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Abstract: In recent years, deep convolutional neural networks (DCNNs) have been widely used
for object detection tasks in remote sensing images. However, the over-parametrization problem of
DCNNs hinders their application in resource-constrained remote sensing devices. In order to solve
this problem, we propose a network pruning method (named absorption pruning) to compress the
remote sensing object detection network. Unlike the classical iterative three-stage pruning pipeline
used in existing methods, absorption pruning is designed as a four-stage pruning pipeline that only
needs to be executed once, which differentiates it from existing methods. Furthermore, the absorption
pruning no longer identifies unimportant filters, as in existing pruning methods, but instead selects
filters that are easy to learn. In addition, we design a method for pruning ratio adjustment based
on the object characteristics in remote sensing images, which can help absorption pruning to better
compress deep neural networks for remote sensing image processing. The experimental results on
two typical remote sensing data sets—SSDD and RSOD—demonstrate that the absorption pruning
method not only can remove 60% of the filter parameters from CenterNet101 harmlessly but also
eliminate the over-fitting problem of the pre-trained network.

Keywords: remote sensing imagery; object detection; network pruning; object characteristics; deep
convolutional neural network (DCNN)

1. Introduction

Due to the advantages of remote sensing imagery (e.g., all-day and all-weather), re-
mote sensing technology has been widely used for meteorological observation, disaster
monitoring, navigation safety monitoring, and other fields [1,2]. In recent years, open
access to remote sensing imagery has become more and more convenient [3], and these
massively available remote sensing images directly promote the application of DCNN in
remote sensing imagery processing [4–6]. For object detection in remote sensing imagery,
researchers have used DCNNs with more and more parameters in order to achieve a
better detection performance [7–9]. One of the main problems with DCNNs is that they
are often over-parametrized, which means that their inference and updating require a
large amount of computing, storage, power, and communication bandwidth resources [10];
however, spaceborne or airborne remote sensing imaging systems are generally limited
in communication bandwidth, computing, power, storage resources, and so on. Thus,
applying deep learning techniques on these platforms leads to problems associated with
insufficient resources when performing multiple tasks simultaneously. In addition, space-
borne or airborne platforms usually do not have high-speed Internet, and transmitting
many remote sensing images to ground servers for processing will significantly consume
valuable communication bandwidth. Therefore, the amount of parameters in DCNNs has
become a bottleneck for object detection on resource-constrained platforms [11–16].

Series networks, such as Faster-RCNN [7], YOLO [8], SSD [9], and CenterNet [17], have
achieved excellent detection performance in remote sensing object detection tasks in recent
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years. However, these general deep detection neural networks are not specially designed
for processing remote sensing data. Most researchers have taken object detection tasks in
common high-resolution optical images as network performance evaluation benchmarks.
Due to limitations in the imaging band, signal-to-noise ratio, and other factors, remote
sensing images have lower spatial resolution and greater noise impact than general high-
resolution optical images. Therefore, the available feature information of objects in remote
sensing imagery is lower, and the network complexity required for object detection in
remote sensing images should be much lower than that in traditional optical images; in
other words, the object detection networks designed based on traditional optical data sets
are too complex for the object detection tasks in remote sensing imagery. Applying such
complex networks for remote sensing object detection not only wastes a lot of resources
but also poses a serious risk of over-fitting.

Fortunately, researchers have found that the parameters of most DCNNs are signif-
icantly redundant and, in the best case, the authors predicted the remaining 95% with
only 5% of the weights [18]. This phenomenon demonstrates that it is feasible to com-
press remote sensing object detection neural networks. Researchers have recently explored
knowledge distillation [19], parameter quantization [20], low-rank decomposition, and
network pruning to achieve model parameter compression [21]. Among such approaches,
network pruning has been widely studied by researchers. By removing the redundant
parameters in the network, we can not only significantly reduce the resource consump-
tion in remote sensing object detection but can also eliminate the over-fitting problem in
the network.

To obtain lightweight remote sensing object detection neural networks, we propose
a network pruning method that takes into account the characteristics of remote sensing
objects, which we call absorption pruning. Our previous work has shown that, as an
anchor-free end-to-end differentiable object detection network, CenterNet is more effective
in remote sensing object detection tasks than other detection networks [17]. Therefore,
we take CenterNet as the pre-trained network for the absorption pruning method. The
absorption pruning method is designed as a four-stage pruning method, as shown in
Figure 1b. First, the absorption pruning method selects filters that are easily absorbed from
the pre-trained network, according to the filter selection criteria proposed in this paper.
Second, the knowledge absorption training algorithm designed in this paper smoothly
transfers the “knowledge” of the selected filters to the rest of the network. Third, the
selected filters are removed from the network. Fourth, fine-tuning is conducted to recover
the network performance. Finally, the absorption pruning method outputs a light object
detection network. In this process, according to the characteristics of remote sensing objects
and the characteristics of the deep neural network feature extractor, we design a pruning
ratio adjustment method to allow the absorption pruning method to better adapt to the
remote sensing object detection task.

The contributions of this paper can be summarized as follows:

• We propose a new pruning pipeline that does not require the iterative mini-batch
pruning used in the classic pruning pipeline.

• The absorption pruning method provides a knowledge absorption training method,
which can smoothly transfer the “knowledge” in some filters to the remaining filters.

• A filter selection criterion that can identify filters that are easily absorbed is proposed.
• We design a pruning ratio adjustment method based on the remote sensing object

characteristics, such that absorption pruning can better facilitate remote sensing object
detection network compression. To the best of our knowledge, this is the first prun-
ing ratio adjustment method designed for remote sensing object detection network
pruning, according to remote sensing object characteristics.
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Figure 1. Comparison between the pipeline of the absorption pruning algorithm proposed in this
paper and the pipeline of the traditional pruning algorithm: (a) Pipeline of the classic pruning method,
and (b) pipeline of the absorption pruning method.

2. Related Work

As remote sensing imagery has become easier to obtain, many researchers have tried to
use remote sensing data to drive intelligent applications based on DCNNs [3]. However, the
over-parametrization problem of DCNNs hinders their application on resource-constrained
remote sensing platforms [12–14]. Moreover, the work in the paper [22] has shown that the
redundant parameters of DCNNs are necessary during network training. To reduce the
hardware resources required to run deep neural networks, researchers have used network
pruning to remove redundant parameters from the pre-trained network, thus reducing the
risk of over-fitting. This section introduces the work related to this paper from two aspects:
remote sensing object detection and network pruning.

2.1. Remote Sensing Object Detection

In recent years, detectors based on deep convolutional neural networks have achieved
great success in object detection in remote sensing imagery. These deep detection networks
have achieved significant advantages over traditional detectors. Therefore, as more and
more excellent deep detection networks are proposed, researchers have used these detection
networks for object detection tasks in remote sensing imagery. For example, Zhang et al.
used R-CNN to solve the task of ship detection in high-resolution remote sensing im-
ages [23]. In [24], the authors used a rotating cascade R-CNN to detect objects in optical
remote sensing images. With the continuous development of R-CNN series networks, the
papers [25–27] used the more advanced Faster R-CNN and Mask R-CNN to solve the ship
detection problem in remote sensing imagery and achieved good performance.

Next, single-stage detection networks, which are simpler and faster than the two-stage
networks, began to shine in the field of remote sensing object detection. In [28], the authors
successfully used the improved Retinanet for ship detection in optical remote sensing
imagery. Liu et al. proposed an improved SSD network to detect small objects with complex
backgrounds [29]. The papers [30–32] have further explored the application of YOLO series
networks for object detection in remote sensing maps. In [33], the authors improved
CenterNet to obtain a better small object detection capability in remote sensing imagery.

Most of the existing remote sensing object detection networks have been improved,
based on the original detection network in order to achieve better performance. However,
during the design of these original detection networks, they were verified on traditional
high-resolution optical data sets, such as PASCAL VOC [34] and COCO [35]. Due to the
difference in imaging distance and principle, remote sensing images contain fewer features
than traditional high-resolution optical images. Therefore, detection and recognition tasks
in remote sensing images require less network complexity. Using deep neural networks
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designed on high-resolution optical data sets for remote sensing object detection leads to the
problems of wasting hardware resources and over-fitting. Pruning redundant parameters
from these networks can effectively solve these problems.

2.2. Network Pruning

Network pruning has been proven to be effective in reducing network complexity
while preserving network performance [11,12,36]. Moreover, under an appropriate pruning
ratio, network pruning can effectively eliminate the over-fitting problem of the neural
network, thus improving network performance. Therefore, in recent years, more and
more researchers have devoted themselves to studying network pruning methods for
model parameter compression. Han et al. have proposed that parameters below a certain
threshold should be selected and pruned to achieve network compression [37]. They
used a classic iterative three-stage pipeline to achieve this process (i.e., select parameters,
prune parameters, and fine-tune the pruned network). Since then, this classic pruning
pipeline has become the basis of network pruning research. Most subsequent studies have
focused on proposing more accurate parameter importance evaluation criteria. For instance,
Li et al. proposed to use the sum of the absolute values of all parameters in the filter as
the importance score, pruning filters with lower scores [14]. Luo et al. have considered
that filters with the same output for different inputs are useless [38]. They described this
feature by computing the entropy of a filter’s mean output sequence for a large number
of input samples. Wang et al. input training samples into a DCNN and then calculated
the average information entropy of all feature maps and, finally, pruned filters with lower
average information entropy [39]. The disadvantage of the pruning method based on the
classic three-stage pruning pipeline is that it requires iterative pruning and may remove
filters that still contain a lot of “knowledge”.

He et al. also noted that it is unreasonable for the classical pruning pipeline to directly
prune the selected filters [40]. They proposed a soft pruning method that uses an initialized
network as input: instead of pruning the filters directly after selecting them, they set the
filter parameters to zero, allowing them to be re-activated in subsequent training. The
network will be pruned using some criteria until the end of training. In [21], Zhang et
al. optimized the soft pruning process by initializing the parameters of selected filters to
non-zero values that are more easily re-activated. However, these soft pruning methods still
destroy the “knowledge” in these filters by resetting the parameters in the selected filters.

From the perspective of remote sensing object detection network pruning, Wang et al.
designed a method for obtaining a lightweight two-stage detection network using triple
pruning, which was proven to effectively reduce false alarms and achieve network accel-
eration [41]. However, there are still few pruning algorithms for remote sensing image
object detection networks; therefore, it is crucial to carry out research in this area to en-
rich the pruning methods for remote sensing object detection algorithms under different
task scenarios.

3. Methods

A unique pruning method for remote sensing object detection network compression
is proposed in this paper. In Section 3.1, we first introduce the overall framework of the
proposed method in detail, focusing on the difference in pipeline compared to existing
pruning methods. Then, the unique filter selection criterion and absorption pruning
training approach are introduced in Sections 3.2 and 3.3, respectively. Furthermore, a
method for pruning ratio adjustment that considers object features in remote sensing
imagery is proposed in Section 3.4. Finally, we introduce the pruning strategy of pruning
CenterNet in Section 3.5.

3.1. Overall Framework

Most traditional network pruning methods adopt a classical three-stage iterative prun-
ing pipeline, as shown in Figure 1a. Specifically, these methods first select unimportant
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parameters from the network, according to the designed criteria. Then, these selected
parameters are removed from the network. Finally, fine-tuning is conducted, in order to
recover the performance damage caused by removing parameters. To avoid removing
too many parameters at a time, which may cause irreversible damage to network perfor-
mance, researchers typically choose to prune a small batch of parameters from the network
each time, removing redundant network parameters by repeating the above three-stage
operation many times. However, there are two significant unreasonable aspects in the
classic pipeline: first, the iterative selection–pruning–fine-tuning pipeline consumes a lot
of time and computing resources; second, the classic process simply removes parameters
that still contain a lot of “knowledge” and then hopes to re-learn that knowledge through
fine-tuning.

Therefore, the filter pruning pipeline shown in Figure 1b is proposed in this paper in
order to avoid the above two problems. The pipeline proposed in this paper also starts
with a pre-trained network, but abandons the traditional three-stage iterative operation
and replaces it with a four-stage operation that only needs to be performed once: filter
selection, knowledge absorption training, pruning, and fine-tuning.

Different from the classical pipeline, we no longer directly remove a selected filter
but design a knowledge absorption training method to smoothly transfer the “knowledge”
in the selected filter to the rest of the network and then prune these filters. This process
of transferring “knowledge” allows the “knowledge” to be absorbed by the rest of the
network. Therefore, we call this method the knowledge absorption training method, which
is also the origin of the word “absorption” in this paper. Ideally, pruning performed
after the knowledge in the filter has been fully absorbed will not cause any damage to
model performance; however, in practice, due to the limitations of training techniques, the
knowledge in the selected filter cannot be completely absorbed, and the pruned filters still
contain a small amount of knowledge. Therefore, fine-tuning is required to recover the
performance damage.

3.2. Filter Selection Criteria

Classic pruning methods select filters and prune them directly; therefore, unimportant
filters should be selected to avoid a significant drop in network performance. However,
the proposed absorption pruning method requires the rest of the network to absorb the
knowledge in the selected filters, and so we need to choose easily absorbed filters. In other
words, the knowledge contained in the selected filters should be easier to learn.

Assume that the parameter tensor of the jth filter of the ith layer of the network is
Pi,j ∈ c×o×w×h, where c, o, w, and h represent the number of input channels, the number of
output channels, the width of the convolution kernels, and the height of the convolution
kernels, respectively. In the process of training a complex network as a pre-trained network,
the distance between the filter parameter tensor Pi,j and its final converged parameter
tensor P∗i,j can be defined as follows:

Di,j =
∥∥∥Pi,j − P∗i,j

∥∥∥
1
, (1)

where ‖·‖1 represents the L1-norm. To measure the learning difficulty of different filter
parameters, we monitor the parameter change during the training of the CenterNet network
for the object detection task. Figure 2 shows the changes in the parameters of 10 randomly
selected filters from CenterNet. The horizontal axis represents the training epoch, while the
vertical axis represents Di,j. Specifically, in the training process of the pre-trained network,
we randomly select 10 filters as observation objects and record the parameters of these
filters in different epochs. After the pre-trained network is trained to convergence, the Di,j
values of the 10 filters at different epochs are calculated, according to Equation (1), and the
final Di,j value variation curves with epochs are plotted in Figure 2.

Figure 2 contains two essential pieces of information: first, all filter parameters were
initialized very well. The initialized filter parameters were very close to the optimized
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parameters (i.e., the Di,j values of all filters are close to 0). The second is that the direction
of the minimum gradient of the filter parameters during the training process was not
consistent with the direction of the shortest distance (the lower curve is closer to the
shortest distance than the upper curve). Therefore, we realized that this phenomenon can
be used to measure the learning difficulty of filter parameters in order to construct a simple
and unique filter selection criterion. Specifically, only the model at a certain stage and the
final model need to be stored. Then, the value of Di,j for each filter is obtained according
to Equation (1). A larger Di,j indicates that the filter Pi,j is more challenging to learn. In
addition, it can be seen, from Figure 2, that when the epoch is within the interval (5, 70), the
convergence distance curves of different filters have obvious differences and rarely cross.
Thus, when training the pre-trained network, we only save the epoch = 10 and the final
converged model parameters to evaluate the filter absorption difficulty and select the filter
from the converged pre-trained network according to the absorption difficulty score.

5 70
10

Figure 2. The change curves of filter parameters during network training. The fluctuation of the
curves reflects the difficulty of learning different filter parameters.

3.3. Knowledge Absorption Training

For object detection tasks, the goal is to accurately predict the location and size of the
object bounding box. Taking CenterNet as an example, the training loss function consists
of three parts [42]:

Loss = losshm + losswh + losso f f , (2)

where losshm represents the prediction loss of the object centre, losswh represents the predic-
tion loss of the width and height of the object bounding box, and losso f f represents the bias
loss of the predicted object center.

Knowledge absorption training aims to transfer the knowledge from the selected
filters to the rest of the network such that the selected filters can be removed harmlessly.
In the absorption pruning algorithm proposed in this paper, we design an absorption loss
lossab to absorb the knowledge in the selected filters. Therefore, the new loss function in
the absorption training is:

Loss∗ = losshm + losswh + losso f f + λlossab, (3)

where λ is the weight of lossab.
Note that lossab is defined to disable the selected filters gradually, while losshm, losswh,

and losso f f jointly ensure that the detection performance of the network does not decline
during the process of the selected filters gradually losing their effect.
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It should be noted that, in most existing convolutional neural networks, the convo-
lutional layer is followed by a batch normalization layer to address the internal covariate
shift problem [43]:

yi = γi
xi − µi√

δi
2 + ε

+ βi, (4)

where xi represents the output of the ith convolutional layer; yi represents the output of the
normalization layer after the ith convolutional layer; µ and δ2 represent the expectation
and variance of xi calculated over the training set, respectively; and ri and βi are the scaling
and offset parameters of the normalized xi, respectively. The pair ri and βi serve as a gate
for the output of a filter in the ith convolutional layer: if both ri,j and βi,j are 0, then the
filter parameter Pi,j will be entirely useless in the network.

Therefore, a new absorption loss is designed for gradually disabling selected filters by
penalizing specific ri and βi combinations:

lossab =
n

∑
i=1

maski(‖γi‖1 + ‖βi‖1), (5)

where maski is a 0,1 sequence, representing the index of the selected filter of the ith convolu-
tional layer. An element 1 in maski indicates that the corresponding filter is selected, while
an element 0 indicates that the corresponding filter is not selected. It is worth mentioning
that the work in [44] used a similar loss function design to regularize the parameter γ and
proved its effectiveness. As such, the design of the loss function lossab used in this paper
was inspired by the article [44].

3.4. A Method for Pruning Ratio Adjustment Based on Remote Sensing Image Features

Compared with traditional optical images, the objects in remote sensing images have
two remarkable characteristics: first, the size of the objects is tiny. This is because remote
sensing imagery is usually imaged very far away from the object, and so the spatial
resolution of the object is low. Second, the object features are typically very simple. For
optical remote sensing imagery, this is mainly due to the long imaging distance. For
SAR remote sensing imagery, in addition to the long imaging distance, it is also mainly
affected by factors such as the low frequency of electromagnetic waves (compared to visible
light) used by SAR imaging technology, the lack of rich color information, and strong
background noise. Therefore, the objects in SAR images are only composed of a set of
scattered points with different brightnesses and positions, and the provided object features
are relatively simple.

In a related manner, DCNN also has two key characteristics. One is that higher
convolutional layers have larger receptive fields, and the other is that the features extracted
by higher convolutional layers are also more complex. Therefore, two inferences are easily
drawn when DCNNs are used for object detection on remote sensing imagery. First, as
the object size in the remote sensing image is small, a large receptive field is not required.
Second, the features of remote-sensing objects are simple, and so the features extracted by
the lower convolutional layers are more important. Based on such prior knowledge, we
designed a method according to each layer’s receptive field in order to adjust the absorption
pruning ratio flexibly.

Traditional network pruning methods usually adopt the same pruning ratio η in each
convolution layer. Considering the characteristics of the remote sensing object and DCNN
analyzed above, the absorption pruning method used for remote sensing object detection
networks should remove more filters with large receptive fields and retain more filters
with small receptive fields. Equations (6) and (7) detail the calculation methods for the
receptive field:

Ri = Ri−1 +

[
(ki − 1) ∗

i−1

∏
i=1

si

]
, (6)
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sign(x) =


−1, x < 0
0, x = 0
1, x > 0

, (7)

where Ri represents the receptive field of the ith convolutional layer, ki is the convolution
kernel size (or pooling size) of the ith convolutional layer, and si is the convolution stride.

We define the adjustment factor of the pruning ratio as α and define the minimum
receptive field necessary for extracting remote sensing object features as z (i.e., the threshold
to judge whether the receptive field is too large or too small). Then, the adjusted pruning
ratio η∗i for the ith convolution layer can be calculated, according to Equation (8).

η∗i =η + α× sign(Ri − z) ∗ Ri
N
∑

i=1
Ri

. (8)

Figure 3 illustrates the adjustment process for the pruning ratio. As shown in Figure 3,
the adjustment of the pruning ratio is similar to a “lever”, where the parameter z controls
the “fulcrum” of the lever, and the parameter α controls the adjustment range.

Conv1

Conv2

Conv3

z

a

 
Figure 3. Illustration of the pruning ratio adjustment method based on the characteristics of remote
sensing objects.

3.5. Pruning Strategy for CenterNet

CenterNet101 uses the feature extractor of ResNet101 as the backbone of the network.
ResNet uses an innovative residual structure to fuse the output features of different net-
work layers. This innovation facilitates the excellent performance of the ResNet structure
network, but the complex network structure also brings challenges for network pruning.

The ResNet structure network usually consists of multiple convolution blocks, as
shown in Figure 4. In order to avoid the trouble of pruning filters in down-sampling
layers, traditional pruning algorithms usually only prune the convolution layers shown in
green [21]. The absorption pruning algorithm proposed in this paper also includes the red
convolutional layers in the pruning range. The specific approach is as follows: treat the
red convolutional layers in each convolutional block as a convolutional layer, and these
layers share the same sequence of filter learning difficulty. In the filter selection stage, the
learning difficulty score of each filter in the red layer is calculated as follows:

Di = {Max(Di,1), Max(Di,2), Max(Di,3), · · · , Max(Di,o)}, i = 1, 2, · · · n, (9)

where o represents the number of filters in the ith convolutional layer, and n represents the
number of coupled convolutional layers (i.e., red convolutional layers in Figure 4) in each
convolutional block. Therefore, the filters in all red convolutional layers in each convolu-
tional block have the same sequence of filter importance scores, and the filters with the same
index in these layers will be absorbed, pruned, or retained simultaneously. The absorption
pruning algorithm can also implement pruning for all layers of the CenterNet101 backbone.
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Figure 4. Illustration of the pruning strategy for CenterNet101.

The algorithm proposed in this paper is summarized as Algorithm 1:

Algorithm 1 Detailed process of the absorption pruning method.
Input: Pre-trained network with parameter P∗i,j, network with parameter Pi,j when

epoch = 10, training set T, pruning ratio x, absorption training epochs E
Output: Lightweight network

1: Calculate the learning difficulty score of all filters in the pre-trained network:
Di,j =

∥∥∥Pi,j − P∗i,j
∥∥∥

1
2: Sort all training difficulty scores of the ith convolutional layer in ascending order to

obtain the score set D∗i
3: Calculate the pruning ratio η∗i of the ith convolution layer according to Equation (8)
4: Obtain the filter score threshold D∗i,θ , where θ =

⌈
η∗i card(D∗i )

⌉
5: Select all filters with scores lower than the threshold D∗i,θ to obtain the masks of

each layer,

maski,j =

{
1, Di,j < D∗i,θ
0, Di,j ≥ D∗i,θ

6: for epoch = 1; epoch < E; epoch ++ do
7: Loss∗ ← f orward(P∗i,j, T) according to Equation (3).
8: Backward(Loss∗, P∗i,j)
9: Update P∗i,j

10: Prune all selected filters.
11: Fine-tune to restore network performance
12: return P∗i,j

4. Experiments and Discussions

Experiments were carried out to verify the effectiveness of the proposed absorp-
tion pruning method. The detailed experimental settings are introduced in Section 4.1.
Section 4.2 details the performance of the pre-trained network and the pruning results of
the absorption pruning method at different pruning ratios. Sections 4.3–4.5 describe the
effectiveness verification experiments for different functional modules of the absorption
pruning method. In Section 4.6, the absorption pruning method is compared with other
state-of-the-art network pruning methods in order to further verify its effectiveness. Hy-
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perparameter selection experiments for the pruning ratio adjustment method are detailed
in Section 4.7. In addition, partial object detection visualization results of the pruned
lightweight network are shown and analyzed in Section 4.8.

4.1. Implementation Details
4.1.1. Data Sets

According to the imaging band, visible light remote sensing and SAR remote sensing
are the most important means of earth observation for spaceborne or airborne platforms.
In order to verify the effectiveness of the proposed absorption pruning algorithm on the
object detection network in remote sensing imagery, we conducted experiments on two
typical remote sensing object detection data sets: the SAR image data set SSDD [25] and
the visible light remote sensing image data set RSOD [45].

The SSDD data set contains 1160 images and 2456 ships, with an average of 2.12 ships
per image. The data are mainly from slices of RadarSar-2, TerraSAR-X, and Sentinel-1.
The spatial resolution of the images is 1–15 m, and the average size of the images is
500 × 500 pixels. Figure 5 (Right) shows an image from the SSDD data set. Furthermore,
in the experiments in this paper, the samples in the SSDD data set were randomly divided
into training, test, and validation sets in a ratio of 8:1:1.

The RSOD data set was released by Wuhan University in 2015. It contains four types of
objects: oil tank, aircraft, overpass, and playground. Researchers often use it as a validation
data set for object detection algorithms based on optical remote sensing imagery. Figure 5
(Left) shows an image from the RSOD data set. We mixed the four classes of samples in the
RSOD data set and randomly divided them into training, test, and validation sets in a ratio
of 8:1:1.

Figure 5. Typical remote sensing images. (Left): Optical remote sensing image with airport objects;
(Right): SAR image with ship objects.

4.1.2. Pre-Training

CenterNet101 was trained from scratch on the SSDD and RSOD data sets to obtain the
pre-trained networks. We used the Adam optimizer during training. In addition, the max
number of training epochs was set to 200, and the initial learning rate was set to 1.25× 10−4

and decayed by a factor of 0.1 at the 90th, 130th, and 170th epochs.

4.1.3. Absorption Training and Fine-Tuning

For absorption training, the Adam optimizer was still adopted. The total number of
training epochs was set to 60, and the initial learning rate was set to 1.25× 10−4 and decayed
by 0.1 at the 30th epoch. In the fine-tuning stage, we also used the Adam optimizer and set
the total number of training epochs to 60. It should be emphasized that fine-tuning usually
adopts a lower learning rate. Therefore, the initial learning rate was set to 1.25× 10−6,
and was also decayed by 0.1 at the 30th epoch. It is worth noting that the total number of
training epochs was set to 60 based on our observation of experimental phenomena. In
other words, the selection of these hyperparameters was based on empirical evidence.
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4.1.4. Other Experimental Parameter Settings

In all experiments, the sample batch size for training and testing was set to 8. The Cen-
terNet101 network was used as the pre-trained network for all experiments. Considering
the average size of images in the SSDD data set, the hyperparameter z of the pruning ratio
adjustment method employed in the experiments shown in Sections 4.4 and 4.6 was set to
500, and the pruning ratio adjustment method hyperparameter α was set to 1. The weight
parameter λ of Lossab in Equation (3) was set to 1× 103 for all experiments. In addition,
the detection accuracy mAP used in this paper refers to mAP50.

4.2. Pre-Trained Networks and Pruning Results

According to the training settings in Section 4.1.2, we trained CenterNet101 on the
SSDD and RSOD data sets to obtain the pre-trained networks. The pre-trained CenterNet101
networks achieved an mAP of 91.08% and 88.29% on the SSDD and RSOD data sets,
respectively.

We input these networks into the absorption pruning method for pruning experiments
with different pruning ratios. The pruning results are detailed in Table 1. From the experi-
mental results on the SSDD data set, when the filter pruning ratio was not more than 60%,
the detection performance of the pruned CenterNet101 was significantly better than that of
the pre-trained network. This was because pruning alleviated the over-parametrization
problem of CenterNet101, which reduced over-fitting. In addition, even when 85% of
filters were removed from the pre-trained network, the object detection accuracy of the
pruned network was only 0.58% lower than that of the pre-trained network. However, the
pre-trained network parameters and storage space requirements are ten times larger than
those of pruned networks. These results demonstrate that the absorption pruning method
can effectively compress the DCNNs in SAR ship detection.

From the experimental results on the RSOD data set, it was found that when the
pruning ratio did not exceed 60%, the pruned model networks also obtained better object
detection performance than the pre-trained network. When the pruning ratio was increased
to 85%, the network performance significantly declined after pruning. This phenomenon
indicates that, compared with the SAR object detection task on the SSDD data set, the task
on the RSOD data set—containing four types of optical objects—was more complicated and
required higher network complexity. The overall results demonstrated that the absorption
pruning algorithm proposed in this paper can effectively compress DCNNs for optical
remote sensing object detection.

Table 1. Overall pruning results of the absorption pruning method on remote sensing data sets.

Data Set Pruned Filters (%) Parameters (M) Required Storage
Space (MB) mAP(%)

0 53.58 214.3 91.08
10 43.95 175.8 93.51

SSDD 35 25.57 102.3 92.28
60 12.45 49.8 92.13
85 4.6 18.4 90.50

0 53.58 214.3 88.29
10 43.95 175.8 91.54

RSOD 35 25.57 102.3 92.70
60 12.45 49.8 89.43
85 4.6 18.4 73.50

4.3. Absorption Training Validation Experiment

To verify the effectiveness of the absorption training approach, we used the Center-
Net101 trained on the SSDD data set as the target and selected 10% of the filters, according
to the proposed filter selection criterion, for knowledge absorption training. In order to
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exclude the influence of other factors, the pruning ratio adjustment and fine-tuning were
not enabled in this experiment.

Figure 6 shows the change curves of the loss function during absorption training.
According to the analysis of Equation (3) in Section 3.3, the losshm, losswh, and losso f f are
indicators of network detection performance, while lossab indicates how much the selected
filters contribute to the network. As shown in Figure 6, during the absorption training
process, lossab decreased rapidly while losshm, losswh, and losso f f only fluctuated within a
small range. These results indicate that the selected filters rapidly lost their effect while
the network performance was almost unchanged. It appears that the rest of the network
absorbed the knowledge in the selected filters. It is worth mentioning that, in order to
clearly show the changes in the four losses in the same figure, lossab was multiplied by a
factor of 1× 10−3.
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Figure 6. Changes in training loss during absorption training on SSDD.

In addition, Table 2 provides a comparison of the pruned network detection accuracy
with and without absorption training under different filter pruning rates. It can be seen that
the pruned networks after absorption training could retain most of the detection accuracy
after pruning, while the pruned network without absorption training only retained part of
the detection performance in small-scale pruning; however, when the pruning ratio was
higher than 35%, the pruned network almost completely lost the ability to detect objects.

Table 2. Comparison of pruned network detection accuracy with and without absorption training
under different filter pruning ratios (without fine-tuning).

Pruning Ratio 10% 35% 60% 85%

With absorption training 90.53 88.64 85.20 41.50
Without absorption training 81.08 1.57× 10−6 0 0

These results demonstrate that knowledge absorption training can effectively transfer
the “knowledge” in the selected filter(s) to the rest of the network before pruning, thus
effectively avoiding the performance damage caused by filter pruning.
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4.4. Filter Selection Criteria Validation Experiment

To verify the effectiveness of the proposed filter selection criterion, we used the
CenterNet101 trained on the SSDD data set as the target, and selected 10% of the filters in
ascending, descending, or random order of learning difficulty for knowledge absorption
training. In order to exclude the influence of other factors, the pruning ratio adjustment
method and fine-tuning were not enabled in this experiment.

Absorption training on randomly selected 10% of filters was used as a benchmark.
Theoretically, absorption training on the 10% filters with the lowest learning difficulty
should provide the highest absorption efficiency (i.e., the contribution index lossab of the
selected filter decreases rapidly under the premise that the object detection performance
indicators losshm, losswh, and losso f f of the network remain stable). Meanwhile, absorp-
tion training on the 10% most difficult-to-learn filters is expected to lead to the lowest
efficiency. The experimental results presented in Figure 7 show that the ordering of fil-
ter learning difficulty conformed to our theoretical expectations, proving that the filter
selection criterion proposed in this paper can effectively score the learning difficulty of
filter parameters. In addition, it can be seen, from Figure 7, that the losshm, losswh, and
losso f f values representing the network detection performance also showed a downward
trend as the selected filters gradually lost their function during absorption training. This
phenomenon indicates that the over-fitting problem of the network is gradually alleviated.
Among them, the network (Figure 7a) that conducts knowledge absorption training in
ascending order of filter parameter learning difficulty obtained the highest loss reduction,
the network (Figure 7b) that conducted knowledge absorption training in random order of
the difficulty of filter parameter learning was in second place, and the network (Figure 7c)
that conducted knowledge absorption training in descending order of filter parameter
learning difficulty obtained the worst loss reduction. This phenomenon also demonstrates
that the filter selection criteria proposed in this paper can, indeed, select the most easily
absorbed filter.
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Figure 7. The absorbing training results when selecting filters in ascending, descending, and random
order of learning difficulty: (a) Ascending order; (b) Random order; and (c) Descending order.

In order to further verify the effectiveness of the filter selection criteria proposed in
this paper, the filters of the pre-trained network were pruned in the same ratios according to
the increasing, random, and descending order of parameter learning difficulty, respectively.
Except for the filter selection method, the rest of the experimental settings were kept the
same, and the experiment was carried out on the SSDD data set. After selecting the filters,
the pre-trained network went through the process of absorption, pruning, and fine-tuning.
The accuracies of the obtained lightweight detection networks are given in Table 3.

As can be seen from Table 3, under the condition of the same filter selection ratio,
selecting the easiest-to-learn filters can provide the best lightweight network while selecting
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the most difficult-to-learn filters led to the worst network. These results demonstrate that
the filter learning difficulty evaluation criterion proposed in this paper is reasonable.

Table 3. Verification experiment results regarding the validity of the filter selection criteria.

Order
Pruning Ratio (%)

10 35 60 85

Ascending 93.51 92.28 92.13 90.50
Random 93.29 91.76 90.55 88.98

Descending 92.14 90.81 87.28 85.36

4.5. Pruning Ratio Adjustment Method Validation Experiment

Experiments were also carried out to verify the effectiveness of the proposed pruning
ratio adjustment method. The CenterNet101 trained on the SSDD data set was again used as
the test object. The pre-trained CenterNet101 underwent absorption training, pruning, and
fine-tuning with and without the pruning ratio adjustment method, and finally, lightweight
compressed networks were obtained. Figure 8 depicts the performance of the compressed
networks with and without the pruning ratio adjustment method at different pruning
ratios. It can be seen that the pruning ratio adjustment method specially designed for
remote sensing image object detection enhanced the absorption pruning method. By
analyzing the number of filters in each layer of the compressed networks obtained with and
without absorption pruning, we observed that the method for the pruning ratio adjustment
proposed in this paper can, indeed, help absorption pruning to focus on pruning top
convolutional layers and reduce the pruning of bottom convolutional layers.
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Figure 8. Comparison of CenterNet101 in the absorption pruning with and without the pruning ratio
adjustment method.

4.6. Comparison with Other Pruning Methods

To further verify the effectiveness of the absorption pruning method proposed in this
paper, four network pruning methods were used to prune CenterNet101 for remote sensing
object detection: the classic pruning method L1 [14], APoZ [15], Taylor [16], and the state-
of-the-art (SOTA) pruning method HRank [12]. Under the same pruning rate, L1, APoZ,
Taylor, and HRank adopt the classic pruning pipeline to prune filters in a layer-by-layer
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manner. In this process, L1, APoZ, Taylor, and HRank uniformly pruned eight times and
fine-tuned for 30 epochs after each pruning to restore network performance.

The detailed experimental results are shown in Table 4. It can be seen that the perfor-
mance of the absorption pruning method proposed in this paper was better than that of the
SOTA method and significantly better than those of the classic pruning methods. Moreover,
as L1, APoZ, Taylor, and HRank were designed for pruning optical object classification
networks, they perform worse than expected in remote sensing object detection network
compression tasks. These results demonstrate that the absorption pruning method pro-
posed in this paper is more suitable for the network compression task of remote sensing
object detection and can achieve SOTA performance.

Table 4. Results for experimental comparison of absorption pruning with other pruning methods.

Data Set Method
Pruning Ratio (%)

10 35 60 85

SSDD

L1 [14] 90.10 88.12 85.46 81.82
APoZ [15] 89.44 85.31 76.74 60.40
Taylor [16] 90.12 88.64 86.19 83.28
HRank [12] 91.30 90.35 89.94 85.86
Proposed

absorption
pruning

93.51 92.28 92.13 90.50

RSOD

L1 [14] 85.54 83.22 76.20 62.20
APoZ [15] 83.10 74.72 63.25 51.64
Taylor [16] 86.74 84.35 80.18 70.62
HRank [12] 89.90 86.01 80.69 72.06
Proposed

absorption
pruning

91.54 92.70 89.43 73.50

4.7. Hyperparameter Experiment for Proposed Pruning Ratio Adjustment Method

In order to explore the influence of the values in the hyperparameter combination
of z and α on the absorption pruning method, we fixed the pruning ratio as 60% and
conducted experiments on both the SSDD and RSOD data sets. From the experimental
results shown in Table 5, it can be seen that the absorption pruning method performed
better when the pruning ratio adjustment magnitude α was five. A too-small value of α
cannot take full advantage of the pruning ratio adjustment method, while an excessively
large α will degrade the network performance. When the pruning ratio adjustment fulcrum
z was 300, it was obviously better than when z was 500 and 700. This indicates that, in
the object detection task on remote sensing images, the lightweight network should retain
more filters with a receptive field below 300 while removing more filters with a receptive
field greater than 300. Considering that the input size of the CenterNet101 network is
512 × 512, the size of objects in remote sensing images usually does not exceed 300 × 300.
Therefore, filters with receptive fields exceeding 300 are unnecessary in remote sensing
object detection networks. This phenomenon is consistent with our analysis in Section 3.4
regarding the small size and simple features of remote sensing objects.

Table 5. Effects of different hyperparameter combinations on the absorption pruning method.

Data Set
z = 500 z = 300 z = 500 z = 700

α = 1 α = 5 α = 10 α = 10

SSDD 92.13 92.34 91.38 91.93 91.38 91.16

RSOD 89.43 90.07 86.26 90.18 86.26 87.10
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4.8. Detection Results of the Pruned CenterNet101

To verify the effectiveness of the absorption pruning method proposed in this paper
in eliminating the over-fitting problem, we compared the object detection results of the
lightweight network with 60% of filters pruned against the pre-trained network.

Figures 9 and 10 show the visualized comparison results. As seen from the left image
of Figure 9b, the pre-trained network presented very good detection performance with
a pure sea surface background. In the middle image of Figure 9b, it can be seen that the
pre-trained network had misdetection (only five out of seven ships are detected) and false
alarm (the lines on land are wrongly detected as a ship) problems in the dense near-shore
ship detection scenario. The right image of Figure 9b shows that the pre-trained network
incorrectly detected lakes and lines on land as ships. A similar phenomenon can also be
observed in Figure 10a, where the pre-trained network failed to detect two closely aligned
aircraft and wrongly detected the shadow of an oil tank as the oil tank. However, it can be
seen from Figures 9c and 10b that the lightweight detection networks avoided all of the
above problems and successfully completed the object detection tasks in different complex
scenes. These results prove that the absorption pruning method proposed in this paper not
only can retain the detection ability of the pre-trained network but also effectively alleviates
the over-fitting problem of the pre-trained network.

(a)

(b)

(c)

Figure 9. Comparison of object detection results between pre-trained network and pruned lightweight
network on SSDD data set: (a) input images; (b) object detection results for the pre-trained network;
and (c) object detection results for the pruned lightweight network.
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(a)

(b)

Figure 10. Comparison of object detection results between pre-trained network and pruned
lightweight network on RSOD data set: (a) object detection results for the pre-trained network,
and (b) object detection results for the pruned lightweight network.

5. Conclusions

In this paper, we proposed a filter pruning method specifically for object detection
networks in remote sensing imagery. Unlike the classical iterative pruning pipeline used by
existing pruning methods, we innovatively proposed a four-step pruning pipeline that only
needs to be executed once. Considering the particularity of the proposed pruning pipeline,
we designed a criterion for the selection of filters that are easy to learn rather than selecting
unimportant filters, as in existing pruning methods. In addition, we innovatively proposed
a pruning ratio adjustment method based on the object characteristics in remote sensing
images in order to optimize the design of the pruning method. The experimental results
of the absorption pruning method on the SSDD data set indicated that the parameters of
the pruned network were less than 10% of that in the pre-trained network, while the object
detection accuracy was only reduced by 0.58%. In addition, on both the SSDD and RSOD
data sets, the network performance was improved by more than 1% after the absorption
pruning method removed 60% of the filters from the pre-trained network. These results
demonstrate that the proposed absorption pruning method can effectively remove the
redundant parameters in the remote sensing object detection network, thus eliminating the
over-fitting problem.
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