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Abstract: Precipitation of future climate models is critical for the assessments of future drought but
contains large systematic biases over the Tibetan Plateau. Although the common precipitation bias
correction method, quantile mapping has achieved remarkable results in terms of temporal bias
correction, it does not consider the spatial distribution of bias. Furthermore, the extent to which
precipitation bias affects drought estimation remains unclear. In our study, we take the Qinghai–Tibet
Plateau (QHTP) as the case study and quantify the impact of corrected precipitation bias for seven
Coupled Model Intercomparison Project Phase 6 (CMIP6) models on drought assessment in historical
and future scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5). To improve the accuracy of drought prediction,
potential evapotranspiration (PET) was also corrected. Firstly, the histogram matching-quantile
mapping (HQ) algorithm considering spatial correction is established to correct precipitation and
PET. Then, we quantified the effects of precipitation and potential evapotranspiration correction on
the change of drought intensity, and finally analyzed the spatiotemporal trends of precipitation, PET,
and SPEI over the QHTP in the future. The results show that the HQ method can effectively improve
the simulation ability of the model, especially the simulation accuracy of the ensemble model. After
correction, the average annual total precipitation (TP) declined by 64.262% in 99.952% of QHTP,
the average PET increased in 11.902% of the area and decreased in 88.098% of the area, while the
intensity of the drought in 81.331% of the area increased by 2.875% and the 18.669% area decreased
by 1.139%. Therefore, the uncorrected simulation data overestimated the future increase trend in
precipitation and underestimated the future decrease trend in SPEI. The trend of HQ-corrected TP
increased by 3.730 mm/10a, 7.190 mm/10a, and 12.790 mm/10a, and the trend of SPEI (TP and PET
corrected) decreased by 0.143/100a, 0.397/100a, and 0.675/100a, respectively. Therefore, quantifying
the changing relationship between precipitation bias correction and drought assessments is useful for
understanding regional climate change.

Keywords: CMIP6; drought assessment; precipitation; Qinghai–Tibet Plateau; spatiotemporal bias
correction; SPEI

1. Introduction

As a climatic factor dominating meteorological and short-term agricultural droughts,
precipitation plays an important part in assessing historical and future droughts [1,2]. The
Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report states that
for every 1 ◦C of global temperature increase, atmospheric water vapor will increase by
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about 7% (Clausius–Clapeyron relation), and precipitation will increase by about 2% in
the future [3–6]. However, precipitation projections from different climate models have a
non-negligible systematic bias due to the coupled effects of monsoons, ocean air, and circula-
tion [7]. The latest research shows that the original Coupled Model Intercomparison Project
Phase 6 (CMIP6) climate models overestimate precipitation by 6.0–14.0% [8]. Therefore, it is
necessary to correct precipitation using bias correction or emergent constraints to accurately
assess future drought characteristics and trends [9]. Further, it has yet to be explored how
discrepancy in precipitation correction will influence drought assessments [10].

In terms of the correction method, bias correction of future climate models such as
precipitation generally has two aspects: temporal dimension and spatiotemporal dimension.
The common temporal bias correction method is quantile mapping (QM), which corrects
the cumulative distribution function (CDF) of the predicted value from the CDF of the
observed value [11,12]. Moreover, many parametric or nonparametric correction methods
are founded on this principle, such as distribution-derived transformations, parametric
transformations, and empirical quantiles et al. [13]. QM method has been applied to
various studies on future climate change and has achieved remarkable results [14,15]. Daily
rainfall in Malaysia was QM-corrected to assess regional climate model reductions in the
frequency of daily rainfall, mean intensity, and 90th percentile [16]. QM and quantile
delta mapping were used to correct diurnal temperature and precipitation in China and
demonstrated their ability to eliminate systematic model biases and preserve changing
signals [17]. However, it should be noted that the QM is applied pixel by pixel and does
not take into consideration the deviation of spatial distribution [18]. The spatiotemporal
correction of precipitation is mainly based on the idea of empirical orthogonal function
(EOF), which can decompose the variable field that changes with time into the space
function part that does not change with time and the time function part that changes with
time [19]. Many methods of the EOF principle have also been applied to climate model
bias correction. Such as the ensemble EOF bias correction method with establishing the
principal component mapping relationship between observations and simulations [20]; the
L-moments scaling method corrected for the first three L-moments of precipitation data [21];
and a two-step bias correction method that combines independent component analysis with
QM [18]. These methods have to some extent improved the simulation capacity of future
climate models in extreme weather or drought research. Although EOF or independent
component analysis (ICA) has achieved a significant effect, the mathematical structure is
issued as part of their mutual orthogonality and maximization, which cannot guarantee
the integrity of the image in the spatial dimension [19,22]. As mentioned above, we found
that histogram matching can correct the spatial distribution bias of precipitation while
preserving global spatial integrity [12]. This method has produced excellent results in
evaluating eco-hydrological processes and climate change [23,24]. Therefore, to further
increase the simulation accuracy of the model, we combined histogram matching and
quantile mapping to create the histogram matching-quantile mapping (HQ) technique,
which is used as the spatiotemporal correction approach for precipitation.

Variations in precipitation are closely related to the assessment of drought. As global
average temperatures rise, evapotranspiration increases, resulting in increased precipitation
and changes in drought trends [25]. Since 2000, the number and duration of global droughts
have increased by 29%, according to the United Nations Drought in Numbers (2022) [26].
Influenced by climate change, the precipitation in China has grown since 1961 as well,
with a rate of 13.9%K−1 [27]. It is characterized by a decrease in the number of light rain
days and an increase in the number of heavy rain days, which means an increase in the
risk of drought and urban waterlogging [28]. As a sensitive area to climate change, the
Qinghai–Tibet Plateau (QHTP) is more vulnerable to the effects of global warming [29].
Over the past few decades, precipitation on QHTP has increased overall [30]. Precipitation
increased significantly in most parts of the central and eastern regions and declined in the
south and northeast regions during the growing season [31]. The standardized precipitation
evapotranspiration index (SPEI) of the past 100 years showed obvious seasonal changes,
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showing a humid trend in spring and summer, and a significant dry trend in autumn
and winter. The changing trend of SPEI is related also to altitude [29,32]. Understanding
historical changes in precipitation and drought at QHTP helps to better comprehend future
climate change. The development of the CMIP6 advances the scientific understanding of
future climate change [33,34]. With the upcoming trend of global warming, precipitation
from upstream rivers in the Three River region is increasing [35,36]. Future precipitation
trends in QHTP based on 25 CMIP6 models indicate that the precipitation will increase
in the 21st century, and the precipitation increase rate is higher in the high-emission
scenario [37]. As emission scenarios increase, the self-calibrated palmer drought severity
index has a noticeable trend of humidification, and the frequency of drought is on the
rise [38]. Consequently, the simulated deviation of precipitation will directly affect the
accuracy of the drought assessment. From the response between drought to precipitation
in future climate models, we should not only assess the degree of future drought but also
analyze the impact on drought assessment when precipitation is overestimated.

In summary, overestimation of precipitation may result in the bias of future drought
assessments, but it remains to be seen whether the bias will slow or exacerbate drought in
QHTP. The effects of bias correction of CMIP3 and CMIP5 models on drought projections
have been studied in the United States and Australia [9,10]. The difference in this paper is
that the CMIP6 model is used to explore the impact of precipitation deviation correction on
drought assessment over the QHTP. Potential evapotranspiration (PET) was also corrected
to improve the accuracy of the estimates. This paper aims to compare and quantify the
effects of precipitation modification on drought assessment and to further understand the
effects of precipitation disturbance on drought. This paper will focus on the following
issues: (1) Whether the HQ correction method can improve the simulation ability of
the ensemble model; (2) How will precipitation correction change drought intensity in
future scenarios? (3) Analyzing the trends of precipitation and drought characteristics
in future scenarios. Our study results can provide an important basis for precipitation
and drought disturbance model establishment, and provide an important reference for the
future drought risk assessment of QHTP.

2. Materials and Methods
2.1. Study Area

The Tibet Plateau (73◦19′~104◦47′E, 26◦00′~39◦47′N) is located in the southwestern
part of China, including all of Tibet and parts of Xinjiang, Qinghai, Gansu, Sichuan, and
Yunnan. The average altitude of QHTP is above 4000 m and the total area accounts for
about 25% of the Chinese mainland (Figure 1a) [39]. As the Asian water tower, QHTP is
the birthplace of the Yangtze River, Yellow River, and other rivers, and plays a significant
role in water supply and ecosystem security in Asia [40]. It is also one of the most sensitive
regions to global climate change, with a considerable increase in the frequency of extremely
high temperatures and extreme precipitation in recent years [5]. The unique topography
of QHTP makes it form the climate feature with strong radiation, more sunshine, low
temperature, and less accumulated temperature, and the temperature decreases with the
increase in altitude and latitude. From the spatial distribution of precipitation, we can
see that there is a precipitation gradient from northwest to southeast with an obvious
increasing trend due to the influence of the South Asian monsoon and westerly winds
(Figure 1b). The higher values of precipitation are located southeast of QHTP (>500 mm/a),
and the lower values are in the Qaidam Basin and northwest regions (<200 mm/a).
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Figure 1. Topography and precipitation of the Qinghai–Tibet Plateau (QHTP). (a) Elevation data from
ASTER Global Emissivity Dataset 100m V003; (b) annual total precipitation (TP) with multi-year
mean from (Version 4 of the Climatic Research Unit gridded time series) CRU TSV4 Dataset.

2.2. Data Source

In our study, we selected the monthly (January 1950~December 2014) total precipita-
tion (TP) and PET of version 4 of the Climatic Research Unit gridded time series (CRU) as
reference data. The CRU dataset is a 0.5◦ resolution monthly climate dataset of the global
continental surface from 1901 to 2020 produced by the UK National Centre for Atmospheric
Science [41]. This dataset is based on a large number of climate anomaly data from meteo-
rological observation stations around the world, and the monthly grid data are established
by the angular-distance weight interpolation algorithm. Many comparative studies show
that CRU datasets have good applicability in China and the Tibetan Plateau [42,43].

Seven CMIP6 models containing the historical (1950–2014) and future periods
(2015–2100) are listed in Table 1. The future period includes three scenarios (SSP1-2.6,
SSP2-4.5, and SSP5-8.5). Each model contains six variables: precipitation (pr, kg m−2 s−1),
daily maximum near-surface air temperature (tasmax, K), daily minimum near-surface air
temperature (tasmin, K), near-surface wind speed (sfcWind, m s−1), surface air pressure
(ps, Pa), and surface downwelling shortwave radiation (rsds, W m−2). CMIP6 model
dataset was downloaded from the Climate Data Store of the European Centre for Medium-
Range Weather Forecasts (ECMWF). The spatial resolution of all variables was bilinearly
interpolated to 0.1◦ [44].

Table 1. Information of seven Coupled Model Intercomparison Project (CMIP6) models.

Model Institution/Country Grids (lat/lon) Resolution (km)

AWI-CM-1-1-MR Alfred Wegener Institute, Germany 192 × 384 100
CMCC-ESM2 Euro-Mediterranean Center on Climate Change, Italy 192 × 288 100

CNRM-CM6-1-HR National Center for Meteorological Research, France - 100
FIO-ESM-2-0 First Institute of Oceanography, China 192 × 288 100
GFDL-ESM4 NOAA Geophysical Fluid Dynamics Laboratory, USA 180 × 360 100
INM-CM5-0 Institute of Numerical Mathematics, Russia 120 × 180 100
MRI-ESM2-0 Mitsubishi Research Institute, Japan 160 × 320 100

2.3. Methods

The overview of our research flowchart is shown in Figure 2. It is clear from the un-
corrected time curve in Figure 2a,b that there is a large systematic deviation (>400 mm) be-
tween observed precipitation and simulated data, and a small deviation in PET
(<100 mm) Therefore, to improve the accuracy of drought prediction, we added PET
correction to the research experiment. First, the precipitation and PET data simulated by
the CMIP6 model were corrected. Then, the SPEI drought index and drought characteristics
(duration, severity, and intensity) were calculated (Figure 2c,d). Additionally, the effects
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of correction of precipitation and potential evapotranspiration on drought prediction are
discussed and evaluated.
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Figure 2. The overview of the proposed flowchart. (a,b) Change curve of annual TP and potential
evapotranspiration (PET) with time before and after histogram matching-quantile mapping (HQ)
correction. (c) Change curve of standardized precipitation evapotranspiration index (SPEI) with time
before and after correction. (d) The research methods used in our research.

2.3.1. Histogram Matching-Quantile Mapping Correction

Histogram matching, also known as histogram specification, is an operation that
transforms the distribution of an image according to a specific mapping mode [45]. It mainly
relies on the statistics of the probability density function (PDF) in the spatial dimension and
is a commonly used method in image processing [46]. We assume as random variables with
PDFs pa(a) and pz(z), respectively. Here, a and z denote the intensity levels of the input
and output images, respectively. The pa(a) could be estimated from the given input image,
and pz(z) is the specified PDF that we wish the output image to have. It can be obtained
from the reference image. The random variable with the property can be written as:

s = T(a) = (L− 1)
∫ a

0
pa(w)dw (1)

where w is the dummy variable of integration. L is the intensity of the image level.
Define a function G on variable z with the property:

G(z) = (L− 1)
∫ z

0
pz(v)dv = s (2)

where v is a dummy variable of integration. Hence, the output image could be expressed as:

z = G−1(s) = G−1[T(a)] (3)

Equation (3) can realize the matching of input and output image histograms.
The QM algorithm has been widely used for variable bias correction in atmospheric

science and ecology [16,17]. It establishes a quantile mapping transformation function
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f(·) between observation variables Po and model variables Pm to make their distribution
consistent [13]. The transformation can in general be formulated as:

Po = f(Pm) (4)

Further, it can be expressed by using the CDF:

Po = F−1
o (Fm(Pm)) (5)

where Fm is the CDF of Pm and F−1
o is the inverse CDF of Po.

In our study, we first conducted the QM correction algorithm for historical and future
precipitation and PET with each CMIP6 model. Then, the spatial deviation of the historical
period simulated data is calculated by histogram matching, and the multi-year mean value
of corresponding months is transmitted to the future monthly data to realize the spatial
correction of the future simulated data. The HQ algorithm is performed based on the
Python ‘Scikit-image’ library and R package ‘qmap’. We chose the empirical quantiles
(QUANT) function in the qmap package, which is a nonparametric transformation method
and is more effective to approximate data.

2.3.2. Drought Assessment

SPEI is often used to monitor and assess the occurrence and severity of drought events.
We used SPEI as a drought index to evaluate wet and dry conditions over QHTP. The
calculation of SPEI requires two variables, precipitation and PET. The PET is calculated
using the FAO Penman–Monteith formula [47], which is given by:

PET =
0.408∆(Rn −G)

∆ + γ(1 + 0.34U2)
+

γ 900
T+273 U2(es − ea)

∆ + γ(1 + 0.34U2)
(6)

where PET is potential evapotranspiration (mm), ∆ is slope vapor pressure curve (kPa ◦C −1),
Rn is net radiation at the crop surface (MJ m−2 d−1), G is soil heat flux density (MJ m−2 d−1),
γ is psychrometric constant (kPa ◦C−1), U2 is the wind speed at 2 m height (m s−1), T is the
mean daily air temperature at 2 m height (◦C), es is saturation vapor pressure (kPa), ea is
actual vapor pressure, es – ea is saturation vapor pressure deficit (kPa).

The difference between precipitation (P) and PET can simply describe the profit and
loss of water, the i month can be expressed as:

Di = Pi − PETi (7)

The probability density function of a log-logistic distributed variable is expressed
as [48]:

f(x) =

[
1 +

(
α

x− γ

)β
]−1

(8)

where α, β, γ are scale, shape, and origin parameters, respectively [49].

SPEI = W− c0 + c1W + c2W2

1 + d1W + d2W2 + d3W3 (9)

where W =
√
−2 ln(P) for P ≤ 0.5, P is the probability of exceeding a determined Di value.

The constants are c0 = 2.515517, c1 = 0.802853, c2 = 0.010328, d1 = 1.432788, d2 = 0.189269,
d3 = 0.001308 [50,51]. SPEI-03 is used to characterize short-term meteorological drought in
our research. Since the calculation of SPEI depends on the probability distribution of the
time series, it is most appropriate to have a time range of at least 30 years.

The indicators for detecting drought events include frequency (F), duration (D), sever-
ity (S), and intensity (I) based on the application of run theory [52–54]. For a while, the
value of SPEI is continuously less than the threshold, which is called a drought event. This
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period is called duration, and the cumulative intensity of the drought is called the severity
throughout the drought [6]. The duration, severity, and intensity of the drought in this
article are for all drought events counted on pixels. Using the Penman function and SPEI
function from the R ‘SPEI’ package, we compute PET and SPEI for historical and future
scenarios. The drought threshold of SPEI is −0.5, a threshold of ‘Abnormally dry’ used by
the U.S. Drought Monitor [44].

2.3.3. Correlation, Trend Analysis

Pearson’s correlation coefficient is a method commonly used to measure the degree of
linear correlation between two groups of data [55]. It can be seen as eliminating the dimen-
sional influence of two variables, that is, the covariance after normalizing of two variables.
The larger the absolute value of the correlation coefficient, the stronger the correlation.
It is mainly applicable to three situations: (1) the relationship between the two variables
is linear; (2) the totality of the two variables is normal; (3) the observations of the two
variables appear in pairs, and the observations are independent of each other. This study
uses it to compute the correlation between the CMIP6 model and the CRU dataset.

The Mann–Kendall trend test is a nonparametric test used to analyze time series data
for a persistent increasing or decreasing trend [56]. It has the following advantages: (1) it is
not assumed that the data are distributed according to a specific rule; (2) it is not affected
by missing data; (3) it is not affected by irregular data intervals and is not affected by the
length of time series [57,58]. This study uses this approach to analyze precipitation, PET,
and SPEI trends relative to historical and future scenarios.

3. Results
3.1. Proof of Spatiotemporal HQ-Corrected Method Effectiveness

To evaluate the accuracy of the correction results, we first calculated the correlation
coefficient (R), standard deviation (STD), and root mean square error (RMSE) between
seven CMIP6 models and CRU datasets. The standardized Taylor diagrams as displayed
in Figure 3, were then made by averaging the three indicators in the QHTP zone. The
simulation capability of the model in the historical period can be accurately expressed
using the standardized Taylor diagrams. The STD and RMSE of most uncorrected mod-
els are maintained above 2.0, while the R of precipitation is often over 0.5. After QM
correction, the model’s STD and RMSD are significantly decreased (by roughly 1.0), but
R is not significantly enhanced. Although STD has slightly increased after HQ adjust-
ment, the range of the correlation coefficient has grown from 0.5~0.7 to 0.7~0.8. Seven
CMIP6 models had a better ability to simulate PET than precipitation, with R above 0.9 and
STD maintained at roughly 1.0. The range of the R of 7 models rises from 0.9~0.95 to
0.95~0.99. after HQ correction. In general, the simulation accuracy of precipitation and
PET of seven CMIP6 models after HQ correction is generally closer to that of the CRU
observation data. To further demonstrate the effectiveness of HQ correction in the spa-
tiotemporal dimension, the changes in precipitation and PET over the temporal dimension
are shown in Figures 4 and 5. The precipitation of 7 CMIP6 models is generally higher than
that of the CRU observation data (Figure 4(a1)). The observed annual TP is 346.119 mm,
whereas the ensemble average annual TP is 934.608 mm (Figure 4(a2)). Despite the en-
semble simulation’s mean dropping to 346.087 mm after QM correction, the correlation
with the observed data was weak and failed to meet the criteria for statistical significance
(r = 0.237, p = 0.058) (Figure 4(b2)). PET is in a similar condition. The simulated data
from CMCC-ESM2, FIO-ESM-2-0, GFDL-ESM4, and MRI-ESM2-0 are comparable to the
observation data from CRU in the uncorrected simulated data (Figure 5(a1)). After QM
correction, the correlation coefficient increased from 0.261 to 0.286, but the p-value were
not assessed for significance (r = 0.261, p = 0.036; r = 0.286, p = 0.021) (Figure 5(a2,b2)). HQ
correction further corrects the spatial distribution deviation, which improves the simi-
larity of precipitation and PET ensemble model simulation to a certain extent (r = 0.638,
p = 1.118 × 10−8; r = 0.919, p = 3.529 × 10−27) (Figures 4(c3) and 5(c3)). The spatial corre-
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lation and statistics are shown in Figures S1 and S2, Tables S1 and S2, which can also
indirectly reflect that HQ correction improves the spatial simulation ability of the marginal
region with low correlation.
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are the mean of all pixels across QHTP.
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Figure 4. The curve of annual total precipitation over time in the historical scenarios. (a1,a2) are the
comparison of the single model and the ensemble model with CRU data, respectively. (a–c) are the
comparisons of the original, the QM-corrected, and the HQ-corrected precipitation, respectively (r is
the Pearson correlation coefficient).

3.2. Quantifying the Impact of Precipitation and PET Correction on Drought Projection

To quantify the impact of precipitation and PET correction on drought features, we
initially quantified the spatial changes of variables before and after correction, as shown
in Figures 6 and 7. The corrected precipitation level lowers slightly but does not alter the
spatial structure of the precipitation gradient zone, and the difference between the multi-
year precipitation and the corrected value under the historical and future scenarios has a
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strong spatial consistency. According to Figure 7(b1–b4), rainfall is higher in southeast Tibet
(>1000 mm) and lower in parched northwest Tibet (<200 mm). The correction percentages
are less than zero in the majority of places, forming a C-shape around the Qiangtang Basin
with a higher exterior (<−60%) and a lower basin (>−40%) (Figure 7(c1–c4)). The spatial
pattern of potential evapotranspiration is different from that of precipitation, With high
values primarily spread in the Qaidam Basin and southern Tibet (>1050 mm) and low
values primarily distributed in the northwestern Plateau (<850 mm). The corrected value of
PET, which has a narrower variable range than precipitation, notably increased in southern
Tibet and northern Tibet (>0%), while decreasing in the majority of other locations (<0%).
The spatial distribution of correction values of historical and future scenarios is consistent.
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isons of the original, the QM-corrected, and the HQ-corrected PET, respectively (r is the Pearson
correlation coefficient).
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Figure 6. Spatial distribution and variation of annual mean total precipitation before and after HQ
correction. (a–c) are, respectively, the original, the HQ-corrected, and the variation between them.
a1–a4 are historical, SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios, respectively.



Remote Sens. 2022, 14, 6172 10 of 19

Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 19 
 

 

 

Figure 6. Spatial distribution and variation of annual mean total precipitation before and after HQ 

correction. (a–c) are, respectively, the original, the HQ-corrected, and the variation between them. 

a1–a4 are historical, SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios, respectively. 

 

Figure 7. Spatial distribution and variation of annual mean PET before and after HQ correction. (a–

c) are, respectively, the original, the HQ-corrected, and the variation between them. (a1–a4) are his-

torical, SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios, respectively. 

Then, we estimated three different forms of SPEI, including SPEI (uncorrected), SPEI 

(only TP corrected), and SPEI (TP and PET corrected) based on the run theory. Figure 8 

depicts the feature of intensity, whereas Figures S3–S6 depict the features of frequency, 

duration, and severity in historical and future scenarios. When compared to the future 

scenario, the average drought severity of a single occurrence in the historical scenario var-

ies from 0.50 to 062, while it rises to 0.62~0.68 (Figure 8). Along with drought intensity, 

individual drought event duration and severity have also gotten longer and worse. We 

quantified the distinction between the three types of drought intensity, as shown in Figure 

9, to more thoroughly investigate how drought intensity changed over the repair process. 

In Figures S7–S10, the frequency, duration, and severity characteristics are displayed. The 

three different types, respectively, represent three meanings. Intensity ((TP-

Figure 7. Spatial distribution and variation of annual mean PET before and after HQ correction.
(a–c) are, respectively, the original, the HQ-corrected, and the variation between them. (a1–a4) are
historical, SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios, respectively.

Then, we estimated three different forms of SPEI, including SPEI (uncorrected), SPEI
(only TP corrected), and SPEI (TP and PET corrected) based on the run theory. Figure 8
depicts the feature of intensity, whereas Figures S3–S6 depict the features of frequency,
duration, and severity in historical and future scenarios. When compared to the future
scenario, the average drought severity of a single occurrence in the historical scenario
varies from 0.50 to 062, while it rises to 0.62~0.68 (Figure 8). Along with drought intensity,
individual drought event duration and severity have also gotten longer and worse. We
quantified the distinction between the three types of drought intensity, as shown in Figure 9,
to more thoroughly investigate how drought intensity changed over the repair process. In
Figures S7–S10, the frequency, duration, and severity characteristics are displayed. The
three different types, respectively, represent three meanings. Intensity ((TP-Model)/Model)
can be regarded as the intensity change only caused by the deviation correction of precipi-
tation, Intensity ((TPPET-Model)/Model) is the intensity change caused by the common
deviation correction of precipitation and PET. Intensity ((TPPET-TP)/Model) refers to the
intensity change only caused by the deviation correction of PET. The intensity changes
brought on by precipitation and PET correction are very consistent with the intensity
changes brought on by precipitation alone when comparing the regional distribution under
historical and future scenarios. The frequency, duration, and severity of droughts were
distributed spatially with the same characteristics.

The primary drivers of drought intensity change in future scenarios were finally iden-
tified by the change in drought intensity induced by precipitation and PET correction,
as shown in Figure 10. The highest (minimum) value of the rise (reduction) in intensity
((TP-Model)/Model) and intensity ((TPPET-TP)/Model) in this pixel is chosen to establish
the primary driving element when drought intensity increases ((TPPET-Model)/Model)
(or drops). Combining the statistical findings, the regions with growing drought intensity
accounted for 88.070%, 81.613%, and 74.310%, whereas the areas with decreasing drought
intensity accounted for 11.930%, 18.387%, and 25.690%, respectively (Figure 10d). A balance
of around 70.015% and 3.262% was maintained between the intensity increase caused by
precipitation and the intensity drop caused by PET. The region of intensity rise dominated
by PET reduced from 20.500% to roughly 3.659%, and the area of intensity decrease domi-
nated by precipitation rose from 9.622% to 21.883%. In combination with the correction
of multi-year mean values of precipitation and PET mentioned above, we counted the
variation amount and area of precipitation, PET, and drought intensity in three future
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scenarios (Table 2). The yearly TP was reduced by 64.262% as a result of the adjusted
precipitation decreasing in 99.952% of locations of the QHTP. After correction, the PET
of 11.902 areas increased with a 5.881% annual PET rise; the potential evapotranspiration
of 88.098% of areas declined with a 10.861% yearly PET reduction. In addition, a single
drought event’s intensity rose in 81.331% of regions by 2.875% and fell in 18.669% of regions
by 1.139%.
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SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios, respectively.
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Figure 9. Spatial differences of drought intensity in different SPEI. (a–c) are, respectively, the dif-
ference between intensity (uncorrected) and intensity (only TP corrected), intensity (uncorrected)
and intensity (TP and PET corrected), and intensity (only TP corrected) and intensity (TP and PET
corrected). (a1–a4) are historical, SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios, respectively.
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Figure 10. Dominant factors of drought intensity variation during HQ correction. (a–c) are SSP1-2.6,
SSP2-4.5, and SSP5-8.5 scenarios, respectively. (d) is the statistical chart of (a–c). I (PET) + indicates
that the increase in drought intensity is caused by changes in PET.

Table 2. Statistics of spatial correction results in future scenarios (+ or − indicates the increase or
decrease in variable and R is the area ratio).

TP PET Drought Intensity

(%) + R − R + R − R + R − R

SSP1-2.6 6.470 0.048 −63.098 99.952 5.827 12.488 −10.405 87.512 3.785 88.070 −1.375 11.930
SSP2-4.5 6.622 0.048 −63.535 99.952 5.868 12.058 −10.729 87.942 2.435 81.613 −1.039 18.387
SSP5-8.5 6.428 0.048 −66.152 99.952 5.948 11.161 −11.450 88.839 2.405 74.310 −1.003 25.690

Mean 6.507 0.048 −64.262 99.952 5.881 11.902 −10.861 88.098 2.875 81.331 −1.139 18.669

3.3. Future Trend Changes and Significance of Precipitation, PET, and SPEI

We analyzed trends in TP, PET, and SPEI in historical and future scenarios of the
ensemble model using the Mann–Kendall trend test. The trends of the original and HQ-
corrected ensemble model in the spatial and temporal dimensions of precipitation are
shown in Figure S11 and Figure 11. The historical precipitation trend showed an increasing
pattern from southeast to northwest in space. The precipitation trend in the future scenario
had a higher growth rate in the southeast than in the northwest. As the scenario increases,
the growth rate gradually increased. The growth rates of the future scenarios for the
original ensemble model were 7.594 mm/10a, 15.017 mm/10a, and 27.377 mm/10a; for the
HQ-corrected ensemble model were 3.730 mm/10a, 7.190 mm/10a, and 12.790 mm/10a,
respectively. The trends of the original and HQ-corrected ensemble model in the spatial
and temporal dimensions of PET are shown in Figures S12 and 12. The growth rates of the
future scenarios for the original ensemble model were 4.227 mm/10a, 9.665 mm/10a, and
19.561 mm/10a; for the HQ-corrected ensemble model were 3.592 mm/10a, 7.859 mm/10a,
and 15.601 mm/10a, respectively.

The trends of the SPEI (uncorrected), SPEI (only TP corrected), and SPEI (TP and
PET corrected) ensemble models in the spatial and temporal dimensions are shown in
Figures S13 and S14, and Figure 13. The spatial distribution of SPEI trends of the three
ensemble models was almost identical. The region with a growth rate larger than 0 is
located in the northern Tibet Plateau under the historical scenario, but with the alter-
ation of the future scenario, it is moved to the southeast of Tibet. The SPEI in south-
east Tibet has a clear increasing trend under the SSP5-8.5 scenario, but the SPEI in other
regions has a major decrease trend, and there is a clear split zone. The growth rates
of the historical and future scenarios for the SPEI (uncorrected) ensemble model were
−0.033/100a, 0.047/100a, −0.056/100a, and −0.133/100a; for the SPEI (only TP corrected)
ensemble model −0.007/100a, 0.179/100a, −0.492/100a, and −0.862/100a; and for the
SPEI (TP and PET corrected) ensemble model−0.045/100a, −0143/100a, −0.397/100a, and
−0.675/100a, respectively.
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Figure 11. Trend test results of total precipitation for the HQ-corrected ensemble model. (a–d) represent
the spatial trend of precipitation in the historical and future scenarios, respectively. The black dots are
significant points with p < 0.05. (e) represents the change curve of the precipitation of the ensemble
model in the historical and future scenarios. The filling on both sides of the line represents the
respective standard deviation, and the dashed line is the trend line.
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Figure 12. Trend test results of PET for the HQ-corrected ensemble model. (a–d) represent the spatial
trend of precipitation in the historical and future scenarios, respectively. The black dots are significant
points with p < 0.05. (e) represents the change curve of the precipitation of the ensemble model in the
historical and future scenarios. The filling on both sides of the line represents the respective standard
deviation, and the dashed line is the trend line.
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Figure 13. Trend test results of SPEI for the HQ-corrected ensemble model. (a–d) represent the spatial
trend of SPEI in the historical and future scenarios, respectively. The black dots are significant points
with p < 0.05. (e) represents the change curve of the SPEI of the ensemble model in the historical and
future scenarios. The filling on both sides of the line represents the respective standard deviation,
and the dashed line is the trend line.

4. Discussion
4.1. The Impact of Precipitation and PET Correction on Drought Assessment

The mean value of precipitation observed by the CRU data is 346.119 mm, which
is comparable to previous research [59]. The difference between the CRU precipitation
and the ensemble CMIP6 precipitation is 588.489 mm (Figure 4(a2)). The distinction
between ensemble PET data and CRU PET data (within the range of standard deviation) is
75.251 mm. Due to this, some of the current drought estimates only correct for precipitation
bias without correcting for PET [44]. Therefore, Precipitation should thus be the primary
factor impacting the accuracy of drought assessment across the QHTP from the standpoint
of basic data deviation. It is clear from comparing the three forms of SPEI change curves that
SPEI (only TP corrected) change will be far less than that of SPEI (uncorrected). For example
in the SSP5-8.5 scenario, precipitation deviation adjustment causes the changing trend to
shift from −0.133/100a to −0.862/100a (Figures S13 and S14). After the correction of SPEI
(TP and PET corrected) was estimated, the overall plummeting rate was eased and increased
from −0.862/100a to −0.675/100a. From the standpoint of the drought index, this SPEI
trend can also demonstrate the impact of precipitation variance on drought evaluation. We
looked at it in terms of the main drivers from a spatial viewpoint (Figure 10a–c), the majority
of regions are seeing a rise in drought severity. The area of decreasing drought intensity
caused by decreasing precipitation is expanding, while the area of increasing drought
intensity caused by increasing PET is shrinking. The intensity rise led by PET gradually
changed to the intensity drop trend led by precipitation in the northern Tibet region, while
the intensity decrease trend led by precipitation gradually changed to the intensity increase
trend in the Zoige area. As a result, future changes in drought intensity will be dominated
by changes in precipitation. As shown in Table 2, the correction reduced 64% of the total
precipitation over the QHTP and 11% of the PET in 88% of the region, and increased 6% of
the PET in 12% of the region, resulting in a 3% increase in the drought intensity in 81% of
the QHTP and a 1% decrease in the drought intensity in 19% of the region.
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4.2. The Relationship between Future Precipitation, PET, and SPEI Changes

By comparing the precipitation before and after correction, we found that the growth
rate in the future scenario was overestimated, but the spatial pattern did not change greatly.
The spatial trend of precipitation is consistent with other works [37,60]. With the increase
in the scenario, the increasing trend of precipitation in southeast Tibet was significantly
enhanced, and the growth rate decreased from southeast to northwest. Compared with the
SPEI trend before and after correction, the uncorrected simulation results underestimated
the downward trend of SPEI in the future scenario, and the overall spatial pattern did
not change significantly. The SPEI growth rate is more than 0 in some parts of southeast
Tibet and less than 0 in other parts of northwest Tibet. This feature is more and more
obvious in the SSP5-8.5 scenario [34]. Why does this feature exist? The reason should also
be attributed to the combined effect of precipitation and PET changes. We first analyzed the
original uncorrected precipitation, potential evapotranspiration, and SPEI results under the
SSP5-8.5 scenario. In the region with a growth rate of SPEI greater than 0, the precipitation
growth rate is higher but the potential evapotranspiration growth rate is lower. SPEI is
the result of the joint action of precipitation and PET. If the SPEI growth rate remains
unchanged, the growth rate of precipitation and PET should maintain a certain balance,
and the change in the SPEI growth rate is the result of the imbalance of this balance.
Therefore, the actual growth rate of precipitation is greater than the growth rate required
for equilibrium, which makes precipitation accumulate and the climate becomes humid,
so the SPEI growth rate is greater than 0. The increase in soil moisture led to an upward
trend in SPEI. The historical study also shows that the drought in southeastern QHTP has a
significant wet trend [32]. The future ecological risk gradually decreases from northwest to
southeast [61]. Therefore, the above factors will make the SPEI trend in southeastern QHTP.

4.3. Limitation and Future Research

Although the impact of precipitation correction on drought estimation has been quan-
tified and the future changes in precipitation and SPEI on QHTP have been analyzed, there
are still certain limitations in methods and research. In terms of the method [18], the HQ
method assumes that the deviation is stationary in the future and the deviation of the
spatial correction is passed to the future by calculating the mean value of each month in
the historical correction. This assumption is challenged by the notion that future variances
are characterized by non-stationary trends [62,63]. Regardless of non-stationarity and
trend, most statistical methods for bias correction do not take into account the physical
mechanisms between variables and model simulations [64]. Therefore, the study of fu-
ture methods should not only consider the correction between multivariate but also pay
attention to the physical mechanism of simulation bias [65]. HQ correction will change the
future trend to a certain extent. Some studies believe that the future forecast trend is biased,
but others believe that the future forecast variability is credible. These factors need to be
further considered in future studies.

In terms of basic data, seven CMIP6 models with higher resolution and more compre-
hensive data were selected in this paper to predict future drought changes. More global or
regional simulation models with higher precision and spatial resolution should be selected
in the future. SPEI is a drought accumulation index based on probability distribution. In
the process of calculating SPEI based on precipitation and potential evapotranspiration,
the influence of precipitation and potential evapotranspiration correction on drought pre-
diction cannot be measured by variability. In future research on model simulation, it is
necessary not only to study the model with higher simulation accuracy but also to establish
a new linear or nonlinear relationship between the drought index and the basic variables,
to fully understand how the change of precipitation affects the change of drought.

5. Conclusions

This study investigated the influence of precipitation deviation correction on drought
prediction using data from seven CMIP6 model simulations and CRU observational data.
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The findings indicate that the annual total precipitation throughout the majority of the
Qinghai–Tibet Plateau would fall by 64.262% through HQ correction in the future scenario.
Additionally, there are deviations in the projection of future precipitation and SPEI trends.
The following are the primary conclusions:

(1) The spatiotemporal HQ correction approach may successfully increase the simula-
tion accuracy of the integrated model using the Taylor diagram and spatiotemporal
analysis. The correlation with observed precipitation rose from 0.237 (p = 0.058) to
0.638 (p = 1.118 × 10−8) when compared with QM correction, and the correlation with
observed PET increased from 0.286 (p = 0.021) to 0.919 (p = 3.529 × 10−27).

(2) The change of drought intensity over the QHTP in the future is mainly controlled by
precipitation correction, with the area accounting for 85.422%. The average annual
total precipitation in the 99.952% region declined by 64.262% and the average annual
total PET in the 11.902% area had a rise of 5.881%, and the 88.098 regions saw a loss of
10.861% with HQ correction. When fundamental factors were corrected, the intensity
of a single drought event rose in the 81.331% region by 2.875% and dropped in the
18.669% area by 1.139%.

(3) The original ensemble model overestimates the increasing trend of precipitation
and underestimates the decreasing trend in SPEI in three future scenarios. The
rate of precipitation growth increases from 7.594 mm/10a, 15.017 mm/10a, and
27.377 mm/10a to 3.730 mm/10a, 7.190 mm/10a, and 12.790 mm/10a after HQ
correction, correspondingly. The downward trend in SPEI changed from 0.047/100a,
−0.056/10a, and −0.133/10a to −0.143/100a, −0.397/100a, and −0.6675/100a.

Our focus is on quantifying the impact of precipitation correction on drought predic-
tion because there are significant uncertainties in precipitation modeling. This can obtain a
more reliable method for future drought projection, and assessing drought characteristics
can help with decision-making for drought management and mitigation.
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