse mode aerosol types.

(1) The results show that the multi-angle polarization measurements of ALH retrieval
performed well (DFS > 0.5) in the UV band for the main aerosol models. Previous
studies have shown that the surface reflectance on the information content of ALH
often has more impact than the optical aerosol properties [29]. It can be seen that the
optical properties of aerosols also play crucial roles in ultraviolet ALH retrieval.

(2) The determination of ALH for the coarse mode is relatively difficult compared with
the fine mode, and the information content of ALH is closely related to the scattering
and absorption characteristics of the aerosol model. Combined with the aerosol model
SSA presented in Section 3.2.1, the fly ash pollution type (F-BNM) has the strongest
scattering characteristics in the five fine modes, as a result of having the lowest
DFS result, which is even lower than that found for some coarse modes. Similarly,
the difference between the primary dust type (C-UNW) with the highest DFS and
background dust with the lowest DFS is 0.07, and the difference grew further to above
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0.4 after adding the polarization measurements. The result also indicates a better
performance of the MAPMU observations for absorbing aerosol in ALH retrieval.

(3) Comparing intensity observation and polarization observation, it can be seen that,
regardless of the type of aerosol (except F-ULW), it is difficult to retrieve the scale
height parameter using only the intensity observation in the UV band, and the ad-
dition of polarization observation information effectively improves ALH retrieval.
We supplement and test the information related to ALH retrieval under different
aerosol conditions in Section 5.1 and evaluate the improvement produced by adding
polarization measurements.

(4) As shown in Figure 5c,d, due to the different aerosol models, when only the intensity
measurements are included, the posterior error for fine mode is in the range of
1.45 km to 0.92 km; however, once polarization measurements are included, the
posterior error can drop to a range of 1.09 km to 0.51 km. For Coarse mode, the
posterior error is in the range of 1.46 km to 1.43 km when just intensity measurements
are used, while it is in the range of 1.43 km to 0.62 km when polarization measurements
are added. In summary, the DFS of the ALH is significantly improved with the
addition polarization measurements, and the posterior error is gradually reduced.

In addition, we assume that if the wrong aerosol model is chosen, the theoretical error
due to the intensity and polarization measurement model choice can be quantitatively
assessed by calculating the relative error of the posterior error between different models. As
results shown in Figure 6, in extreme cases, the aerosol model used for the actual intensity
measurement is the urban pollution type (F-ULW), but we chose the background dust
type (C-BHM) for ALH inversion. The absolute error corresponding to the posterior error
of the two models is, at most, 59.1%. After adding the polarization measurement, the
difference between different models increases further and can reach 180.39%. That is to say,
the uncertainty of the aerosol model has an important impact on ALH retrieval.
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5. Discussion
5.1. The Influence of Adding Polarization Measurements

In Section 4.2, we analyze the ability of MAPMU to detect the aerosol layer height for
typical cases and show the impact of uncertainty for aerosol models. However, previous
studies have shown that the aerosol vertical distribution is also affected by the aerosol
model parameters (AOD, H), while the impact of these parameters generally appears to
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be similar in different aerosol types [7,29]. Therefore, in this section, we test the changes
in ALH information under different aerosol optical depth conditions (AOD is from 0.2 to
1.0) and scale height conditions including near-ground aerosols and transported aerosols
above the boundary layer (H is from 1 km to 5 km) for the vegetation surface. At the
same time, combined with the corresponding posterior error, the improvements in the
information quantity and posterior error after adding polarization measurements under
different aerosol conditions are analyzed.

Figure 7a,b shows the variation in the DFS for the parameter H for ten typical aerosol
models used in China with the aerosol condition (AOD, H) used for the intensity measure-
ments. The figure is presented in the form of a box plot. Figure 7c,d corresponds to the
DFS after adding polarization measurements, and the other parameters are the same as
those used in Figure 7a,b. When the AOD varies from 0.2 to 1.0, each box in Figure 7a–f
depicts the DFS and the uncertainty reduction of ALH. On each box, the median value
(solid line in the box), maximum value (whisker top), and minimum value (whisker bot-
tom) correspond to AOD values of 0.6, 1.0, and 0.2, respectively. Figure 7e,f represents
to extent to which uncertainty reduction might be improved by including polarization
measurements by comparing the reduction in posterior uncertainties of H for intensity
measurements with the addition of polarization measurements. The uncertainty reduction
is similar to the percentage of prior error assumed in the prior error covariance matrix,
which is discussed in Section 3.2.3. In this way, we can evaluate the improvement achieved
by adding polarization measurements. For Figure 7, we conclude the following:

(1) Comparing Figure 7a–d, it can be seen that no matter which aerosol model is used,
the DFS of ALH increases at larger AOD values. For the intensity measurements,
the DFS increases gradually with the increase in H. After adding the polarization
measurements, the DFS gradually decreases, but the overall value is much higher than
that of the intensity measurements. The polarization especially improves the ALH
retrieval when the prior setting of the scale height is less than 3 km. At the same time,
the difference between aerosol models has a greater impact on DFS than the changes
in AOD and H, which is especially obvious for the coarse modal aerosol types.

(2) As shown in Figure 7e,f, the influence of polarization measurements on ALH retrieval
gradually decreases. This is because the troposphere contains more height information,
and the detection accuracy of the aerosol height is relatively high in this range. As
H increases, the enhancement effect of polarization gradually weakens. Similar to
the study presented in [33], DoLP measurements increase the sensitivity to H, and
polarization multi-angle observations offer a high potential for ALH detection, but
the polarization improvement shows obvious differences between aerosol models.

(3) The comparison of different models shows that the difference between the fine-mode
aerosol types is small, while the difference is generally higher than that for the coarse
mode aerosols. The ALH retrieval uncertainty can be reduced by 10–39% at most
through the addition of polarized measurements for F-ULW, but it can only be reduced
by 6–24% for F-BNM. In contrast, the differences among the coarse mode aerosol types
affected by polarization are large. For instance, when the scale height is 1 km, the
uncertainty reduction might change by as much as 49%, but the H retrieval uncertainty
will only be reduced by 1–5% (1–8%) for C-BHM(C-BNM). It can be seen that the
polarization enhancement effect is very limited for the above two coarse mode aerosol
types with a moderate particle radius and weak absorption in the UV band.
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Figure 7. The DFS of H from multi-angle radiance measurements (a,b) and adding DoLP mea-
surements (c,d), as well as the posterior error uncertainty reduction between these two types mea-
surements (e,f) under different aerosol conditions for ten aerosol models over vegetation surface.
(a,c,e) represent fine mode aerosol types and (b,d,f) represent coarse mode aerosol types.

5.2. The Influence of Multi-Angle Measurements

The scattering angle determined by the satellite observation geometry often deter-
mines the Rayleigh scattering and aerosol scattering, which has an important impact on
ALH retrieval. Based on multi-angle satellite observations, it should be determined whether
the height information obtained by the number of observation angles is sufficient for ALH
retrieval. To explore the ALH inversion potential corresponding to polarization multi-angle
measurements when the number of observation angles is further increased from 1 to 14,
detailed geometric parameters are shown in Table A1. In Section 4.2, Figure 8 shows
that even with multi-angle observations such as MAPMU with five viewing angles, it is
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difficult to retrieve ALH information using only intensity measurements in the UV band
(DFS < 0.5). Therefore, in this section, following the addition of the polarization mea-
surements, we examine how the DFS of ALH depends on the quantity of the observation
angles to analyze whether increasing the observation angle can improve the ALH retrieval,
particularly for coarse mode aerosols (C-BHM and C-BNM). When the retrieval involves
multi-angle observations, the angles are selected according to the quantification of the
intensity measurements with H using the Jacobian matrix from the highest (sub-satellite
point) to the lowest values. Through this method, we get the following conclusions:

(1) Figure 8a,b show that the increase in the DFS with the angle number in fine mode
is larger than that in coarse mode. When the angle number is 1, even in the F-UHS
type with the highest DFS for fine mode, the value is only 0.28. Combined with the
single-angle observation presented in Figure 9, it can be seen that, under the same
conditions, when the scattering angle is around 90◦ and F-UHS is 120–150◦, the DFS
can approach 0.5. In that case, the use of single-angle polarization measurements to
retrieve ALH is often limited, so the development of multi-angle polarization sensors
has great significance for ALH retrieval in the UV band.

(2) In addition, given the constrained observation period in the actual multi-angle ob-
servation mode, if numerous angles focus on the same object, the target’s spatial
coverage or the overall number of targets will be decreased [29]. Therefore, it is
necessary to find the optimal number of angles to reduce the observation time of
each target while maintaining a high level of ALH information. It can be seen that, as
the observation angle increases, the increase in DFS gradually decreases, but as the
number of observation angles rises from 1 to 5, it basically meets the requirements of
ALH retrieval (DFS > 0.5) for the main aerosol models. Even for the two aerosol types
with limited polarization enhancement, C-BNM and C-BHM, the DFS is significantly
improved when the observation angles increased to about 7–8. This also shows that
the multi-angle observation is an effective way to improve the ALH retrieval of weak
absorbing aerosol types at the UV band.

(3) As the observation angle continues to increase, the DFS increase gradually slows
down with the number of angles and finally converges, which means that as the
number of angles continues to increase, the inversion framework constructed in this
study is easily extensible. In a future study, we will add to and evaluate the potential
for retrieving more aerosol properties from the UV band through the addition of
multi-angle measurements.
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In order to analyze the upper limit of ALH information of single-angle polarization
observations, we simulated two typical observation geometries (solar zenith angles of
40◦ and 60◦, respectively), and there were 25 observation angles in each group. The
scattering angle varied from 60◦ to 140◦ with a step size of 5◦. By using the same parameter
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settings as before in the forward simulation, we found that for the single-angle polarization
observation, the mean value between two typical observation geometries of DFS as a
function of the scattering angle is as shown in Figure 9:
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5.3. The Influence of Model Errors

We also needed to quantitatively investigate the influence of predefined model errors
on the retrieval results of ALH, because the predefined aerosol model will inevitably
introduce model errors into the retrieval of critical aerosol and surface parameters in our
inversion framework. Using Equation (15), we used the specified constant measurement
errors from the previous section to calculate the DFS results resulting from various model
errors. Previous research has shown that the DFS of the aerosol layer height will be affected
by the aerosol types and has shown the differences, but the impact of AOD generally appear
similar in different aerosol types [7,29]. Therefore, we concentrated on AOD = 0.6 and scale
height = 2 km as a demonstration. Additionally, we have given an example of AOD = 0.2 in
Figure A1 as a comparison. It was assumed that all aerosol and surface parameters change
from 5% to 100%, as defined in Section 3.2.3 It was found that for both fine mode and coarse
aerosol types, the DFS of ALH decreases with an increase in the parameter error, but the
influence of each parameter is not the same, as shown in Figures 10 and 11. We obtained
the following conclusions:

(1) For aerosol model parameters, the F-ULW and F-UHS aerosol types, the total aerosol
volume, and the effective radius have the greatest influences, and decreases in DFS
are all above 0.3. For the other three fine particle aerosol types, although the real part
of the complex refractive index is an important factor that affects the scattering, the
difference in DFS caused by the change of aerosol parameters is controlled within 0.1
(Figure 10). However, for the five coarse mode aerosol types, the influence of the total
aerosol volume and the imaginary part of refractive index on the DFS occupies the
main role (Figure 11).

(2) Similarly, for fine-mode aerosol types, the error of k1 of surface parameters has the
greatest influence on the DFS of ALH retrieval. In coarse mode, the DFS is much more
affected by the surface BRDF ρs error than the other two parameters.

(3) When combined, the aerosol model coappearance probability is greater than 5% (F-ULW,
F-UHS, F-BLW, C-BHM, C-UHS and C-ULW). For the ten typical aerosol models used
in China, an iteration procedure among several predefined typical aerosol models has
been designed to further decrease the probability of choosing a very bad value for the
actual retrieval, and priority should be given to reducing the retrieval errors of three key
parameters: the aerosol volume column concentration, effective variance, and imaginary
part of the refractive index in the aerosol model, as well as the surface BRDF ρs and k1
parameters will effectively improve the DFS of the aerosol retrieval in the UV band.
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Figure 10. DFS of H as a function of the fine aerosol model and surface model parameter errors
from 5% to 100% in steps of 5% with AOD = 0.6, in which left (a,c,e,g,i) and right panel (b,d,f,h,j)
corresponds to the aerosol model and surface model respectively.
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Figure 11. The same as Figure 10, but DFS of H as a function of the coarse aerosol model and surface
model parameter errors from 5% to 100% in steps of 5% with AOD = 0.6, in which left (a,c,e,g,i) and
right panel (b,d,f,h,j) corresponds to the aerosol model and surface model respectively.
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6. Conclusions

In this paper, we used the extended ultraviolet band (388 nm) to simulate multi-angle
polarization synthetic data and fully evaluate the performance of multi-angle polarization
measurements in the UV channel for passive remote sensing of the aerosol layer heights of
ten typical aerosol model types used in the Chinese region. The research results show that

(1) The extended ultraviolet 388 nm band is an important information source for passive
remote sensing ALH retrieval. With additional constraints, such as the aerosol single
scattering albedo and AOD from independent sources (thought to be obtained by
retrieval from other channels), MAPMU can theoretically retrieve ALH under different
conditions by combining polarization measurements with multi-angle measurements.

(2) Polarization measurements have important impacts on ALH retrieval at the UV
band, but the improvement is different for each typical aerosol model due to their
different optical properties. For example, the reduction in posterior uncertainties
of ALH retrieval is 6–39% for the fine mode aerosol types following the addition
of polarization measurements. However, the improvement for coarse mode aerosol
types is relatively small, especially for C-BHM and C-BNM which characterize the
types of dust found in North China and have larger median radii and low absorption
rates in the UV band. The retrieved reduction of posterior uncertainties is only 1–8%.

(3) Compared with single-angle polarization observations, which have difficulty re-
trieving the ALH for coarse mode aerosol types, the multi-angle observation mode
effectively improves the DFS of ALH retrieval. In particular, for the ALH retrieval of
C-BHM and C-BNM, the combination of polarization and multi-angle measurements
could be used to improve the aerosol layer height information. When the number
of viewing angles is increased to 6, the DFS increment is above 0.4, on average, for
different aerosol types.

(4) The predefined model errors include the error of the total aerosol volume and the
effective radius and the imaginary part of the complex refractive index as well as
the error of the surface reflectivity ρs and the k1 parameter, which will lead to the
largest change in the DFS of ALH retrieval. The effect of other parameter errors on
the aerosol and surface models is relatively small.

In summary, the addition of polarization and multi-angle measurements can effec-
tively improve ALH retrieval compared with single-angle intensity measurements in the
UV band. For ALH retrieval under coarse-mode aerosol types, in addition to considering
the polarization channel, multi-angle observations also need to be considered. We suggest
that the number of viewing angles should be 5–6 to achieve a good level of performance
(DFS > 0.5) for ALH retrieval in the UV band for the typical aerosol model types. Addi-
tionally, reducing the retrieval errors of these key parameters, as presented above, will
effectively improve the uncertainty associated with ALH retrieval in the UV band.
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Appendix A

Table A1. Multi-viewing observation geometries for forward simulations (corresponding to Figure 8).

Number Geometry 1 Geometry 2 Geometry 3 Geometry 4

NO. 1 [54.12, 64.09, 30.44] [32.8, 59.78, 104.02] [53.08, 57.8, 88.40] [77.63, 61.87, 34.08]

NO. 2 [54.17, 60.77, 26.19] [32.86, 55.18, 106.99] [53.13, 52.95, 92.08] [77.67, 57.78, 30.81]

NO. 3 [54.22, 57.20, 20.87] [32.92, 49.86, 111.05] [53.18, 47.42, 97.15] [77.72, 53.14, 26.5]

NO. 4 [54.27, 53.52, 14.19] [32.98, 43.81, 116.83] [53.23, 41.29, 104.48] [77.76, 47.98, 20.64]

NO. 5 [54.33, 49.95, 5.78] [33.04, 37.22, 125.53] [53.28, 34.99, 115.55] [77.80, 42.47, 12.4]

NO. 6 [54.38, 46.90, 355.42] [33.10, 30.78, 139.24] [53.33, 29.63, 132.40] [77.85, 37.15, 0.65]

NO. 7 [54.43, 44.89, 343.23] [33.16, 26.16, 160.34] [53.38, 27.11, 155.45] [77.89, 33.09, 344.34]

NO. 8 [54.48, 44.39, 330.03] [33.22, 25.59, 186.76] [53.43, 28.80, 179.32] [77.94, 31.67, 324.35]

NO. 9 [54.53, 45.52, 317.10] [33.28, 29.43, 209.63] [53.48, 33.72, 197.55] [77.90, 33.52, 304.71]

NO. 10 [54.58, 47.99, 305.6] [33.34, 35.61, 224.89] [53.53, 39.92, 209.64] [78.03, 37.83, 289.07]

NO. 11 [54.63, 51.28, 296.03] [33.4, 42.23, 234.53] [53.58, 46.11, 217.59] [78.08, 43.20, 277.9]

NO. 12 [54.69, 54.92, 288.36] [33.47, 48.42, 240.86] [53.64, 51.76, 223.04] [78.12, 48.65, 270.06]

NO. 13 [54.74, 58.56, 282.26] [33.53, 53.89, 245.23] [53.69, 56.74, 226.94] [78.17, 53.73, 264.45]

NO. 14 [54.79, 62.01, 277.41] [33.59, 58.64, 248.41] [53.74, 61.06, 229.85] [78.21, 59.06, 257.35]

The three parameters in parentheses [] represent the solar zenith range (Deg), viewing zenith range (Deg) and
relative azimuth range (Deg), respectively.

Appendix B

Equation (A1) uncertainties of satellite measurement matrices (Sy)

Sy =



(ε1)
2, c1× ε1ε2, c2× ε2ε3, c3× ε1ε4, c4× ε1ε5

c1× ε1ε2, (ε2)
2, c5× ε2ε3, c6× ε2ε4, c7× ε2ε5

c2× ε2ε3, c5× ε2ε3, (ε3)
2, c8× ε3ε4, c9× ε3ε5

c3× ε1ε4, c6× ε2ε4, c8× ε3ε4, (ε4)
2, c10× ε4ε5

c4× ε1ε5, c7× ε2ε5, c9× ε3ε5, c10× ε4ε5, (ε5)
2

0

0

(ε6)
2, c11× ε6ε7, c12× ε6ε8, c13× ε6ε9, c14× ε6ε10

c11× ε6ε7, (ε7)
2, c15× ε7ε8, c16× ε7ε9, c17× ε7ε10

c12× ε6ε8, c15× ε7ε8, (ε8)
2, c18× ε8ε9, c19× ε8ε10

c13× ε6ε9, c16× ε7ε9, c8× ε3ε4, (ε9)
2, c20× ε9ε10

c14× ε6ε10, c17× ε7ε10, c19× ε8ε10, c20× ε9ε20, (ε10)
2


(A1)

Combined with statistical data, c1~c20 refer to the measurement correlation coefficients
between different observation angles. ε1–ε10 correspond to the intensity and polarization
measurement errors between the five observation angles for each multi-viewing observation.
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Figure A1. DFS of H as a function of the fine aerosol model and surface model parameter errors
from 5% to 100% in steps of 5% but with AOD = 0.2, in which left (a,c,e,g,i) and right panel (b,d,f,h,j)
corresponds to the aerosol model and surface model respectively.
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