remote sensing

Article

LightFGCNet: A Lightweight and Focusing on Global Context
Information Semantic Segmentation Network for Remote
Sensing Imagery

Yan Chen !, Wenxiang Jiang 1'*{7, Mengyuan Wang !, Menglei Kang 2, Thomas Weise !, Xiaofeng Wang 2,

Ming Tan 2, Lixiang Xu 2, Xinlu Li 2

check for
updates

Citation: Chen, Y,; Jiang, W.; Wang,
M.; Kang, M.; Weise, T.; Wang, X.;
Tan, M.; Xu, L.; Li, X.; Zhang, C.
LightFGCNet: A Lightweight and
Focusing on Global Context
Information Semantic Segmentation
Network for Remote Sensing
Imagery. Remote Sens. 2022, 14, 6193.
https://doi.org/10.3390/1rs14246193

Academic Editor: Emilio Guirado

Received: 21 October 2022
Accepted: 3 December 2022
Published: 7 December 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Chen Zhang 2

Institute of Applied Optimization, School of Artificial Intelligence and Big Data, Hefei University,
Hefei 230601, China

Department of Big Data and Information Engineering, School of Artificial Intelligence and Big Data,
Hefei University, Hefei 230601, China

*  Correspondence: jiangwx@stu.hfuu.edu.cn

Abstract: Convolutional neural networks have attracted much attention for their use in the semantic
segmentation of remote sensing imagery. The effectiveness of semantic segmentation of remote
sensing images is significantly influenced by contextual information extraction. The traditional
convolutional neural network is constrained by the size of the convolution kernel and mainly
concentrates on local contextual information. We suggest a new lightweight global context semantic
segmentation network, LightFGCNet, to fully utilize the global context data and to further reduce
the model parameters. It uses an encoder—decoder architecture and gradually combines feature
information from adjacent encoder blocks during the decoding upsampling stage, allowing the
network to better extract global context information. Considering that the frequent merging of feature
information produces a significant quantity of redundant noise, we build a unique and lightweight
parallel channel spatial attention module (PCSAM) for a few critical contextual features. Additionally,
we design a multi-scale fusion module (MSFM) to acquire multi-scale feature target information. We
conduct comprehensive experiments on the two well-known datasets ISPRS Vaihingen and WHU
Building. The findings demonstrate that our suggested strategy can efficiently decrease the number
of parameters. Separately, the number of parameters and FLOPs are 3.12 M and 23.5 G, respectively,
and the mloU and IoU of our model on the two datasets are 70.45% and 89.87%, respectively,
which is significantly better than what the conventional convolutional neural networks for semantic
segmentation can deliver.

Keywords: remote sensing imagery; semantic segmentation; attention mechanism; global contextual
information; multi-scale fusion; lightweight model

1. Introduction

In contrast to natural images, remote sensing images are taken from the air using satel-
lites or aircraft and are not constrained by geography or spatial location. As a result, they
offer remarkable benefits in areas such as land planning, disaster monitoring, vegetation
monitoring, and urban management [1].

Convolution neural networks (CNNs) with their end-to-end advantages have accel-
erated the development of semantic segmentation since the fully convolutional network
(FCN) was first introduced [2]. The encoder—decoder architecture is used in the majority
of CNNs-based networks. Although first used to segment medical images, Unet [3], a
standard u-shaped encoder—decoder network, is a viable option for semantic segmentation
in remote sensing. Given that it uses skip connections to link the encoder and decoder, it
can fully utilize the contextual information taken at various stages to get more edge details.
Atrous convolution with diverse dilation rates is implemented in the DeepLab series [4-7],
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which has a better segmentation effect on multi-scale targets. VIT [8] serializes the image to
enable it to comprehend the image from a global perspective, in contrast to CNNs-based
networks, which are biased to focus on local contextual information. Efficient-T [9] is
intended to be lightweight and performs well in the semantic segmentation of remote
sensing images because training VIT involves extensive computational resources.

With the rapid development of aerospace and sensor technologies, researchers can
easily and quickly obtain high-resolution orthorectified aerial images. This increases the
number of multi-scale and multi-class objects in the remote sensing image dataset, bringing
the collected images closer to the actual scene. Consequently, the semantic segmentation
of remote sensing images faces the issue of an imbalanced intra-class scale and inter-class
distribution. As shown in Figure 1, five various scales of objects are presented in the
cropped high-resolution remote sensing image. From the whole dataset, the distribution of
large-scale objects, such as buildings and impervious surfaces, accounts for the majority,
while there are only a few small-scale targets, such as cars and backgrounds. In addition,
the area defined by the red dashed line in Figure 1 reveals that the majority of the target
borders in the remote sensing images are irregular, making it extremely challenging to
identify the image boundary features. In remote sensing images, instances of the same
class have situations in which features such as color, shape, and texture vary greatly, which
leads to the network’s misclassification.

Dlmperwous .bulldlng D low - tree D o . clutter/

surfaces vegetation background

Ground Truth

Figure 1. A high-resolution remote sensing sample image and the corresponding ground truth from
the ISPRS Vaihingen dataset. The red circle shows the irregularity of the target boundary in the
remote sensing images.

The semantic segmentation of remote sensing images presents unique challenges
due to the complexity of the segmentation context and the similarity of attribute traits
among objects. Therefore, the network must pay close attention to the global context and
boundary details as it extracts features. The downsampling procedure of max-pooling can
be used to transform high-resolution feature maps into low-resolution feature maps and
is employed to extract semantic information to lower the computational cost and extend
the receptive field of CNNs. However, this can lead to the loss of some spatial information.
An increasingly popular method for dealing with this issue is to use skip connections
in a higher layer to fuse with the feature information from a lower layer. CGNet [10]
combines contextual data from earlier stages at each successive level but ignores a large
amount of noise that might be generated after frequent fusion. HRCNet [11] uses the high-
resolution and low-resolution branch fusion of HRNet [12] to enhance the edge accuracy.
Furthermore, remote sensing images store more information than natural images, yet some
redundant information may decrease the segmentation effectiveness of the network. The
final recovered features will likewise have a lot of noise after many convolution steps. By
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assigning different weights to the feature map dimensions, the attention mechanism can
help mitigate this effect of noise on segmentation and bring focus to the crucial details [13].
Channel attention, for instance, can produce an attention mask on the channel dimension
to identify the key channels. At the feature map level of each channel, spatial attention is
employed to filter out noise and emphasize the pixels that need to be prioritized.

Based on the research mentioned earlier, our suggested approach iteratively fuses
feature information derived from neighboring stages of the encoder to improve the global
contextual knowledge of the network. We introduce new channel and spatial attention
components to maintain the payoff dimensions via mean and median operations. Then,
the crucial channels and pixels extracted based on trainable weights are chosen. As a novel
approach to multi-dimensional screening, we construct a channel spatial attention module
by coupling channel attention with spatial attention in parallel. Compared to other attention
modules that use a single attention mechanism, our attention module is able to select key
information independently for both space and channel. At the same time, we choose a
combination of median and mean to retain features, which can retain more balanced feature
information than other attentional methods. In addition, for multi-scale targets, most of the
multi-scale features are currently extracted by parallel atrous convolutions. We add a multi-
scale fusion module in the middle of the decoder and use a serial concatenation of atrous
convolution and standard convolution with different atrous rates. It is able to capture more
semantic information while reducing the level of downsampling and obtaining a larger
receptive field. The following is a brief overview of our most important contributions:

o  We propose the lightweight semantic segmentation network, LightFGCNet, which
prioritizes global contextual information by fusing feature information of varying
resolutions multiple times.

e  We develop a simple and effective parallel channel spatial attention module (PC-
SAM), which is a redesigned version of the previously existing channel attention and
spatial attention modules that now work together in parallel to reduce noise from
multiple fusions.

e  Inspired by the atrous spatial convolution pooling pyramid, we construct a multi-scale
fusion module (MSFM), geared towards the needs of the premise of fewer parameters,
to extract more multi-scale information and increase context information.

2. Related Work
2.1. Contextual Information

The accuracy in the semantic segmentation of remote sensing images can be improved
by gathering additional contextual information. Chen et al. [14] describe the significance
of image context in boosting accuracy. Expanding the receptive field of the kernel is one
method of capturing contextual information. By combining the characteristics of the pooling
layers, the earliest FCN can already acquire contextual information during upsampling,
although this method of increasing the receptive field at the expense of some spatial details
is not optimal. The atrous spatial pyramid pooling (ASPP) is a novel module in DeepLab
V2 developed to collect multi-scale contextual data. Because of the sparse sampling and the
limited number of pixels used for calculation, the atrous convolution results in a significant
loss of semantic association among adjacent pixels. DenseASPP [15] adapts the concept of
dense connection from DenseNet [16] to ASPP, expanding the receptive field by increasing
the number of sample points at the expense of processing resources.

Another example is HRNet, which maintains the integrity of the high-resolution
branches of the network while empowering its low-resolution branches to exchange context
via a combination of features. To record the context of the feature map, SRANet [17]
creates a semantic relationship aware module (SRAM) based on a self-attention mechanism
and makes a separable space convergence pyramid (SSCP) to collect multi-scale context
information. Through bidirectional information propagation, PSANet [18] can adaptively
learn context on a point-wise basis. SPN [19] builds a linear propagation model of rows
and columns to record dense and global pairwise associations in images. Models for
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deep representation learning that rely on graph message forwarding are also available.
DGMN [20] dynamically predicts filtering weights and a relation matrix based on node
conditions to disseminate background context among feature nodes. MSDAE [21] is based
on a multi-scale denoising autoencoder model that combines information from multiple-
scale representations of reconstructed spectral features.

In this research, we create a simple network design. Additionally, using skip connec-
tions, the context data from the previous encoder stage is continuously fused in the decoder
to capture more global contextual information. We also include a multi-scale fusion module
for extracting multi-scale contextual content in the decoder.

2.2. Attention Mechanism

It is the primary function of the attention mechanism to give greater emphasis to
those components that have been identified as requiring special care. Channel attention
adaptively modifies the channel dimension weights to direct the attention of the network
to the important objects. In order to improve feature representation, the earliest squeeze-
excitation (SE) module first introduced in SENet [22] is used to capture correlations between
channel dimensions. The issues that exist in both the squeeze and excitation parts of the SE
block are mitigated by subsequent channel attention modules. For example, the problem
that the global average pooling in the squeeze of the SE block is too simplistic to obtain
global information is addressed in GsoPNet [23] as follows. In the squeeze phase, the
number of channels is decreased via 1 x 1 convolution, a covariance matrix is computed
for each set of channels to determine their correlation. Finally, the covariance matrix is
normalized row by row. The connection between channels in ECANet [24] is calculated
using a 1D convolution. The k-nearest neighbor approach is used to regulate the complexity
of the model, which only takes into account the interaction between neighboring channels.
FcaNet [25] proved that the global average pooling (GAP) is a special case of the discrete
cosine transform (DCT), and based on this, the GAP was extended to the frequency domain,
thus proposing a multispectral channel attention framework.

The ability to focus on key locations of the feature maps can be thought of as an
adaptive mechanism of spatial attention. In RAM [26], a recurrent neural network (RNN)
and reinforcement learning are used to train the network to recognize which features merit
its focus. RAM is the pioneering application of RNN for focusing on computer vision tasks.
Sub-networks are used in STN [27] to define the predicted regions of interest. GENet [28]
refers to those who implicitly predict soft masks using sub-networks in order to identify
key regions. Thanks to its lightweight and simple features, the attention module can be
plug-and-play into most networks. Channel attention and spatial attention are often used to
fuse and enhance multi-scale feature information in building extraction in remote sensing
field. MAP-Net [29] innovatively uses parallel multi-path networks to extract multi-scale
information and to further improve the accuracy of building boundaries and small-scale
targets, and an adaptive fusion of multi-scale information based on the channel attention
module is introduced. The authors of [30] extract fine building boundaries while optimizing
structural features. At the same time, the structural features are optimized and the channel
attention enhancement module is added to the multi-scale feature extraction network to
retain more multi-scale features.

In the research, we integrate channel spatial attention into our LightFGCNet to reduce
the noise resulting from multiple feature fusions. Based on the attention mechanism,
PCSAM narrows the feature map down to the most important dimensions and then uses
linear regression to learn and update the weights of the dimensions. In terms of parameter
reduction, it outperforms the standard attention module. Without interfering with one
another, different branches of PCSAM can independently choose the parts of interest.
Incorporating the two branches allows for the simultaneous filtering of the channel and
spatial-based information. Parallel fusion prevents offsets in the information collection
brought on by the earlier operation.
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2.3. Lightweight Model

Currently, available models that achieve superior segmentation results have a large
number of parameters and extensive computational resources. One of the focuses of the
study is on developing lightweight models. A channel split module and a channel shuffle
module are included in ShuffleNetV2 [31], located before and after the residual blocks.
To find the best activation function and expansion rate of the inverse residual block at
various depths, MobileNetV3 [32] combines a neural architecture search algorithm with
other optimization techniques. This is in contrast to MobileNeXt [33], which makes use
of the traditional bottleneck architecture of mobile networks and a depth-wise separable
convolution method.

Due to the limitations of hardware computing capabilities and memory, the majority of
semantic segmentation of remote sensing images involves cropping high resolution images
into lower resolution image patches. However, cropping the image into smaller patches
results in the loss of long-range background information and restoring prediction findings
to the full size results in further delays. The efficient and lightweight MKANet [34] uses
sharing kernels for this purpose to simultaneously and equally process scale-inconsistent
ground segments and also employs parallel and shallow architectures to improve infer-
ence speed. LWIBNet [35] uses an efficient encoder—decoder structure as a skeleton to
achieve a balance between computational resource consumption, computational speed,
and segmentation accuracy. UnetFormer [36] chooses the lightweight ResNet18 [37] as an
encoder and adds a global-local attention mechanism to the transformer-based decoder to
model global and local information for urban scene segmentation. RSR-Net [38] employs
three basic units with a small number of parameters for building extraction from remote
sensing images and uses the SE module to assign weight channels to these features before
deep and shallow features are fused. MFALNet [39] adopts the asymmetric depth-wise
separable convolution residual units to reduce parameters and obtain a better tradeoff
between segmentation accuracy and computational efficiency while solving the large size
of high-resolution remote sensing images and complexity problems.

Inspired by the above method, we select the depth-wise separable convolution instead
of standard convolution and reduce the number of channels in the convolutional layers per
basic block in an effort to minimize the number of parameters in our network.

3. Methodology
3.1. LightFGCNet

In the semantic segmentation of remote sensing images, global contextual information
plays a significant role. Generally speaking, merging low-level elements with high-level
semantic features can boost the extraction of global contextual information while decreasing
the loss of spatial information owing to downsampling. After each upsampling in the
decoder, UNet improves the contextual information by fusing the feature map data from
the same resolution size in the encoder. This serves as inspiration for LightFGCNet,
which adapts the spatial pyramid pooling (SPP) [40] strategy in the decoder based on
minimizing the number of network parameters. The architecture of the LightFGCNet
is shown in Figure 2. The encoder consists of five convolutional blocks, each with two
convolutional layers, followed, respectively, by a batch normalization layer and a ReLU
activation function. The number of channels is doubled after each convolution block while
the feature map is halved in size. In the decoder, we use bilinear interpolation upsampling
to expand the feature map size by a factor of two and then concatenate the feature map
information from the previous stage in the last dimension, thus allowing the network to
focus on more contextual information. Since the concatenation operation introduces the
problem of channel number explosion, in order to further reduce the number of parameters
in the model, we use the convolution of the 1 x 1 kernel size to change the number of
channels to the previously fused encoder’s feature map channels. The feature map size at
each stage is visualized in Figure 1. Because noise would be produced by several fusions,
we employ PCSAM to filter it out. PCSAM aids the model in obtaining more relevant
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because the dataset often includes objects of varying scales. Smaller-scale automobiles, for
instance, make up a small portion of the dataset. Consequently, an MSFM is implemented
in the decoder to enhance the network segmentation accuracy. Furthermore, we employ
depth-wise separable convolution rather than standard convolution to further reduce the
number of parameters.
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Figure 2. The architecture of LightFGCNet.

3.2. PCSAM

PCSAM connects two attention modules in parallel and normalizes them with the
ReLU activation function, as shown in Figure 3a. In addition, we also considered the effect
of serial connection in the ablation study, and Figure 3b shows the way to connect the
two attentions in series. Figure 4 shows the detailed structure of the two attention modules
of PCSAM, and Figure 4a is the channel attention module. We reshape the input feature map
from X€ REXhxwxc o Rbxexhw tq reduce the dimension more conveniently and capture the
weight information on the channel dimension. The median and mean values are calculated
on the last dimension, respectively, which are used to reduce the dimension and obtain
the global information of the feature map. The size of the feature map becomes b x c.
After concatenating the two feature maps obtained in different ways, linear regression is
performed on the feature maps using two groups of learnable parameters, a; and Bi. At
the same time, the number of channels is followed by a recovery to the number of input
feature map channels. Finally, the nonlinearization result is obtained through the Sigmoid
activation function and is multiplied element by element with the input feature map X to
obtain a new feature map after channel attention screening. The overall process is expressed
by the formula:

Y=X® U(ocﬁConcute (Median(X),Mean(X)) + ,le) 1)

where Y denotes the output feature map, X denotes the input feature map, ® denotes
element-wise multiplication, o denotes the Sigmoid activation function, Concate represents
concatenation in the last dimension of the feature map, Median denotes the median in the
last dimension, Mean means the average in the last dimension, and a} and | are the two
learnable parameters. Note that the reshaping steps are omitted here.
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Figure 3. Overall structures of PCSAM with parallel and serial connections. (a) PCSAM connected in
parallel; (b) PCSAM connected in serial.
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Figure 4. The detailed structure of PCSAM (a) for the channel attention module and (b) for the spatial
attention module.

Figure 4b shows the improved spatial attention. It is used to capture the pixels that
need attention in the height and width dimensions of the feature map. In this spatial
attention module, we construct two branches for the height and width dimensions, respec-
tively. As can be seen from Figure 4a, the overall structure is similar to that of the channel
attention module, but the dimensionality reduction is performed by averaging over both
branches. The size of the feature maps of the left and right branches after dimensionality
reduction are b X h and b x w, respectively. Then, the learnable parameters are a5, Bh and
ab, BL, respectively. Finally, the weight information learned from the two branches is fused
and reshaped into the size b x h x w of the input feature map, and then weighted in a
point-by-point multiplication to obtain the feature map screened by the spatial attention
mechanism. The overall process is expressed by the formulas:

Y, = U(wé Mean(X) + ;812) ()
Y, = (T(océ Mean(X) + ,B’:;,) (3)
Y=X® (Yl X Yz) (4)

where Y; and Y; denote the output weights of the two branches, i.e., the result af-
ter applying attention to the height and width dimensions of the feature map, respec-
tively; ® denotes element-wise multiplication; o denotes the Sigmoid activation function;
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and ab, ucé, Bl and [Sg are all learnable parameters. Note that the step of reshaping is
omitted here.

3.3. MSFM

The structure of MSFM is depicted in Figure 5, where each convolution is followed
immediately by an atrous convolution. The atrous rates used in this design are 2, 6,
8, and 10. Specifically, a skip connection is made between the input of each standard
convolution and the output of the atrous convolution, allowing for a greater concentration
on contextual details. It concatenates all feature maps created by atrous convolution in
the final dimension simultaneously to obtain feature information at various scales. As a
result, the entire multi-scale fusion process has been completed. The module helps to focus
on the global information at a given level and to prevent the loss of too much location
information owing to the downsampling operation by serially connecting the layers with
varying dilation rates in order to limit the number of downsampling and obtain a larger
receptive field. The MSFM is set in the middle of the decoder architecture. With the noise
reduced or eliminated thanks to the work of the first two PCSAMs, the ability of the MSFM
to pick out and record informative multi-scale features is improved.

 dd. r:L ’ﬂ )

2]

lr=6

©

© Concatenate

@ Element-wise Sum
Figure 5. The detailed structure of MSFM.

4. Experiments and Results
4.1. Datasets

We chose the ISPRS Vaihingen [41] and WHU Building datasets [42], two open-source
datasets for remote sensing image semantic segmentation, to measure the performance
of our LightFGCNet. Examples of the dataset are shown in Figure 6. Impervious surface
(white), buildings (blue), low vegetation (cyan), trees (green), cars (yellow), and background
(red) make up the six types of terrain features in Vaihingen, a small village with many
different types of buildings. The WHU Building dataset sponsored by Wuhan University is
a selection of high-resolution photos clipped from aerial imagery obtained with the New
Zealand Land Information Services and its labels include both background (black) and
buildings (white).

4.1.1. ISPRS Vaihingen Dataset

There are a total of 33 images in the ISPRS Vaihingen dataset, with resolutions ranging
from 1996 x 1996 to 3816 x 2550 pixels. With 9 cm of spatial resolution for both the
top-level orthophoto image and the digital surface model (DSM) that is built from it using
dense image matching algorithms, each image is retrieved from the bigger original. The
DSM is in a single-band of TIFF format, while the remote sensing image format is 8-bit
TIFF consisting of three bands, i.e., near-infrared, red, and green. The entire dataset is
divided into a training set of 16 images and a test set of 17 images. To assist the training
and evaluation of the model, we cropped each image into several small patches with a
resolution of 384 x 384 pixels. There are 817 and 2219 patches in the training set and test
set, respectively. It should be noted that, to minimize the effect of cropping, the adjacent
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patches in the training set are generated with 72 pixels overlap and 192 pixels for the
patches of the test set.

impervious low clutter/
O I buiding [ B vee [J cor M M background  [] building

surfaces vegetation background
Figure 6. Example images and labels of ISPRS Vaihingen (left) and WHU Building (right) datasets.

4.1.2. WHU Building Dataset

The WHU Building dataset was published by the Photogrammetry and Computer Vi-
sion (GPCV) research team led by Shunping JI at Wuhan University. = About
22,000 buildings with an original ground resolution of 0.075 m are included in the WHU
Building dataset. Currently, the images are resampled to a ground resolution of 0.3 m and
are cropped into 8188 images of 512 x 512 pixels, with 4736 images used as the training set,
1036 as the validation set, and 2416 images as the test set.

4.2. Experimental Setup and Evaluation Metrics

The Adam optimization function and the cross entropy loss function are chosen for
all experiments. The learning rate is initialized to 0.001. If there is no improvement in
the loss value on either the training or validation set after five epochs, the learning rate
is decreased to 0.1 times the current value. The training is stopped if there is still no
improvement after 50 epochs. Our experiments are based on Windows 10, Python 2.7,
TensorFlow 2.9, and NVIDIA GeForce RTX 3060. The number of parameters and floating
point operations (FLOPs) is used to measure the complexity of the networks, and the
mean F1 score, overall accuracy (OA), and mean intersection over union (mloU) are used
to measure the effectiveness of the segmentation results. These metrics are calculated

as follows:
2 x Precision x Recall

F1= Precision 4+ Recall ' ®)

Precision = 7TPTFP ; (6)

Recall = 7TPZ—PFN; @)

ol = ot ®)
TP+ TN

0A= 5 ©)

where P, N, TP, TN, FP, and FN represent the positive, negative, true positive, true negative,
false positive, and false negative pixels in the prediction map, respectively. The precision is
the proportion of TPs in the total positive prediction. The recall represents the percentage
of TPs over the total positive pixels. The F1 score is the weighted average of recall and
precision, which involves both FP and FN. The IoU is the intersection of the prediction and
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ground truth over their union of the image and the OA represents the ratio of the number
of correctly predicted pixels to the total number of pixels.

4.3. Ablation Study

We conduct ablation tests on the Vaihingen dataset to show the viability of our method.
LightFGCNet-C48 is used as the default architecture for all trials, where ‘C48’ indicates
the number of output channels of the first stage, i.e., 48. All other hyperparameters
are also set to be consistent. In this section, we will evaluate the effectiveness of our
proposed LightFGCNet, including three aspects: the parallel channel spatial attention
module (PCSAM), the multi-scale fusion module (MSFM), and the channel number of
basic blocks.

4.3.1. Parallel Channel Spatial Attention Module

To reduce noise, LightFGCNet combines two attention modules into a PCSAM. We
conduct experiments to further examine how the type of attention module used and the
method to combine two attention modules affect the network performance: (1) channel
attention only (LightFGCNet-channel), (2) spatial attention only (LightFGCNet-spatial),
(3) serial connection of two attention modules (LightFGCNet-serial), and (4) parallel connec-
tion of two attention modules (LightFGCNet-parallel). Figure 3 demonstrates the different
ways of connecting channel attention and spatial attention. When comparing the effect of
one of the modules, it is sufficient to remove the corresponding module from it.

According to the experimental findings in Table 1, our suggested LightFGCNet per-
forms better than other forms when using parallel channel and spatial attention. There
is a 1.83% increase in mean F1 and a 1.58% improvement in OA compared to when only
spatial attention is used. Compared to conventional channel attention, mean F1 and OA
are also enhanced by 1.12% and 0.59%, respectively. The importance of channel attention in
the LightFGCNet network is noticeably greater than that of spatial attention. One possible
explanation is that the ability of spatial attention may be diminished as a result of the
network downsampling more frequently and losing more spatial position information.
Nevertheless, the results demonstrate that the performance of employing two attentions
is substantially better than using only one, experimentally demonstrating the necessity of
selecting both the channel and spatial dimensions of the feature map. Moreover, the parallel
connection enhances mean F1 and OA by 0.5% and 0.4%, respectively, when compared to
the serial connection. In comparison to the serial connection, in which the output of the
second attention module is dependent on the output of the first, the parallel connection
enables the two modules to independently complete the weight filtering of their respective
dimensions and obtain the fully filtered feature maps by summing, albeit at the expense of
a small reduction in computational efficiency.

Table 1. The ablation study of the attention module. The bold indicates the best data.

Method Mean F1 (%) OA (%)
LightFGCNet-channel 81.05 84.97
LightFGCNet-spatial 80.34 83.98

LightFGCNet-serial 81.67 85.16
LightFGCNet-parallel 82.17 85.56

To demonstrate that our proposed PCSAM can fully function in the decoder, we
replace and compare our PCSAM with the classical SE [22] and CBAM [43] and the recent
ECA [24] attention module, respectively. Table 2 shows the performance of different
attentions in our network, where w/o denotes without any attention module. SE and ECA
are channel attention modules, while CBAM can be regarded as a serially arranged channel
spatial attention module. From the table, it can be seen that the mean F1 and OA are
improved by 1-2% after adding attention compared to the no-attention module. Adding
PCSAM improves mean F1 and OA by 1.33% and 0.78%, respectively, compared to CBAM,
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which proves from another aspect that parallel channel spatial attention is more effective
compared to serial one. In addition, compared with adding only the channel attention
module, the performance of further improvement is not significant after adding the channel
spatial attention module. It is evident that channel attention plays a more important role in
the network.

Table 2. Ablation experiments on different attention comparisons, the w/o indicates no PCSAM. The
bold indicates the best data.

Method Mean F1 (%) OA (%)
+w/o 80.86 84.49
+ECA 81.41 84.96

+SE 81.69 85.05

+CBAM 80.84 84.78

+PCSAM(ours) 82.17 85.56

4.3.2. Multi-Scale Fusion Module

The MSEM suggested in LightFGCNet is intended to direct the attention of the network
toward additional multi-scale features. Therefore, we designed a comparative experiment
to evaluate its effectiveness. LightFGCNet-w /o is for LightFGCNet without the MSFM,
whereas LightFGCNet stands for the complete network.

Table 3 shows the F1 scores of the network with and without MSFM for each category
in the Vaihingen dataset. The results demonstrate that the addition of the MSFM improves
the F1 in each category by approximately 1%, particularly in the small sample and small-
scale car F1 by 1.94%. This is advantageous for remote sensing imagery datasets, where the
distribution of category scales is usually unbalanced. By extracting the feature map layer
by layer using atrous convolutions with varying dilated rates, the network is able to collect
multi-scale feature information as well as advanced semantic information. This resulted in
an improvement in F1 across all categories, particularly for small target objects.

Table 3. Ablation study of the multi-scale fusion module, the w/o indicates no MSFM. The bold
indicates the best data.

Pre_Class F1-Score(%)

Method Mean F1
etho Impervious . Low (%)
Surfaces Building Vegetation Tree Car
LightFGCNet-w/o 86.75 90.19 75.93 83.51 67.95 80.87
LightFGCNet 87.91 91.47 77.26 84.31 69.89 82.17

4.3.3. Channel Number of Basic Block

To strike a good balance between the number of parameters and the experimental
result, we selected a network with 48 output channels for the initial stage. We also take
into account how different numbers of channels might affect the efficiency of the net-
work. Therefore, we switched to 32 and 64 channels in another ablation test, denoted as
LightFGCNet-C32 and LightFGCNet-C64, respectively.

Table 4 shows the experimental results of LightFGCNet with various numbers of
channels. With 48 channels, the number of parameters and FLOPs is roughly half as
high as with 32 channels and the mean F1 and OA are improved by 1.19% and 1.07%,
respectively. The FLOPs of the network with 64 channels are 17.8G more than those of
the network with 48 channels. However, the mean F1 and OA only improved by 0.99%
and 0.91%, respectively. This illustrates the minor benefit given to the network simply by
increasing the number of channels in the feature map. LightFGCNet-C64 requires more
hardware resources for training and lengthening training time per epoch but achieves
slim segmentation performance enhancement. LightFGCNet-C48 is used since it is less
computationally intensive while still providing adequate segmentation accuracy.
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Table 4. Ablation study of the channel number. The bold indicates the best data.

Method Mean F1 (%) OA (%) Parameters (M) FLOPs (G)
LightFGCNet-C32 80.98 84.49 1.48 10.7
LightFGCNet-C48 82.17 85.56 3.12 23.5
LightFGCNet-C64 83.16 86.47 4.71 41.3

4.3.4. Comparison of Encoders

In this paper, our proposed method uses an encoder consisting of a few simple convo-
lutional blocks. To further reduce the number of parameters, we used depth-wise separable
convolutions. Our encoder achieves an effective balance between feature extraction and
the number of parameters. In addition, to adequately perceive the advantages of the
proposed decoder compared to other decoder architectures, we replaced the encoder with
ResNet50 [37] for comparison. Table 5 shows the quantitative results under different en-
coders. As can be seen from the table, when we replaced the encoder with ResNet50,
the mean F1 and OA are very close to our proposed method, and even the mean F1 of
LightFGCNet is improved by 0.26%, which proves that our proposed decoder is simple
and efficient. Through comparison with the ResNet50 feature extraction, followed by direct
bilinear interpolation upsampling, it can be seen that the performance of the network is
greatly improved by adding the decoder.

Table 5. Comparison of different encoders on our method with direct bilinear interpolation upsam-
pling. The bold indicates the best data.

Encoder Decoder Mean F1 (%) OA (%)

ResNet50 standard 76.34 82.22

ResNet50 ours 81.91 85.51
ours ours 82.17 85.56

4.4. Comparison with State-of-the-Art Models

We undertook comparative experiments on the Vaihingen dataset and WHU Building
dataset, respectively, to evaluate the performance of LightFGCNet with other state-of-the-
art networks. FCN, UNet, DeeplabV3+, BiseNetV2 [44], SMAF-Net [45], SCAttNet V2 [46],
MF-Dfnet [47], SRANet [17], ASGASN [48] ESFNet [49], AttsegGAN [50], and CFENet [51]
have been selected for the comparison.

Table 6 provides quantitative results from a variety of classical methodologies, and
although SMAF-Net is the top performer for OA and mean F1, our proposed LightFGCNet-
C48 improves mloU by 5.17%. Compared to the classical lightweight approach BiseNetV2,
which has the fewest parameters and FLOPs, our proposed method achieves improve-
ments of 5.9% in OA, 8.66% in mean F1, 9.04% in recall and 10.83% in mIoU. In addition,
LightFGCNet-C48 has a lower number of parameters and FLOPs compared to other classi-
cal approaches. The highest recall and mloU demonstrate that our proposed strategy is
superior in identifying the proper class of pixels. In general, it is able to obtain excellent
performance with a lesser number of parameters and computational complexity. Table 7
displays the F1 Score for each category, mean F1, and mloU within the Vaihingen dataset.
Compared with other methods, LightFGCNet performs well on all classes of objects, which
illustrates the suitability of the network for multi-objective semantic segmentation.
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Table 6. Performance comparison on the Vaihingen dataset. The bold indicates the best data.

Recall mloU o Mean F1 Parameters FLOPs

Method (%) (%) OA (%) (%) ™) ©G)

FCN 83.09 68.24 84.60 80.47 12.72 72.0

UNet 83.03 69.03 84.70 81.10 8.23 67.8

DeeplabV3+ 83.36 68.01 84.71 80.21 14.35 79.9

BiseNetV2 75.62 59.62 79.66 73.51 2.98 9.15
SMAF-Net [45] - 65.28 88.45 86.91 - -
SCAttNet V2 [46] - 70.20 85.47 82.06 - -
MF-Dfnet [47] 83.46 - 86.2 84.36 14.34 -
SRANet(50) [17] - 66.34 86.27 77.95 - -

LightFGCNet-C48 84.66 70.45 85.56 82.17 3.12 235

Table 7. mloU, F1, and mean F1 on the Vaihingen dataset. The bold indicates the best data.

Pre_Class F1-Score(%)

Method mloU(%) Impervious . Low Mef,‘“ F1

Surfaces Building Vegetation Tree Car (%)
8

FCN 68.24 86.83 90.53 76.12 83.88 65.02 80.47
UNet 69.03 87.42 91.25 75.17 83.33 68.34 81.10
DeeplabV3+ 68.01 87.04 90.76 76.02 83.89 63.33 80.21
BiseNetV2 59.62 81.96 84.73 70.41 80.89 49.56 73.51
SMAF-Net [45] 65.28 91.80 94.30 81.25 83.95 83.24 86.91
SCAttNet V2 [46] 70.20 89.13 90.34 80.04 80.31 70.50 82.06
MEF-DENet [47] - 88.8 93.1 78.4 84.0 77.5 84.36
SRANet(50) [17] 66.34 88.52 92.04 78.96 85.72 79.21 77.95
LightFGCNet-C48 70.45 8791 91.47 77.26 84.31 69.89 82.17

To evaluate the applicability of LightFGCNet in a variety of sectors, we also examined
more conventional approaches on the WHU Building dataset. Table 8 displays the indicated
values for recall, IoU, and F1 for buildings. The recall, F1, and IoU are increased by 7.13%,
7.55%, and 12.4%, respectively, when compared to the traditional lightweight network
BiseNetV2. In comparison to ESFNet, another lightweight network used for building
extraction, there is a rise of 4.53% in our IoU. The published ESFNet does not provide the
other evaluation indicators. The F1 and IoU of our proposed approach perform better
than UNet, another baseline network, by a margin of 0.65% and 0.82%, respectively. It
is demonstrated on another dataset that our proposed method is able to provide state-
of-the-art performance in terms of both the computational complexity and segmentation
performance of the network.

Table 8. Recall, IoU, and F1 on the WHU Building dataset. The bold indicates the best data.

Method Recall (%) F1 (%) ToU (%)
FCN 93.57 93.91 88.51
UNet 94.33 94.21 89.05
DeeplabV3+ 93.77 93.39 87.60
BiseNetV2 87.44 87.31 77.47
ASGASN [48] 95.1 94.4 89.4
ESFNet [49] - - 85.34
AttsegGAN [50] - 94.35 89.07
CFENet [51] - 92.62 87.22
LightFGCNet-C48 94.57 94.86 89.87

5. Discussion

The parameters and FLOPs of the conventional networks on the Vaihingen dataset are
provided in Table 7. Measurements provided by SMAF-Net and SCAttNet lack parameters
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and FLOPs. With the exception of BiseNetV2, we can see that our approach has the fewest
parameters and FLOPs. The number of parameters and FLOPs are 0.14 M and 14.35 G
higher than BiseNetV2, respectively. Moreover, LightFGCNet outperforms BiseNetV2 in
terms of mloU on the Vaihingen dataset, with a rise of 10.83%. Therefore, our proposed
LightFGCNet can obtain higher segmentation accuracy with less computational complexity
compared to other methods. To a certain extent, it has a modest number of parameters,
which is significantly fewer than traditional semantic segmentation networks.

Figure 7 illustrates several ground truth images versus the outputs of FCN, UNet,
DeeplabV3+, BiseNetV2, and the suggested network on Vaihingen. The red dashed lines
mark the more obvious differences between the predicted images compared with the
ground truth values. It is evident from the figure that our proposed strategy may greatly
minimize the likelihood of misclassification in both multi-category and less-category sce-
narios, as shown by the prediction results of the five samples for different methodologies.
Meanwhile, the segmentation’s border details are more finely sharpened. The experimental
results show that the efficiency of remote sensing image semantic segmentation can be
enhanced by paying attention to contextual details.

low . tree D car . clutter/

vegetation background

Input image Ground Truth FCN UNet DeeplabV3+ BiseNetV2 LightFGCNet

Figure 7. Prediction images of different methods on ISPRS Vaihingen. The red dashed lines mark the
more obvious differences.

Figure 8 depicts the prediction results of a selection of approaches on the WHU Build-
ing dataset, with the bigger deviations denoted by red dashed lines. The first two samples
demonstrate the capability of our approach to segment tiny targets. Light-FGCNet is able
to accurately identify and segment small-scale targets when other conventional approaches
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mis-segment or segmentation is uncertain. The middle two samples demonstrate the seg-
mentation performance on the finer features of large-scale objects. When compared to other
lightweight networks, our approach allows for more distinct details around the apparatus’s
edges. The final example demonstrates segmentation performance when dealing with
numerous complex backgrounds. With a focus on the merging of contextual information
and PCSAM noise filtering, LightFGCNet can distinguish small-scale targets from the
background with accuracy and LightFGCNet is able to accurately detect small-scale targets
from the background. Figure 8 demonstrates that our proposed method has a sharper
edge contour than existing methods. This is due to the fact that LightFGCNet pays greater
attention to the extraction of global contextual features and that merging high-resolution
feature information might yield more boundary details. It can be seen that there is still
potential for improvement in the segmentation of smaller pieces towards the perimeter of
the building in comparison to the labels.

Input image Ground Truth FCN UNet DeeplabV3+ BiseNetV2 LightFGCNet

Figure 8. Prediction images of different methods on the WHU Building dataset. The red dashed lines
mark the more obvious differences.

6. Conclusions

In the research, we proposed a novel CNN-based semantic segmentation network for
remote sensing images. In contrast to the semantic segmentation of natural images, which
is often accomplished using a single scale and a uniform distribution of characteristics
across all objects, the targets in remote sensing images are typical of multiple scales and
unevenly distributed. Therefore, contextual features play a significant role in the semantic
segmentation of remote sensing images. Our lightweight network LightFGCNet focuses
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on global contextual information in place of CNN, which mostly deals with local infor-
mation. LightFGCNet-C48, which uses 48 channels, not only achieves high segmentation
performance but also has fewer parameters. The parallel-connected PCSAM can efficiently
perform filtering in both channel and spatial dimensions. In addition, based on our experi-
mental findings, the MSFM is effective in addressing issues of class imbalance and multiple
scales. As a whole, our proposed method achieves very good performance on the ISPRS
Vaihingen and the WHU Building datasets. Despite the fact that it achieves improved
results on the performance of multi-scale targets segmentation and boundary details, there
is still potential for enhancement in LightFGCNet’s computational cost. In our future work,
we will further focus on this research direction.
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