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Abstract: Marine acoustic sensors can detect underwater acoustic information. The cilium micro-
electro-mechanical system (MEMS) vector hydrophone (CVH) is the core component of the ocean
noise measurement system. The performance of the CVH, especially its self-noise, has received
widespread attention. In this paper, we propose a solution to improve the performance of the CVH
using an array to detect environmental noise in a complex deep-water environment. We analyzed
the self-noise source of the CVH and the noise suppression principle of the four-unit MEMS vector
hydrophone (FUVH). In addition, we designed the pre-circuit of the FUVH, completed the cross-beam
structure by the MEMS processing, and packaged a FUVH. Then, we tested the performance of a
packaged FUVH. Finally, the experimental results show that the FUVH reduces the self-noise voltage
power spectrum by 6 dB compared to the CVH structure. The FUVH achieves better linearity at low
frequencies without reducing the bandwidth and sensitivity. In addition, it minimizes the equivalent
self-noise levels by 5.18 and 5.14 dB in the X and Y channels, respectively.

Keywords: MEMS; ocean ambient noise; acoustic sensor; vector hydrophone; array; self-noise suppression

1. Introduction

Ocean ambient noise is generated by wind and waves, rainfall, ships, marine organ-
isms, human industrial activities, and other factors [1]. All kinds of measuring equipment,
such as sonar systems, unmanned underwater vehicles, and air-dropped sonar buoys
located in the ocean, are disturbed by the noise of the ocean environment, which limits their
performance. Therefore, evaluating ocean ambient noise is an effective way to acquire ocean
information. A buoy system is usually designed to measure and record ocean ambient data.
Figure 1 shows a common ocean ambient noise measurement system realized by a buoy, in
which a vector hydrophone is the core component [2]. The buoy falls at a constant speed
after being released from a vessel. It collects and records ocean ambient noise data when it
reaches the deep sea. After ejecting the load weight, the ocean ambient noise measurement
system can automatically rise to the sea surface. The data can be transmitted to planes or
satellites. After processing, the ocean ambient noise data can be applied to optimize other
equipment data or realize underwater environment monitoring [3].

The vector hydrophone can detect underwater vector information. So, the vector
hydrophone-based ocean noise measurement system can identify the direction of the noise
source [4]. In recent years, the micro-electro-mechanical system (MEMS) process has en-
abled the structure of vector hydrophones to reach the micron level. The advantage of
the smaller size is reflected in many aspects, such as lower cost, lower power consump-
tion, higher reliability, and easier integration. The smaller volume for the ocean noise
measurement system makes the array (linear array, circular array, etc.) more accessible.
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Figure 1. Working sketch of ocean ambient noise measurement system.

Detecting weak and complex noise or signals in an underwater environment is the
biggest challenge for MEMS vector hydrophones today [5]. Since its inception, the cil-
ium MEMS vector hydrophone (CVH) has been continuously improved by increasing
the sensor’s performance. By changing the shape of the cilium, some approaches extend
the sensing area to increase the device’s sensitivity, whereas others increase the number
of measurement dimensions to enable three-dimensional measurement of underwater
information [6–11]. Alternatively, by optimizing the cross-beam, some increase the stress
concentration area to achieve high sensitivity measurement [12], and others increase the
cantilever beam to achieve three-dimensional measurement [13]. The above schemes are
all based on the improvement of a single CVH. At the same time, in 2016, Liu proposed
expanding the CVH through the MEMS process into a four-unit MEMS vector hydrophone
(FUVH) array, where he integrated different lengths of cilia to achieve broadband measure-
ments (20–5000 Hz) [14]. In 2019, Zhang theoretically derived the correlation coefficients
of the individual array units of the FUVH, and the conclusion showed that the four-unit
array could ensure a high degree of output consistency at the current structure size and
operating bandwidth [15]. After that, in 2021, Zhang found that the integration of rigid
ring cilia on the FUVH obtained higher sensitivity than a single CVH [16].

However, the sensor used in the ocean noise measurement system needs to reduce
the self-noise level. Because we can not detect ocean ambient noise levels that are lower
than the self-noise level, suppressing noise from the structure or pre-circuit is our target. In
2019, Petrov reported using a combined receiver instead of a conventional acoustic pressure
hydrophone to improve the signal-to-noise ratio (SNR) [17]. The combined receivers consist
of a hydrophone and a three-component vector receiver. This scheme used complex algo-
rithms to achieve a high SNR ratio. In 2020, Tang suppressed thermal and acoustic imaging
noise utilizing an additive circuit with multichannel amplifiers, and experimentally verified
a 5.547 dB improvement in SNR [18]. In the same year, Yang prepared a 10 × 10 array
MEMS hydrophone based on an AlN piezoelectric film and obtained lower noise than that
of most previously reported MEMS hydrophones [19]. However, this paper only considered
choosing a suitable piezoelectric material, and optimizing the amplification circuit and
matching layer, and did not explain noise reduction from the direction of the array.

In this study, to optimize the performance of the ocean ambient noise measurement
system, we proposed the suppression of the self-noise of the cilia-based MEMS vector
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hydrophone using FUVH. We analyzed the noise sources and the principle of suppression.
Then, we verified the approach experimentally. The FUVH has good performance in terms
of lower noise and vector detection with moderate sensitivity.

2. Sensitivity Principle

The chip of the CVH consists mainly of the sensitive cilium and a cross-beam, the
structure of which is shown in Figure 2. When an acoustic transmission passes through
the hydrophone, the sensitive cilium generates a moment due to the acoustic pressure
difference, which deflects the support block. Because the cross-beam and the support block
are integrated, the deflection of the support block produces deformation in the beam. The
stress at any point on the beam is [20]:

σ(x) = ±
L2 + 3aL− 3x(a + L)
2
3 bt2(L2 + 3aL + 3a2)

(Fx·H) (1)

where L is the length of the beam, a is half the length of the support block’s side, b is the
width of the beam, t is the thickness of the beam, Fx is the force generated by the sound
pressure on the cilium, and H is the height of the cilium.
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Figure 2. The CVH structure. The acoustic wave generates a force Fx on the cilium, which causes the
mass block to drive the beam into deformation. The maximum stresses generated by the deformation
are located at the ends of the beam.

The FUVH is shown in Figure 3. Piezoresistors are distributed at the root of the beam
to obtain the maximum stress and convert the beam’s stress change into resistance change.
The difference in resistance is:

∆R
R

= π·σmax (2)

where π is the piezoresistive coefficient, σmax is the maximum stress.
To output the voltage variation rather than the resistance variation, we connect piezore-

sistors to the Wheatstone bridge. The CVH has two sets of Wheatstone bridges for the X
and Y channels, whereas the FUVH has Wheatstone bridges in eight locations. The voltage
output of a single channel is:

Ux = Uo(
R1 + ∆R1

R1 + ∆R1 + R2 − ∆R2
− R4 − ∆R4

R3 + ∆R3 + R4 − ∆R4
) (3)

where Uo is the bridge input voltage.
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as a Wheatstone bridge.

In the ideal case, the resistance is equal, and the stress at the corresponding position
on the beam is equal. Substituting (2) into (3), the voltage output of a single channel is:

UX = U0·π·σmax. (4)

Then, we can obtain the orientation information of the underwater target by processing
the data of X and Y channels.

3. Noise Analysis
3.1. Electrical Noise

The pre-circuit of the sensor is an essential part of signal acquisition. Minimizing the
electrical noise of the circuit is a vital aspect to be considered in the design of the circuit.

The pre-circuit of the CVH consists of a Wheatstone bridge, an instrumentation ampli-
fier circuit, and a filter circuit. The instrumentation amplifier circuit provides high gain, and
the filter circuit limits the bandwidth of the circuit. The first-stage circuit with high gain
is usually the primary noise source for multi-stage circuits. The equivalent noise source
circuit for the instrumentation amplifier circuit is shown in Figure 4.
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four resistors of the Wheatstone bridge are equivalent to two resistors of value Rp/2 at both ends of
the amplifier.

The resistance thermal noise voltage density generated by the piezoresistors is

DR+ = DR− =

√
4kBT

Rp

2
(5)
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where Rp is the zero-input resistance of the piezoresistors, and the equivalent resistance
of the Wheatstone bridge at the positive and negative ends of the amplifier is Rp/2. The
current noise source of the amplifier converts to voltage noise through the equivalent
resistance, and the voltage density is:

DI+ = DI− = in
RP
2

(6)

where in is the amplifier input equivalent current noise density. Then, the total output noise
voltage density is:

Dout = Av·Din = G
√

D2
R+ + D2

R− + D2
I+ + D2

I− + e2
ni + (eno/G)2 (7)

where Av is the amplifier amplification, eni is the input voltage noise density of the amplifier,
and eno is the output voltage noise density. This value characterizes the electrical noise of
the sensor in the frequency spectrum of the white noise density, which usually determines
the total output noise. On the contrary, flicker noise at low frequencies does not influence
the total output noise, because its bandwidth is too narrow compared to the operating
frequency band of the hydrophone [21].

3.2. Mechanical-Thermal Noise

Electrical noise is usually a critical noise source that makes up the sensor’s self-noise
and determines the sensor’s noise floor. However, for microsensors, mechanical-thermal
noise may set an even higher noise floor [22,23].

MEMS vector hydrophones feature silicon microstructure that are advantageous in
terms of their structural dimensions and sensitivity. The characters make MEMS vector
hydrophones more susceptible to mechanical-thermal noise generated by molecular thermal
disturbance [24]. The spectral density of the mechanical-thermal noise source is given by
the Nyquist relation [25]:

Fn =
√

4kBTR (8)

where Fn is the spectral density of the mechanical-thermal noise source in N/
√

Hz, kB is
the Boltzmann constant in J/K, T is the absolute temperature in K, and R is the damping
constant of the system in N·m/s.

Equation (8) shows that the mechanical-thermal noise is only related to the ambient
temperature and system damping. The damping is a mechanism of energy dissipation,
which, crucially, includes acoustic radiation, anchor losses, thermoelastic damping, and
viscous damping [26]. For cilia-based devices, the hydrodynamic interaction between
the cilia and the fluid (silicon oil in FUVH or CVH) shows viscous damping [27]. This
depends not only on the sensor structure but also on the fluid properties. Anchor losses
can be alleviated by mechanically isolating, and thermoelastic damping as intrinsic damp-
ing relates to material and structure. According to the fluctuation–dissipation theorem,
the system damping gives a path that allows energy to leave a system and introduces
mechanical-thermal noise into this system [23]. The spectral density of mechanical-thermal
noise is a white noise spectrum. The system transfer function shapes the spectral density at
the sensor output. For CVH or FUVH, we can set out the differential equations of motion
for second-order systems [28] as:

..
y + 2ζω0

.
y + ω2

0y =
x
m

(9)

where x is the system input, y is the system output, x and y are both as a function of
displacement with respect to time, m is system equivalent mass, ω0 is the system natural
frequency, and ζ is the system damping ratio, expressed as:
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ζ =
R

2mω0
(10)

Equation (9) can be written as:(
s2 + 2ζω0s + ω2

0

)
Y =

X
m

(11)

H(s) =
Y
X

=
1(

s2 + 2ζω0s + ω2
0
)
m

=
1

ms2 + Rs + ω2
0m

(12)

where H(s) is the sensor system transfer function. The input displacement spectrum density
is [24]:

IMT =

√
4kBTR
mω2

0
(13)

the output displacement spectrum density is:

OMT = H(s)·IMT . (14)

This output is reflected in the movement of the cilia and beam, and is converted to a
voltage by piezoresistors. The output voltage spectrum density is:

DMT = n·OMT (15)

where n is a constant related to the parameters of the cilia and beam, the piezoresistive
coefficient, and the supplier of Wheatstone bridges. As a result, the shape of DMT depends
on H(s). The typical transfer function shape of CVH or FUVH is shown in Figure 5 [28].
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As shown in Figure 5, the peak is caused by the sensor’s resonant frequency. The
curve is almost horizontal, like white noise in the working area.

3.3. Noise Suppression by FUVH

According to the analysis above, the components of the total output noise of a CVH
are white noise and flicker noise, where the effect of white noise is much greater than that
of flicker noise on the total noise. These white noises include the electrical circuit’s thermal
noise and the sensor structure’s mechanical-thermal noise.

As shown in Figure 6, suppose a CVH receives a sound signal and ideally outputs a
signal of amplitude V0. However, the actual output signal consists of white noise VN_wh
and flicker noise VN_f. That signal is then amplified and filtered by the pre-circuit. At the
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same time, the white noise VNC_wh and flicker noise VNC_f of the pre-circuit also add to the
signal. The output signal is:

Vout = Av·V0. (16)

and the output noise is:

VN_out =

√
(Av·VN_wh)

2 +
(

Av·VN_ f

)2
+ VNC_wh

2 + VNC_ f
2. (17)
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Since the contribution of thermal noise is much larger than that of flicker noise over the
whole frequency band in which the sensor operates, VN_out can be approximately equal to:

VN_out ≈
√
(Av·VN_wh)

2 + VNC_wh
2. (18)

Then, substitute the noise spectral density from (7) and (15):

VNC_wh = Dout
√

fth (19)

VN_wh = DMT
√

fth (20)

where fth is the system bandwidth, which is often determined by the low-pass filter at the
last stage of the circuit.

If the output signals of two CVHs detecting at the same position are superimposed by
an adder, as shown in Figure 7, we can obtain:

Vout =
Vout1 + Vout2

2
= Av·V0 (21)

where the result is equal to that of (16). The output noise in this case is:

VN_out =

√
(Av·VN1_wh + Av·VN2_wh)

2 + (VNC1_wh + VNC2_wh)
2

2
. (22)

Since the white noise is irrelevant at any two moments [29], the output noise can be
written as:

VN_out =

√
(Av·VN1_wh)

2 + (Av·VN2_wh)
2 + (VNC1_wh)

2 + (VNC2_wh)
2

2
. (23)

If the two CVHs are the same and the pre-circuit devices are identical, then there are:

VN1_wh = VN2_wh (24)

VNC1_wh = VNC2_wh. (25)
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Ideally, the output noise would be:

VN_out =

√
(Av·VN_wh)

2 + (VNC_wh)
2

√
2

. (26)
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Figure 7. Signal transmission process of two CVHs.

So, ideally, the superposition of two CVHs by an adder reduces the noise by 3 dB
compared to a single CVH, when they have a consistent output signal voltage. Similarly,
four superpositions can reduce the noise by 6 dB and keep the output signal voltage
constant. We designed the pre-circuit based on the above analysis, and the circuit block
diagram of the FUVH is therefore shown in Figure 8.
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Figure 8. The circuit block diagram of the FUVH.

4. Experimental Program

To test the actual effect of FUVH on noise suppression, we fabricated a FUVH. Then,
we prepared the cross-beam structure of the hydrophone, and formed it into a 2 × 2 array
by the MEMS process. The process flow is shown in Figure 9.
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Figure 9. The MEMS process of the FUVH (a–h) and (j) the view of the A-A section; (i) the top view.

The specific steps are as follows: (a) prepare a 4-inch SOI wafer; (b) double-sided
oxide the SOI; (c) RIE etch the oxide layer and carve out the piezoresistors; (d) use low
boron ion implantation to form piezoresistors and anneal repair the damaged lattice;
(e) use reoxidation; (f) ICP etch out the ohmic contact area; (g) use high boron ion implan-
tation to form an ohmic contact, and anneal and double-sided deposit the silicon nitride;
(h) ICP etch the lead hole, and metal sputter to form conductivity; (i) frontal release the
structure; (j) backside release the structure. The completed chip is shown in Figure 10.
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The main parameters of FUVH are given in Table 1.

Table 1. The main parameters of FUVH.

Parameter Description Value (µm)

beam length L 1000
support block’s side length 2a 600

beam width b 120
beam thickness t 40
cilium height H 8000
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Then, the processed hydrophone cross-beam chip is integrated with the same lengths
of cilia [30]. Next, the integrated chip is oil-filled and packaged. Finally, the completed
FUVH is shown in Figure 11.
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Figure 11. Image of the completed FUVH hydrophone.

4.1. Sensitivity Test

As shown in Figure 12, the vector hydrophone test device includes a revolver, a
calibration tube, a signal generator, a power amplifier, an emission transducer, and a data
acquisition card. The FUVH is elastically suspended from the revolver to reduce the impact
of platform vibration [31]. Then, the FUVH is placed at the same liquid level as the reference
standard hydrophone to simplify calculation [32].
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Figure 12. The vector hydrophone test device: (a) the FUVH distance from the water surface is d, and
the reference hydrophone distance from the water surface is d0; (b) the test device and (c) the FUVH
elastically suspended from the revolver.

We used the revolver rotating the FUVH in the X and Y directions, and sensitivity tests
were carried out in both directions using the comparative calibration method [33]. The
emission transducer emitted sound from 10 to 2000 Hz in 1/3 octave steps. We recorded
the output voltage values of the FUVH and its four units using the data acquisition card.
At the same time, we recorded the output voltage values of the standard sound pressure
hydrophone. Finally, we obtained the transducer sensitivity from the following equation:

Mx = 20lg
(

ex

e0

sinkd0

coskd

)
+ M0 (27)

where M0 is the sound pressure sensitivity of the standard sound pressure hydrophone in
the free field, and the value is −170 dB. e0 and ex are the open circuit output voltage of the
standard sound pressure hydrophone and the FUVH, respectively. d and d0 are the depth
of the center of the FUVH and standard hydrophone from the water surface, respectively.
In the actual test, we usually place the FUVH and the standard sound pressure hydrophone
on the same level, d = d0. The results are shown in Figure 13.
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Figure 13. The sensitivity test results: (a) the acoustic pressure sensitivity of the X channel is
−197.3 dB@400 Hz; (b) the acoustic pressure sensitivity of the Y channel is −198.7 dB@400 Hz.
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According to the test results, the FUVH and its four units have a resonance peak of
500 Hz. However, the available frequency band is taken at 2/3 of the resonance peak [28].
In the region of 20–400 Hz, the sensitivity curve has good linearity. As for the four units,
the sensitivity curves overlap approximately. At the same frequency point, the maximum
difference between each unit’s sensitivity is 5.7 dB. As for the FUVH, the sensitivity co-
incides with the average value of the four units, and the maximum difference is 2 dB. As
can be seen, the FUVH has good performance in its operating band, with a sensitivity of
−197.3 dB@400 Hz and better linearity at low frequencies.

4.2. Directivity Pattern Test

In the directivity test, a signal generator generates a signal, and a power amplifier
amplifies it. Then, it makes the emission transducer emit sound while the revolver rotates.
In this way, the FUVH can pick up the sound signal at all angles and output a voltage
signal captured by a data acquisition card. We conducted directivity pattern tests on X and
Y channels of FUVH and its four units. The test frequency was 315 Hz, and the data were
normalized by [34]:

L = 20lg
(

eθ

emax

)
+ |Kd| (28)

where eθ is the output voltage value of the FUVH in any direction, emax is the maximum value
of the FUVH output voltage, and the concave point depth Kd expression of directivity is:

Kd = 20lg
(

emax

emin

)
(29)

where emin is the minimum value of the FUVH output voltage.
We plotted the normalized graph of the tested data in polar coordinates. We could

obtain the directivity plot at the 315 Hz frequency point, the results of which are shown in
Figure 14.
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Figure 14. The results of the directivity pattern test: (a) the concave point depth of the X channel is
41 dB; (b) the concave point depth of the Y channel is 43 dB.

According to the test results, although the directivity of the four units of this FUVH
has an “8” shape, some units have “small and large circles” in their directivity curves. This
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is thought to be caused by artificial factors in the cilia integration process [35]. However,
because the FUVH can average the output signals of each unit, the strengths and weaknesses
are offset. As a result, the FUVH takes on a better “8” shape in the directivity curve, and
the concave point depth reaches 43 dB, which is much more significant than the depth of
its four units.

4.3. Self-Noise Test

Finally, we tested the self-noise of the FUVH and its four units. The most common
method of self-noise testing is to connect the output of the sensor and its pre-circuit to a
spectrum analyzer for testing [36]. The self-noise test must ensure that the environment is
quiet, so the experiment was carried out during a quiet night. We kept the FUVH elastically
suspended from the revolver, and submerged it in the water of the calibration tube. Then,
the sensor and the pre-circuit were powered up so that the sensor was in working condition.
The output was connected to the spectrum analyzer while setting the relevant parameters.
The spectrum analyzer at this point shows the power spectral density of the frequency-
domain noise voltage after the Fourier transform of the time-domain noise voltage signal,
expressed as:

F(w) =
∫ ∞

−∞
VN_out(τ)ejwτdτ (30)

where F(w) is the self-noise power spectral density, and the results are taken as logarith-
mic. The test results are shown in Figure 15, where industrial frequency and multiplier
interference occur at 50 and 100 Hz.
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Figure 15. The results of the self-noise test: (a) the noise PSD of the X channel and (b) the noise PSD
of the Y channel.

According to the test results, the white noise spectrum of the FUVH self-noise is
−111 dBV/

√
Hz. In contrast, the white noise spectrum of its four units of self-noise

is −105 dBV/
√

Hz, reducing the white noise by 6 dB, in line with the aforementioned
theoretical analysis.

5. Results and Analysis

The evaluation of the hydrophone self-noise requires a combination of sensitivity and
the self-noise spectrum. Because the sensitivity is proportional to the output voltage value,
the equivalent self-noise level excludes the effect of sensitivity on the noise magnitude. It is
more of a reference for evaluating the magnitude of the sensor self-noise. The equivalent
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self-noise level of the sensor characterizes the equivalent sound pressure of the sensor
self-noise at the input of the sensor, which is:

PN =
eN
ex

coskd
sinkd0

P0 (31)

where eN is the transducer self-noise voltage, P0 is the sound pressure at the standard sound
pressure hydrophone, and the logarithm of the result is:

20lgPN = 20lg(
eN
ex

coskd
sinkd0

P0). (32)

Because M0 = e0/P0, then substituting into (32), we get:

20lgPN = 20lgeN − 20lg(M0
ex

e0

sinkd0

coskd
) (33)

where the value is the logarithmic sensor self-noise spectral density minus the logarithmic
sensor sensitivity. Then, the result in the operating band of the sensor is shown in Figure 16.
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20lg𝑃𝑁 = 20lg⁡(
𝑒𝑁

𝑒𝑥

𝑐𝑜𝑠𝑘𝑑

𝑠𝑖𝑛𝑘𝑑0
𝑃0). (32) 
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) (33) 
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Figure 16. The results of equivalent self-noise level: (a) the result of X channel and (b) Y channel.

As shown in Figure 16a, in X channels, the equivalent self-noise level of the FUVH
is higher than the mean value of its four units, with an average difference of 5.18 dB. As
shown in Figure 16b, the difference between the equivalent self-noise level of the Y channels
of the FUVH and the mean value of its four units is 5.14 dB. According to the results, it is
clear that the FUVH has a lower equivalent self-noise level compared to its four units.

As shown in Figure 17, we analyzed the difference between FUVH and its four
units at each frequency point. The difference in the X channel is shown in Figure 17a,
where most differences are around 6 dB. As shown in Figure 17b, the difference in the Y
channel is mostly around 3 dB and varies greatly. The main reason for this situation is the
abnormalities in the self-noise of unit 2. However, the equivalent self-noise level of the
FUVH is still significantly more extensive than that of its four units.
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6. Discussion

In this study, we theoretically analyzed the noise suppression of a monolithically
integrated FUVH. We fabricated a FUVH and performed calibration experiments regard-
ing its directivity and sensitivity. The results verified that this FUVH performs well
in 20–400 Hz with a sensitivity of −197.3 dB@400 Hz. We tested its self-noise level. The
white noise spectrum of the FUVH is 6 dB lower than the white noise spectrum of all of
its four units. The four units are considered to be four CVHs with similar performance.
Finally, we analyzed the equivalent self-noise level of the FUVH in the operating band.
The research validates the theoretical analysis and provides a new direction for improving
the performance of the CVH to achieve a lower level of ocean ambient noise measure-
ment. In the future, we will try to improve the process of preparing smaller structures to
achieve single-point observation of more array units with a lower self-noise level. Then,
we will combine the hardware circuitry and algorithms so that the CVH can achieve
multi-parameter measurement, storage, and transmission.
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