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Abstract: The Kunlun–Pamir Plateau is a globally irreplaceable biodiversity reserve, yet it is still
unclear what causes the distribution of species richness. Here, we relied on the productivity and
the water–energy dynamics hypotheses to investigate the distribution pattern of species richness
(and its determinants) in the Kunlun–Pamir Plateau. The productivity hypothesis is mainly based on
five MODIS products (NDVI, EVI, FPAR, LAI and GPP), which were calculated for three Dynamic
Habitat Indices (DHIs): (1) cumulative productivity (CumDHI), (2) minimum productivity (MinDHI)
and (3) intra-annual variation productivity (VarDHI). The CumDHI was applied to assess whether
or not more energy has a higher species richness value. The MinDHI was used to determine and
evaluate the higher minimums, leading to a higher species richness. The VarDHI was the annual
variation value in productivity and was utilized to assess if the reduced intra-annual variability
triggers a higher species richness. We found that the DHIs based on the FPAR correlated slightly
higher with the mammal, bird, breeding bird and non-breeding bird richness (than those based on the
other four DHIs, and the values were 0.24, 0.25, 0.24 and 0.01, respectively). The correlation between
the climate variables and the mammals, birds, breeding birds and non-breeding birds was bigger at
0.24, 0.54, 0.54 and 0.02, respectively, and was mainly dominated by the precipitation-related climatic
factors. The water–energy dynamic hypothesis is better suited to the Kunlun–Pamir Plateau than the
productivity hypothesis. Our results might provide valuable information regarding the biodiversity
conservation in this region.

Keywords: species richness; dynamic habitat index; productivity hypothesis; water–energy dynamic
hypothesis; Kunlun–Pamir Plateau

1. Introduction

The high value species richness means a rich regional biodiversity. The research of
species richness is the basis for constructing evolutionary, ecological models and conserva-
tion strategies [1,2]. The global species richness has decreased during the last decades [3],
and this trend will continue [4]. Several theoretical hypotheses, such as the productivity
hypothesis [5,6], water–energy dynamic hypothesis [7,8], ambient energy hypothesis [9,10],
cold tolerance hypothesis [8,11] and the metabolic theory of ecology [12–14], were used
to explain the distribution patterns of species richness. Among those hypotheses, the
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productivity hypothesis and the water–energy dynamic hypothesis were the most widely
used. The productivity hypothesis suggests that the higher the productivity, the higher
the species richness [5,6,15,16]. The main idea of the water–energy dynamics hypothesis
(sometimes referred to as the moisture hypothesis) showed that the large-scale patterns of
species richness are determined by a combination of water and energy [7]. The energy in
this hypothesis is usually expressed by the potential evapotranspiration, temperature or
moisture. The water is generally referred to as liquid water and is commonly expressed as
the annual rainfall of a region [7,17]. Some studies have applied climate data to present
energy and moisture variables [18,19].

Satellite observations provide a rich, long-time series of vegetation productivity prod-
ucts. They can be used to test the productivity hypothesis [20,21]. The Moderate Resolution
Imaging Spectroradiometer (MODIS) data collected by NASA’s Terra and Aqua satellites
offered various products. This could be utilized for species richness assessments at different
scales and include the vegetation indices, such as the Normalized Difference Vegetation
Index (NDVI) and Enhanced Vegetation Index (EVI)), Leaf Area Index (LAI) and Frac-
tion of absorbed Photosynthetically Active Radiation (FPAR), as well as Gross Primary
Productivity (GPP). The most suitable productivity products vary from region to region.
The NDVI and EVI belong to the same MODIS vegetation dataset. The NDVI is the best
indicator of vegetation growth status and vegetation cover; however, overfitting exists in
densely vegetated areas due to nonlinear transformations. The EVI improves on NDVI
saturation. The FPAR and LAI are based on reflectance values of up to seven MODIS
spectral bands, while the NDVI and EVI are based on two and three bands, respectively, so
the FPAR and LAI provide a closer proxy for vegetation productivity than the NDVI and
EVI. GPP products are mainly calculated using FPAR, light and effective radiation (PAR),
as well as other surface meteorological data from remote sensing inversion using a light
energy utilization model, which is good information for monitoring vegetation growth.
Five MODIS products allow a multifaceted and more comprehensive analysis of their
relationship with species richness [22]. The Dynamic Habitat Indices (DHIs) based on the
productivity hypothesis theory can be calculated from the MODIS products to demonstrate
the distribution of species richness [23,24]. It has been proven that these correlate well with
the species richness [22,25,26]. The DHIs comprise three indicators: the cumulative an-
nual productivity (CumDHI), minimum productivity (MinDHI) and productivity variation
(VarDHI). A good correlation between these indices and the species richness was confirmed
on the local and global scales [22,26–32]. For example, the biodiversity in China has been
detected by the FPAR-derived DHIs [31]. In the United States, the bird species richness
correlated with the FPAR-derived DHIs on grasslands, while it denoted a better correlation
with the LAI-derived DHIs on woodlands [22]. In Russia, FPAR-derived DHIs combined
with climatic variables seemed promising to predict the abundance of large ungulates such
as moose [32]. On a global scale, the multiple regression used GPP-derived DHIs that also
adequately described the distribution of species richness [26]. The species richness was
simultaneously impacted by a combination of various factors and processes but varied
significantly across the scales and regions.

The Kunlun–Pamir Plateau is adjacent to the Tibetan Plateau, which constitutes the
second-highest plateau in the world. It is located in the arid zone and is also an irreplaceable
global biodiversity reserve. Its substratum is a complex, sensitive and vulnerable area
for the global climate and environmental change [33]. Additionally, it has a continental
alpine environment with long winters, a scarce precipitation, mainly bare land and desert
grasslands. However, there is still a lack of research on the spatial distribution of species
richness and their causes at this plateau.

Our goal was to use the productivity hypothesis based on DHIs and the water–energy
dynamic hypothesis based on bioclimatic factors to explain the species richness distribution
of the Kunlun–Pamir Plateau. Specifically, we sought (1) to derive and describe the DHIs at
a 500 m resolution from the MODIS vegetation products on the Kunlun–Pamir Plateau and
(2) to analyze the applicability of these two hypotheses in the area.
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2. Data and Methods
2.1. Data
2.1.1. MODIS Data

The MODIS products used to calculate the DHIs included the NDVI, EVI, FPAR, LAI
and GPP in both 8- and 16-day composites and at a 500 m resolution (Table 1). All products
from 2001 to 2020 were downloaded from the Application for Extracting and Exploring the
Analysis Ready Samples (AEEARS) https://appeears.earthdatacloud.nasa.gov/ (accessed
on 14 July 2022). These are all related to the vegetation productivity and could be used to
validate the application of the productivity hypothesis [22,25,26].

Table 1. MODIS products used to calculate the DHIs.

Index Name Platform Temporal
Resolution (Day)

Spatial
Resolution (m)

NDVI MOD13A1 Terra 16 500
EVI MOD13A1 Terra 16 500

FPAR MOD15A2H Terra 8 500
LAI MOD15A2H Terra 8 500
GPP MOD17A2HGF Terra 8 500

2.1.2. Species Richness

The species richness data were downloaded from the website BiodiversityMapping.org
(https://biodiversitymapping.org/index.php/download/ (accessed on 7 August 2022)) [34–36].
They are also from the IUCN [37] (http://www.iucnredlist.org (accessed on 7 August 2022))
and Birdlife International (http://datazone.birdlife.org/species/requestdis (accessed on
7 August 2022)) [38]. The maps currently comprise mammals, birds, breeding birds and
non-breeding birds. Its spatial resolution is 10 × 10 km with the Eckert IV equal-area
projection. Maps represent native extant species only.

2.1.3. Climatic Data

The climatic data are used from Worldclim version 2.1 with a spatial resolution of 30′′

and include 19 bioclimatic variables (https://www.Worldclim.org/data/Worldclim21.html
(accessed on 24 May 2022)) for 1970–2000. It was released in January 2020. The first
eleven variables (BIO1–11) were applied to characterize the energy, and the last eight ones
(BIO12–19) were selected to describe the water factors. The variation in vegetation was also
impacted by the climate variables (Table 2).

Table 2. Nineteen Worldclim Bioclim variables used to test the water–energy dynamics hypothesis.

Variables Description

Energy factor

BIO1 Annual Mean Temperature
BIO2 Mean Diurnal Range
BIO3 Isothermality
BIO4 Temperature Seasonality
BIO5 Max Temperature of Warmest Month
BIO6 Min Temperature of Coldest Month
BIO7 Temperature Annual Range
BIO8 Mean Temperature of Wettest Quarter
BIO9 Mean Temperature of Driest Quarter
BIO10 Mean Temperature of Warmest Quarter
BIO11 Mean Temperature of Coldest Quarter

Water factors

BIO12 Annual Precipitation
BIO13 Precipitation of Wettest Month
BIO14 Precipitation of Driest Month
BIO15 Precipitation Seasonality
BIO16 Precipitation of Wettest Quarter
BIO17 Precipitation of Driest Quarter
BIO18 Precipitation of Warmest Quarter
BIO19 Precipitation of Coldest Quarter

https://appeears.earthdatacloud.nasa.gov/
https://biodiversitymapping.org/index.php/download/
http://www.iucnredlist.org
http://datazone.birdlife.org/species/requestdis
https://www.Worldclim.org/data/Worldclim21.html
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2.2. Methods
2.2.1. Calculation of the DHIs

First, the 8-day and 16-day NDVI, EVI, FPAR and LAI products were synthesized
into monthly data using the maximum synthesis method [22,26,39]. Then, the CumDHI,
MinDHI and VarDHI were calculated for these indices from 2001 to 2021.

The CumDHI is the sum of the production values for one year. Since it signifies the
number of annually available resources that could provide animals with resources such as
food, it might indirectly indicate the species abundance [40]. Here, the calculation of the
DHI for FPAR is applied as an example, and its equation is shown below:

CumDHI = ∑month
MAXlayer, FPAR (1)

where the layer refers to the monthly data.
The MinDHI stands for the minimum extent of vegetation cover in one year and

represents the minimum capacity within one year. It could denote the minimum accom-
modation of food and habitat resources during a year [40]. It is calculated by means of the
following equation:

MinDHI = MIN
{(

MAXlayer,Fpar

)
month...

}
(2)

where VarDHI stands for the variation of the production values in one year. It refers to
the natural resources associated with the habitat quality, such as food, water, nutrient
substances, etc. within the year, and it might reveal the characteristics of the organisms’
activity trajectory [28]. The following equation calculates the VarDHI:

VarDHI = STD
{(

MAXlayer,FPAR

)
month...

}
(3)

where MAXlayer,FPAR refers to the maximum FPAR value for one month, and the month
indicates the 12 months of the year. MIN and STD represent the minimum and standard
deviation of the maximum monthly value of FPAR for one year. The above-mentioned
equations were applied to the NDVI, EVI, FPAR and LAI. The GPP was computed by
replacing the maximum values with the cumulative values in the three equations.

2.2.2. Statistical Analysis

The Spearman correlation was utilized to quantify the degree of interchangeability
between the same MODIS products-based DHI and different MODIS products. In order
to verify whether or not climate variables impacted the DHIs (CumDHI, MinDHI and
VarDHI), we performed a correlation analysis of the DHIs with 19 Bioclim variables. All
correlation analyses were based on a random sample of 10,000 of the 1 km DHIs and
bioclimatic variable pixels with the “no data” set to zero [22,26].

We computed the Spearman rank correlations of species richness, DHIs and Bioclim
variables, and scatter plots were produced for visualization purposes. Multiple linear
regression models estimated the dependent variables using the most available combinations
of various independent variables to make the results more trustworthy. We conducted
multiple linear regression analyses to predict the species richness based on two hypotheses,
and the relative contribution of each model was conducted by hierarchical partitioning
analyses using the R package hier.part [41]. The analysis was based on a sample of 10,000
of the 10 km resampled DHIs and Bioclim variables. The root mean square error (RMSE)
and the adjusted coefficient of determination (R2 adj) were used to evaluate the overall
predictive power of a model under 95% confidence intervals.
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3. Results
3.1. Distribution Patterns of DHIs

In the Kunlun–Pamir Plateau region, the spatial changes in the distribution of the
cumulative DHI, minimum DHI and variation DHI values are rather insignificant. However,
various MODIS products demonstrated different distribution patterns (Figure 1a–f). The
DHIs of the same MODIS vegetation dataset indicated positive correlations. The correlation
between the cumulative DHIs and the minimum DHI was moderately intense, except in the
case of GPP, in which the correlation between the cumulative DHI and minimum DHI was
rather small (0.23). The Spearman rank correlation ranged from 0.50 to 1. The correlations
of variation DHIs with a cumulative DHI and minimal DHI were 0.43 to 1 and 0.21 to 0.81,
respectively. The correlation between the GPP variation DHI and minimal DHI was 0.21
(Figure 2).

Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 16 
 

 

We computed the Spearman rank correlations of species richness, DHIs and Bioclim 

variables, and scatter plots were produced for visualization purposes. Multiple linear re-

gression models estimated the dependent variables using the most available combinations 

of various independent variables to make the results more trustworthy. We conducted 

multiple linear regression analyses to predict the species richness based on two hypothe-

ses, and the relative contribution of each model was conducted by hierarchical partition-

ing analyses using the R package hier.part [41]. The analysis was based on a sample of 

10,000 of the 10 km resampled DHIs and Bioclim variables. The root mean square error 

(RMSE) and the adjusted coefficient of determination (R2 adj) were used to evaluate the 

overall predictive power of a model under 95% confidence intervals. 

3. Results 

3.1. Distribution Patterns of DHIs 

In the Kunlun–Pamir Plateau region, the spatial changes in the distribution of the 

cumulative DHI, minimum DHI and variation DHI values are rather insignificant. How-

ever, various MODIS products demonstrated different distribution patterns (Figure 1a–f). 

The DHIs of the same MODIS vegetation dataset indicated positive correlations. The cor-

relation between the cumulative DHIs and the minimum DHI was moderately intense, 

except in the case of GPP, in which the correlation between the cumulative DHI and min-

imum DHI was rather small (0.23). The Spearman rank correlation ranged from 0.50 to 1. 

The correlations of variation DHIs with a cumulative DHI and minimal DHI were 0.43 to 

1 and 0.21 to 0.81, respectively. The correlation between the GPP variation DHI and min-

imal DHI was 0.21 (Figure 2). 

 

Figure 1. The spatial patterns of three DHIs derived from (a–c) the NDVI, (d–f) LAI, (g–i) GPP, (j–

l) FPAR and (m–o) EVI. 
Figure 1. The spatial patterns of three DHIs derived from (a–c) the NDVI, (d–f) LAI, (g–i) GPP,
(j–l) FPAR and (m–o) EVI.

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 16 
 

 

 

Figure 2. Spearman rank correlations and scatter plots among the three DHIs derived from the five 

MODIS products. It represents a correlation matrix for cum–min–var with scatter plots on one side 

of the diagonal and correlations on the other side. Significant relations: *** p < 0.001. 

The DHI correlations from different vegetation datasets were uneven. Some of corre-

lations were also nonlinear (Figure 2). The Spearman rank correlations of the same vege-

tation products (e.g., NDVI- and EVI-based DHIs) were higher than the ones between the 

DHIs based on different vegetation products (e.g., FPAR- and GPP-based DHIs). The 

highest correlations values were noticed between the FPAR- and LAI-based DHIs (from 

0.78 for the minimum DHI to 1 for the cumulative and variation DHI). The correlations 

between the cumulative and variation DHIs based on the GPP, FPAR and LAI were also 

substantial (Figures 2 and 3). The GPP-based DHI correlated the least with the DHI based 

on other vegetation products, except the cumulative and variation LAI, with a minimum 

DHI correlation of 0.11. 

Cumulative DHI Minimum DHI Variation DHI 

 

Figure 3. Spearman rank correlations and scatter plots among the three DHIs derived from various 

MODIS products. Significant relations: *** p < 0.001. 

Due to the high correlation between FPAR-based DHIs and species richness, we se-

lected FPAR-DHIs for the subsequent work analysis (Tables 3 and S1–S4). Most of the 

correlations between the FPAR-based DHIs and the climate dataset were weak (Figure 4), 

indicating that the DHIs possibly provide various information. The highest Spearman 

rank correlation value with the energy factor was −0.13 (BIO4, Temperature Seasonality) 

Figure 2. Spearman rank correlations and scatter plots among the three DHIs derived from the five
MODIS products. It represents a correlation matrix for cum–min–var with scatter plots on one side of
the diagonal and correlations on the other side. Significant relations: *** p < 0.001.

The DHI correlations from different vegetation datasets were uneven. Some of cor-
relations were also nonlinear (Figure 2). The Spearman rank correlations of the same



Remote Sens. 2022, 14, 6187 6 of 15

vegetation products (e.g., NDVI- and EVI-based DHIs) were higher than the ones between
the DHIs based on different vegetation products (e.g., FPAR- and GPP-based DHIs). The
highest correlations values were noticed between the FPAR- and LAI-based DHIs (from
0.78 for the minimum DHI to 1 for the cumulative and variation DHI). The correlations
between the cumulative and variation DHIs based on the GPP, FPAR and LAI were also
substantial (Figures 2 and 3). The GPP-based DHI correlated the least with the DHI based
on other vegetation products, except the cumulative and variation LAI, with a minimum
DHI correlation of 0.11.
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Due to the high correlation between FPAR-based DHIs and species richness, we
selected FPAR-DHIs for the subsequent work analysis (Tables 3 and S1–S4). Most of the
correlations between the FPAR-based DHIs and the climate dataset were weak (Figure 4),
indicating that the DHIs possibly provide various information. The highest Spearman rank
correlation value with the energy factor was −0.13 (BIO4, Temperature Seasonality) during
the cumulative DHIs. Regarding the water factor, the highest Spearman rank correlation
measured 0.07 (BIO13, the wettest month).

Table 3. Coefficient of determination between the individual FPAR-based DHIs of the four main taxa.
Significant relations: ** p < 0.01; *** p < 0.001.

Cumulative DHI
R2 Adj RMSE Minimum

DHI R2 Adj RMSE Variation
DHI R2 Adj RMSE All DHIs

R2 Adj RMSE

Mammals 0.12 *** 7.03 0.03 *** 7.38 0.12 *** 7.04 0.14 *** 6.98
Birds 0.20 *** 37.10 0.04 *** 40.59 0.19 *** 37.42 0.25 *** 36.73

Breeding birds 0.20 *** 34.95 0.05 *** 38.17 0.18 *** 35.40 0.24 *** 34.66
Non-breeding

birds 0.00 *** 18.97 0.00 ** 19.01 0.00 *** 18.98 0.01 *** 18.97

3.2. Species Richness and Productivity Hypothesis

The high density of a species is mainly spread in the marginal regions of the Kunlun–
Pamir Plateau, characterized by relatively small areas (Figure 5). The dense distribution
of species is primarily detected in the frontier areas of the Kunlun–Pamir Plateau, with
relatively small but insignificant differences in species’ abundance in the central region
(Figure 5). The species richness correlated positively with the cumulative DHI based on the
FPAR for all four categories, with the Spearman rank correlation coefficients amounting
to 0.36, 0.39, 0.39 and 0.08 for mammals, birds, breeding birds and non-breeding birds,
respectively. However, there was also a considerable dispersion noticeable. The minimum
DHI based on the FPAR predicted that the species richness was higher when the minimum
DHI based on the FPAR was larger. In this case, the positive correlation coefficients
were 0.19, 0.22, 0.22 and 0.04 for mammals, birds, breeding birds and non-breeding birds,
respectively. The scatter plots of the minimum DHI based on the FPAR versus the species
richness for the four taxa were similar to those of the cumulative DHI based on the FPAR
and variation DHI based on the FPAR. The variation DHI based on the FPAR predicted that
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the species richness would be higher when there was less variability. However, because
most parts of the Kunlun–Pamir Plateau region are bare land and desert steppe, the species
richness was higher when the environmental conditions were more variable. Indeed,
the variability in the Kunlun–Pamir Plateau region correlated positively with the species
richness for all four taxa, with positive correlation coefficients of 0.36, 0.4, 0.4 and 0.08 for
mammals, birds, breeding birds and non-breeding birds, respectively. This implies that, for
all four taxa, high values of the variability DHI based on the FPAR indicate a high species
richness variation.

Furthermore, the three DHIs based on the FPAR complement each other (Figure 6 and
Table 3). A hierarchical partitioning analysis of the multiple regression models showed
that all three DHIs based on the FPAR contributed considerably to the explanation of the
overall variability in species richness. The cumulative DHI based on the FPAR was the
most critical variable in each regression model, followed by the varDHI based on the FPAR
and MinDHI based on the FPAR. According to the regression models, birds demonstrate
the most explanatory power, and non-breeding birds exhibit the least explanatory power
among these four categories (Figure 6).

3.3. Species Richness and the Water–Energy Dynamics Hypothesis

The climatic factors affected the distribution of the species richness in the Kunlun–Pamir
Plateau region (Table 4). Among the bioclimatic variables, BIO12, -14, -17 and -19 denoted the
highest rank correlation coefficients in species richness. Although the differences between the
four variables were not statistically significant, BIO17 demonstrated the highest rank corre-
lation coefficient regarding the species richness. Spearman’s rank correlation coefficients
with the BIO17 Precipitation of the Driest Quarter measured 0.61, 0.73, 0.72 and 0.14 for
mammals, birds, breeding birds and non-breeding birds, respectively. The higher BIO17
corresponded to a larger species richness. Among the four taxa, the birds and breeding
birds demonstrated more substantial Spearman rank correlation coefficients with climate
factors as compared to the mammals and non-breeding birds.

We noticed that all BIOs (12, 14, 17 and 19) contributed more to the overall richness
variability in the multiple linear regression. A hierarchical partitioning analysis of the
multiple regression models showed that the four bioclimatic variables’ influence comple-
mented the definition of the overall richness variability. BIO17 identified as being the most
important for mammals and birds, while BIO14 was the most striking for the breeding
birds and non-breeding birds. The minimum DHI was the least effective for all models.
Among the significant taxa, the breeding bird’s regression model explained most of the
variation in species richness (Figure 7 and Table 4).

3.4. The Combined Effect of the Productivity Hypothesis and Water–Energy Dynamics Hypothesis
on Species Richness

The productivity hypothesis and water–energy dynamics hypothesis explained the
distribution of species richness in the Kunlun–Pamir Plateau from a different aspect
(Figure 8). Combining the two hypotheses could help to fully understand the species
richness distribution in the Kunlun–Pamir Plateau. Our analysis of the combination of two
hypotheses demonstrated that the explanatory power of the multiple regression models
on species richness improved when compared to the single regression models based on
each hypothesis separately, except for the non-breeding birds (Table 5). In particular, the
model improved from 0.24 to 0.32 for mammals, 0.54 to 0.66 for birds and 0.54 to 0.65 for
breeding birds. The multiple regression model’s hierarchical partitioning analysis revealed
that all seven influences played a key role when explaining the overall variability in species
richness. BIO17 identified the most significant species richness regressions for the mam-
mals, birds and breeding birds, while BIO12 was the most important for the non-breeding
birds. The minimum DHI based on the FPAR was the least crucial for all models. The
regression model for birds mainly justified the species richness variation among the four
taxa (Figure 9).
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Table 4. Coefficient of determination between the Bioclim variables (BIO12, BIO14, BIO17 and BIO19)
and four main taxa. Significant relations: * p < 0.05; *** p < 0.001.

BIO12
R2 Adj RMSE BIO14

R2 Adj RMSE BIO17
R2 Adj RMSE BIO19

R2 Adj RMSE The Four
BIOs R2 Adj RMSE

Mammals 0.24 *** 6.54 0.20 *** 6.70 0.23 *** 6.59 0.21 *** 6.65 0.29 *** 6.32
Birds 0.54 *** 28.12 0.49 *** 29.60 0.53 *** 28.48 0.52 *** 28.91 0.61 *** 25.82

Breeding birds 0.54 *** 26.55 0.49 *** 27.92 0.52 *** 27.07 0.50 *** 18.85 0.60 *** 24.69
Non-breeding

birds 0.02 *** 18.84 0.02 *** 18.86 0.02 *** 18.85 0.02 * 18.85 0.02 *** 18.82
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Table 5. Coefficient of determination between the four Bioclim variables (BIO12, BIO14, BIO17 and
BIO19), as well as the FPAR-based DHIs to the three significant relations: *** p < 0.001.

Four BIOs and Three FPAR-Based DHIs
R2 Adj RMSE

Mammals 0.32 *** 6.18
Birds 0.66 *** 24.34

Breeding birds 0.65 *** 23.28
Non-breeding birds 0.02 *** 18.82
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4. Discussion
4.1. The Application of the Productivity Hypothesis

Revealing the species richness patterns is essential for the biodiversity, especially for
the conservation of endangered species in the Kunlun–Pamir Plateau area. However, only a
few studies have focused on the biodiversity in this region. We constructed five DHIs based
on the MODIS NDVI, EVI, FPAR, LAI and GPP data, and we assessed their performance in
the species richness models on the Kunlun–Pamir Plateau. The findings revealed that the
three DHIs (CumDHI, MinDHI and VarDHI) correlated weakly with the species richness,
suggesting that the concept of the productivity hypothesis does not apply well to the
desert plateau locations. Among these four taxa, the explanatory power of the FPAR-based
multiple regression models (for DHIs) was revealed to be weaker when compared to the
application of the DHIs in other regions (Table 3). However, the correlations appeared the
most vital for birds and least worthwhile for the non-breeding birds. Our findings were con-
sistent with the results of other studies [22]. According to earlier research [27,28], the FPAR
captures more subtle changes in the grassland photosynthetic activity; therefore, derived
DHIs perform best regarding the grassland breeding species, and our results support this.
In addition, contrary to other studies, the land cover in the Kunlun–Pamir Plateau region is
dominated by bare land and grasslands, in which the species richness correlated positively
with the VarDHI based on the FPAR, making the results more reasonable. However, the
DHIs based on the FPAR in this study area did not indicate an obvious spatial pattern
relative to the large-scale studies. Moreover, the correlations between the species richness
and the DHIs based on the FPAR were rather small, demonstrating that the applicability
of the DHIs based on the FPAR still needs further testing in relatively sparse vegetated
mountainous areas.
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4.2. The Application of the Water–Energy Dynamic Hypothesis

Understanding the factors affecting the species’ distribution and the diversity patterns
is essential to conserve the regional species richness [11,42]. The water–energy dynamics
hypothesis interpreted the main influencing factors affecting the species in the Kunlun–
Pamir Plateau region regarding energy and moisture. The results showed that the moisture
significantly influenced the species richness more than energy in the Kunlun–Pamir Plateau
area. The correlations between the variables related to the moisture factor, and the mam-
mals, birds, breeding birds and non-breeding birds were 0.29, 0.61 and 0.60, respectively
(Table 4). The moisture had a relatively important influence on the Kunlun–Pamir Plateau
area, which confirmed O’Brien’s conclusion regarding the main influencing factors on the
species richness distribution patterns in arid regions [43]. The water–energy dynamics
hypothesis was applicable to explain the species richness distribution patterns. Moisture is
the main factor affecting the species richness in the Kunlun–Pamir Plateau region due to
the continental alpine climate with sufficient sunshine and low rainfall [44]. As the plateau
continues to warm, the snowpack will decrease or fluctuate, which may significantly impact
the species richness [45]. Therefore, in the Kunlun–Pamir Plateau region, further research
on how climate change effects biodiversity will be essential.

4.3. Limitations

In this study, we investigated the factors that affect the species richness in the Kunlun–
Pamir Plateau region only from the view of two perspectives: the productivity hypothesis
and the water–energy dynamics hypothesis. However, an increasing number of studies
have already shown that the mechanisms underlying the geographic patterns of species
richness are complex and cannot be explained by only one hypothesis [9,11]. Thus, the
productivity and water–energy dynamics hypotheses were joined in this work, and various
regression models were employed to improve the model’s interpretation of species richness.
However, the species richness change was also influenced by land use change, invasive
alien species and other elements [2,46–49]. More factors still need to be considered among
the factors impacting the species richness patterns, such as the topographic factors [50],
human disturbance [47] and spatial correlation [8,51]. Future studies should include more
causal factors for species richness in order to reveal the mechanism that maintains the
species richness distribution pattern of the Kunlun–Pamir Plateau more thoroughly.

5. Conclusions

We analyzed the species richness pattern in the Kunlun–Pamir Plateau region, taking
into account both the productivity hypothesis and the water–energy dynamics hypothesis.

From the aspect of the productivity hypothesis, we investigated the correlation be-
tween the dynamic habitat indices (DHIs) and the species richness in the Kunlun–Pamir
Plateau region. The calculated DHIs by means of five MODIS products correlated less with
the mammal, bird, breeding bird and non-breeding bird richness in the Kunlun–Pamir
Plateau region. The DHIs based on the FPAR data correlated slightly higher with the
mammal, bird, breeding bird and non-breeding bird richness than those based on the other
four MODIS product DHIs. Although the cumulative DHIs based on the FPAR conformed
more with the richness of the four taxa species compared to the variation based on the
FPAR and minimum DHIs based on the FPAR, the multiple regression models for the
three variables associated better with the richness of the four species. However, the DHI
based on the FPAR correlation coefficients with an abundance of mammals, birds, breeding
birds and non-breeding birds were still low, namely 0.24, 0.25, 0.24 and 0.01, respectively.
The birds regression model clarified most of the variations in species richness during the
four taxa.

Regarding the water–energy dynamics hypothesis, the precipitation-related climatic
factors dominate the distribution of species richness on the Kunlun–Pamir Plateau; among
those, BIO12 had the highest correlations with mammals, birds, breeding birds and non-
breeding birds, amounting to 0.24, 0.54, 0.54 and 0.02, respectively, followed by BIO17,
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-19 and -14. Multiple linear regression models (based on four climate factors) raised the
correlations between these factors with the mammals, birds, breeding birds and non-
breeding birds (to 0.29). Furthermore, we noticed that the correlation between the species
richness and the climatic factors was noticeably higher in the Kunlun–Pamir Plateau than
the MODIS-based DHIs. The correlations between the DHIs based on the FPAR and the
climate factors increased to 0.32, 0.66, 0.65 and 0.02, respectively, for the multivariate
linear regression models. The regression model for birds also explained the majority of the
variations in species richness for the four taxa. The water–energy dynamic hypothesis was
more appropriate to the Kunlun–Pamir Plateau region.

In general, by examining the DHIs and the species richness in specific areas, we
suggest a reconstruction of the DHIs appropriate for the region, especially for locations
with relatively small spatial scales. In the context of climate change, our results once again
highlight the significance of monitoring climate fluctuations in the Kunlun–Pamir region
for biodiversity conservation. This will make it easier to evaluate the spatial distribution of
species richness and provide an accurate assessment of that distribution.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14246187/s1: Table S1: Coefficient of determination between
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the individual NDVI -based DHIs of the four main taxa; Table S5: Coefficient of determination
between the individual NDVI -based DHIs of the four main taxa.
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