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Abstract: Accurate and timely mapping of essential urban land use categories (EULUC) is vital to
understanding urban land use distribution, pattern, and composition. Recent advances in leveraging
big open data and machine learning algorithms have demonstrated the possibility of large-scale
mapping of EULUC in a new cost-effective way. However, they are still limited by the transferability of
samples, models, and classification results across space, particularly across different cities. Given the
heterogeneities of environmental and socioeconomic conditions among cities, in-depth studies of data
and model adaptation towards city-specific EULUC mappings are highly required to support policy
making, and urban renewal planning and management practices. In addition, the trending need for
timely and detailed small land unit data processing with finer data granularity becomes increasingly
important. We proposed a City Meta Unit (CMU) data model and classification framework driven
by multisource data and artificial intelligence (AI) algorithms to address these challenges. The
CMU Framework was innovatively applied to systematically set up a grid-based data model and
classify urban land use with an improved AI algorithm by applying Moore neighborhood correlations.
Specifically, we selected Xiamen, Fujian, in China, a coastal city, as the typical testbed to implement
this proposed framework and apply an AI transfer learning technique for grid and parcel land-use
study. Experimental results with our proposed CMU framework showed that the grid-based land use
classification performance achieves overall accuracies of 81.17% and 76.55% for level I (major classes)
and level II (minor classes), which is much higher than the parcel-based land use classification (overall
accuracies of 72.37% for level I, and 68.99% for level II). We further investigated the relationship
between training sample size and classification performance and quantified the contribution of
different data sources to urban land use classifications. The CMU framework makes data collections
and processing intelligent and efficient, with finer granularity, saving time and cost by using existing
open social data. Incorporating the CMU framework with the proposed grid-based model is an
effective and new approach for urban land use classification, which can be flexibly extended and
applied to various cities.
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1. Introduction

Rapid urbanization has profoundly changed the built environment and affected res-
idents’ daily life. To date, about 55% of the global population resides in cities, which
is expected to be 70% by 2050 [1–3]. In the meantime, urban areas consume about 78%
of global energy and account for 60% of greenhouse gas emissions. Given the pressing
challenges in urban environmental problems, such as environment related disease [4] heat
island threat [5] air pollution, clean water shortage, and renewable energy crisis, climate
change [6], global awareness of sustainable urban planning [7], design and development
has become increasingly far-reaching in academia, professionals, and society [8–10]. Among
these, urban land use maps [11,12] that reflect socioeconomic functions and human activity
attributions [13] are crucial for urban planning and management [14]. However, detailed
urban land use classifications outlining the distribution, pattern, and composition of differ-
ent land use types are continuously limited due to difficulties in: (i) coordinating financial
support and professional manpower for on-site investigation and individual mapping;
(ii) differentiating complex urban landscapes to different semantic land use type; and
(iii) securing spatially and temporally explicit datasets of high-resolution urban scanning.

Urban diversity and social fabrics generate beauty in cities [15]. “Policy silos” exist [16].
To implement integrated policy making, effective information integrations are needed. In
addition, timely updated land use maps are required for urban renewal development,
especially for land policy making, which plays a key role in the provision of housing [7].

Fortunately, remote sensing and satellite technology have greatly enhanced our abil-
ity to observe the Earth’s surface on a large scale [17,18].and monitor its time-series
changes [19,20]. Based on multisource remote sensing data [21], an accumulating body of
research efforts has been conducted in the field of urban land use classification, which
can be categorized into: (i) pixel-based mapping [22]; (ii) object-based mapping [23]; and
(iii) scene-based mapping [24]. With the advancement of Internet technology, multidi-
mensional social data are created exponentially [24,25]. Research related to social data is
expanded quickly, including the use of mobile phones [26], taxis [27], Weibo, Jingdong-
shenghuo, POI data, and grid statistical data [28]. By combining remote sensing data
and social data, land use classification and land use maps are increasingly improving and
covering broader areas [29,30].

Noticeably, Gong et al. (2020) reported a new map of essential urban land use cat-
egories for the whole of China (EULUC-China) that uses 10-m satellite images, Open-
StreetMap (OSM), nighttime lights, Point of Interest (POI), and Tencent location-based
service data as feature inputs for machine learning based classification practices [31]. A
crowdsourcing mapping approach is implemented by coordinating 68 research scientists
from 21 research teams to collect training and validation samples for different cities in
China. This work marks the beginning of a new paradigm of collaborative and collective
urban land use mapping over large areas. It provides guided insights for scaling down
city-specific characteristics of urban land use from a top-down perspective.

Although many progressive advances have been achieved in the campaign of urban
land use classifications, the following needs from policy makers are still not satisfied.
(1) Timely, detailed, and smaller land unit-based data analyses are needed for urban
planning for large urban areas. Currently, the average parcel sizes are fairly large, exceeding
square kilometers. For smaller land unit scales, intensive manual work is required to
generate parcel land units, and collect and process data. (2) Across cities and regions
comparisons are needed for socio-economic, environment, and biodiversity analysis. In
order to compare information across different regions, city-specific studies are needed,
and using similar data models and data sources is an essential prerequisite. (3) Digital
simulations and projections of planned urban development require an accumulation of
historical data for cities or urban areas. In order to accomplish effective data accumulations,
new approaches in model creation and data collection techniques are needed.

Following up the EULUC-China study, city-specific investigations by different re-
search teams regarding sample sensitivity, feature engineering, method adaptation, and
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classification scheme were performed in Ningbo [32], Nanjing [33], Lanzhou [34], Shen-
zhen [35], and Hangzhou [36]. As one of the crowd-sourcing teams conducting the EULUC
study for Xiamen, we have done further studies for the city. As the Xiamen city area is
much smaller than other cities in China, we found it is useful and necessary to make the
parcel unit size much smaller. Significant efforts were made to manually select 9741 parcels
with an average size of about one ha. We noted that small parcel land classification is
time-consuming and costly. The amount of information per land unit is proportional to its
unit size. However, the amount of work to collect the same amount of meaningful data is
inversely proportional to the unit size, i.e., to accurately predict land use for smaller land
units, one must collect additional GIS and social data. In the meantime, the number of land
units increases hundreds of times for the same coverage area, making data processing more
challenging. For example, a large amount of data must be collected and processed even for
small areas of a city.

Through these findings, we have concluded the following aspects that require further
in-depth studies: (i) fine-granular urban land use classification with a smaller size of the
minimum classification unit. With a sub-meter resolution of satellite data and a large
amount of social data, small land unit study becomes feasible. For instance, more precise
land maps can be generated. This is important for urban study and planning, as larger land
units sometimes consist of more different land types; (ii) Grid-based land use classification
studies are lacking, especially for small classification grids equal to or less than 1 ha. Most
urban land use studies are based on parcel units segmented by roads. With small land
units, describing the parcel becomes labor-intensive or even impractical. In the meantime,
most of the social data are frequently available in grid form, as a grid-based data system
is more effective for creating and expanding; and (iii) A land use classification-oriented
systematic framework for multisource and high-dimensional data storage, processing, and
synthesizing is limited. Since both satellite data and social data are complex and large,
sometimes it can be expanded beyond more than 100,000 plus dimensions and millions of
data sources for many years temporally. Data-based solutions impose challenges.

This led us to investigate and systematically set up a CMU data model to collect and
pre-process the data. In this study, we proposed a City Meta Unit (CMU) data model and
classification framework driven by multisource data and artificial intelligence (AI) algo-
rithms to address the challenges mentioned above. With the CMU data model, information
can be stored over time systematically. This is the basic building block for city or urban
renewal simulation, policymaking, planning and development. We chose Xiamen City as
our case study. The main contributions of this study are as follows: (1) We established
a city meta unit (CMU) data and model framework for processing multisource datasets
into abstract grid-based feature layers, which consists of multi-level functions, including a
foundation layer, summation feature layer, density index function, visualization analysis
layer, and application solution layer; (2) We developed a new approach to the grid-based
data model for urban land use classification by using the city of Xiamen as a testbed. We
used an improved RF algorithm by applying Moore neighborhood correlations; and (3) We
analyzed the classification performance in parcel-based and grid-based mapping practices,
attempted an AI transfer learning technique for grid and parcel land use prediction, and
further investigated the relationship between training samples and classification accu-
racy [35,37,38]. The CMU framework is the beginning of a new paradigm to discover a
more effective methodology and means to address urban renewal and planning needs.

The remaining paper is structured as follows: Section 1 describes the background and
reviews related work of this research. Section 2 describes the study area and data sources
in detail. Section 3 introduces the CMU framework. Section 4 introduces the methodology.
Section 5 illustrates the experimental results and analysis. Section 6 provides discussion of
the results and future work. Section 7 presents conclusions of this study.



Remote Sens. 2022, 14, 6143 4 of 24

2. Study Area and Datasets
2.1. Study Area

Xiamen, a prefecture-level coastal city (24◦23′N—24◦54′N, 117◦53′E—118◦26′E) of
Fujian province, is located in the southeast region of China (Figure 1). Xiamen is well
known for its mild climate, Minnan culture, and livable environment. It is also one of the
most beautiful sightseeing tourist places in China, with an area of 1700.61 square kilometers
and about 5.16 million population. In 2021, Xiamen’s GDP reached 7003.9 billion RMB, with
per capita GDP above 140 k RMB. Rapid urbanization growth over the past few decades
has brought significant changes to the land use patterns in Xiamen, thus posing increasing
challenges to urban planning and management of land, water, transportation, industry,
energy, and development.

Figure 1. (a) Gaofen-7 image of Xiamen; (b) Xiamen location; and (c) enlarged subset of the
red-frame area.

2.2. Datasets

We used multisource datasets, mainly categorized into two groups: (1) high-resolution
satellite data from Gaofen-2 and Gaofen-7; and (2) social big data collected from publicly
available Internet resources and different companies, such as Tsinghua 2861 DaaS Project,
Zhihuizuji, Baidu, and Gaode.

2.2.1. Satellite Spectral and Textural Data

The Gaofen-2 satellite is the first civil optical remote sensing satellite developed in
China with a spatial resolution of 1 m. The Gaofen-7 satellite is a high-resolution earth



Remote Sens. 2022, 14, 6143 5 of 24

observation satellite, achieving sub-meter level stereo mapping accuracy. In this study, we
collected Gaofen-2 data for 2015–2018 and Gaofen-7 for 2021.

We used satellite data sources to extract spectral and textural features for the CMU
summation feature layer, which will be described in Section 3.2. Spectral features were
calculated. Texture features were calculated using the grey level concurrence matrix
(GLCM) [39] with parameters as follows: row and column number of processing window
are 3, co-occurrence shift in X and Y dimensions is 1, and greyscale quantization level is 64.

2.2.2. Social Big Data

POI data were collected from 2019 to 2021 from Shuijingzhu, which contains infor-
mation including name, location coordinates, urban function attributes, etc. A total of
437,085 POIs were retained in Xiamen after data cleaning and filtering. We checked the
geospatial projection, mapped the POIs into 4 different groups, and then calculated the
proportion and total number of POIs in each grid, as shown in Figure 2a.

Figure 2. POI and 2861 index data of Xiamen. (a) POI data; and (b) 2861 shopping convenience level.

The Tsinghua 2861 DaaS Project is an Internet-based data collection system. It takes
crowdsourcing Internet data as inputs and builds about 9.8 million information grids for
China. The grid size of 2861 index data is about 0.010869 × 0.008983 degree. There are
18 indexes in total. We used a mapping algorithm to calculate the corresponding index
from the original index data. For example, Figure 2b below describes 2861 shopping
convenience level.

Mobile statistics of location-based service records are very useful in city studies.
Compared with other types of data, this has the advantage of integrated full coverage of
activities in time and space. The grid size of mobile data is 0.001 × 0.001 degree. We used
data from Zhihuizuji company to calculate the number of people who live, work, or visit a
specific grid of Xiamen in December 2021. We set up the projected number of residents,
workers, and visitors for the grid or parcel, as shown in Figure 3.
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Figure 3. Mobile data of Xiamen: (a) resident data; (b) working data; and (c) visit data.

We also collected the WorldPop population dataset (https://www.worldpop.org/,
accessed on 10 January 2021), which provides the estimated number of people residing
in each 100 × 100 m grid based on a random forest model and a global database of
administrative unit-based census information [40].

Building data of Xiamen were downloaded from Shuijingzhu. The original source of
the construction data from Shuijingzhu were based on a combination of Baidu Map and
Gaode Map. We used the data to calculate the number of buildings, total coverage area,
and the average building story for each parcel or grid, as shown in Figure 4.

Figure 4. Building data of Xiamen: (a) building data in the main urban area; and (b) zoomed-in area
of the red frame.

Road data were obtained from the OSM platform (http://www.openstreetmap.org,
accessed on 10 January 2021). The raw OSM road network comprises 27 categories of road
types: primary, secondary, trunk, pedestrian, and so on. Specifically, we included nine
major types of roads in this study. They are primary, primary link, secondary, secondary
link residential, residential link, tertiary, tertiary link, and trunk road types (Figure 5).

https://www.worldpop.org/
http://www.openstreetmap.org
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Figure 5. Road data of Xiamen: (a) all roads; (b) primary/secondary/tertiary roads; and
(c) residential roads.

3. CMU Framework

We proposed a City Meta Unit (CMU) framework for data processing with three
specific objectives: (1) To enable a scalable and traceable multi-dimensional meta-model
framework for collecting, storing, describing, and grouping citywide multisource data;
(2) Based on this framework of data structure, processing the data by calculating hierarchi-
cally grouped information can be used as feature input for applications; and (3) To make
solution-oriented AI algorithms more effective and to realize different AI algorithms as
applications in the proposed framework. The diagram of the CMU framework is shown in
Figure 6.

Figure 6. Diagram of CMU framework.
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3.1. CMU Foundation Layer

A data layer is created in the data model for each data source. For example, satellite
images from the Gaofen series, POIs, and human mobility from the location-based service
data are sorted and stored. We grouped the data layers based on the nature of the data, for
example, traffic, population, building, education, environments, etc. This practice scheme
is called the CMU Foundation Layer (CMU FL).

3.2. CMU Summation Feature Layer

We grouped and summarized the data based on the geometric unit (grid or parcel),
which serves as feature collections for subsequent algorithm processing and application
implementations. In the meantime, it also serves as a data abstraction to reduce storage
needs and improve application efficiency. Scalable grid size can be customized with
the geometric dimension by summating a smaller grid. In this study, we have created
both 0.001◦N × 0.001◦E and 0.01◦N × 0.01◦E grids. Regarding the temporal dimension,
historical data can be accumulated parallel for model simulation and time-series analysis.
For instance, the summation of remote sensing data is calculated for spectral and textural
statistics; for the summation of POI data is calculated for commercial activities analysis.
We called this the CMU Summation Feature Layer (CMU SFL).

3.3. CMU Density Index Layer

Based on the CMU SFL, abstracting or grouping certain features together is very useful
to create a density function or index function layer. A specific feature density function is
defined as the area of the feature divided by the area of the grid or parcel. For example,
based on the NDVI of multispectral remote sensing data, we can create a greenspace density
function to describe the spatial extent and magnitude of greenspace coverage in a grid or
parcel. The same function can be applied to other land cover types such as water, road,
building, etc. We also added a weighting factor function to account for the fact that certain
features, like the number of POIs, shall be amplified to account for missing areas occupied
by grass (greenspace density), for example. An index function was defined for its specific
attribute for a grid or parcel. For instance, urban environmental information such as PM2.5
and carbon consumption can be added as a spatially explicit index and the nighttime light
(NTL) intensity. We called this the CMU Density Index Layer (CMU DIL).

3.4. CMU Visualization Analysis Layer

We have created a Visualization Analysis Layer to present data in two or three dimen-
sions in space. For example, the number of POIs can be displayed in three dimensions
(Figure 7). The number of POIs is much bigger in the central urban area. We find visualiza-
tion tools like this very useful and supportive in using AI algorithms as they can correlate
features with the study grid spatially explicitly.

Figure 7. Grid-based POI numbers: (a) POIs in the 3D display; and (b) zoomed-in area of the
red frame.

The data collection and preparation of a digital city can be massive, with data dimen-
sions exceeding millions and data sources exceeding hundreds of millions. We, therefore,
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developed knowledge graph (KG) tools to describe the ontology of the data model. For
example, we used KG to describe POIs information (Figure 8). We called this the CMU
Visualization Analysis Layer (CMU VAL).

3.5. CMU Application Solution Layer

After setting up the data model, one can easily use the data model to study or solve
application problems in city planning, traffic control, and renewable new energy needs
analysis. These applications can be added as part of the framework. We called this the
CMU Application Solution Layer (CMU ASL). Section 4 will use Xiamen as a case study
and apply the CMU framework to generate urban land use classification.

Figure 8. (a) Ontology description of CMU data sources; and (b) zoomed-in area of the red frame.

4. CMU-Based Xiamen Land Use Study

We proposed a systematic approach to grid and parcel land use classification. For the
land grid, the grid is set up as 0.001◦N × 0.001◦E and 0.01◦N × 0.01◦E. For land parcels,
we use the OpenStreetMap road network to generate the land parcels [41,42]. We used the
CMU data model as an application example to study Xiamen City land use and generate
land use maps.

4.1. Proposed Method

In this study, we used a modified EULUC scheme (Table 1) for land use classification
because there is insufficient information for analysis at a smaller grid size. For grid-
level analysis, it contains seven Level I land-use classifications (Residential, Commercial,
Industrial, Public management and service, road, greenspace, water) and 11 Level II
land-use classifications (Residential for both low- and high-rise building, Business office,
Commercial service, Public & Admin, Road first class, Road second class, Road third class,
Greenspace, Water) were formed, as shown in Table 1. We named the modified EULUC as
GULUC (Grid Urban Land Use Classification). For parcel-level analysis, it contains four
Level I land-use classifications (Residential, Commercial, Industrial, Public management
and service) and seven Level II land-use classifications (Residential for both low- and
high-rise buildings, Business office, Commercial service, Public & Admin, Greenspace). We
named the modified EULUC as PULUC (Parcel Urban Land Use Classification).

The implementation of the proposed method is shown as Figure 9. We have incorpo-
rated both grid-based and parcel-based land use classification. For the grid-based study,
we found that it is a new study area as the grid naturally combines different land cover
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types. We formulated the solutions by using exclusion–inclusion techniques. First, road,
green, and water density functions were used to identify road, greenspace, and water
grids, respectively. Second, grids identified were excluded, then a random forest algorithm
was used to predict the remaining classes, including Residential, Public, Commercial, and
Industrial. Lastly, a Moore neighborhood algorithm was applied to increase the accuracy of
the RF algorithm.

Table 1. Land Usage Classification (GULUC/PULUC).

Level I Level II Descriptions

01 Residential
0101 Lower building Houses and lower apartment.

0102 High rise building Higher level buildings.

02 Commercial

0201 Business office
Buildings where people work, including
office buildings, and commercial office

places for finance, media etc.

0202 Commercial service Houses and buildings for commercial
retails, restaurants, and entertainments.

03 Industrial 0301 Industrial Land and buildings used for
manufacturing, warehouse, mining, etc.

04 Public
Management &

Service

0401Administrative,
Education, Medical and Sport

Lands used for administrative, education,
medical and sport related.

05 Road (grid only)
0501 Road first class

0502 Road second class
0503 Road third class

Paved roads including freeways
Major and minor city-roads.

06 Greenspace 0601 Greenspace Woodland, grassland, farmland and other
greenspace.

07 Water 0701 Water Lakes, rivers and other surfaces of water.

Figure 9. Grid and Parcel Land Use Process.
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4.2. Data Preparation

We used CMU FL created in 4.1 and combined them in Table 2. Parcel data preparation
was the same as grid data preparation, except that road features were not considered
because OSM was used to segment and group the parcels [41–43].

Table 2. Summary of features from CMU FL.

Data Sources Features Count

Satellite Spectral
ndviMEAN, ndviSTD, ndviVAR, ndwiMEAN, ndwiSTD,
ndwiVAR, b1MEAN, b1STD, b1VAR, b2MEAN, b2STD,

b2VAR, b3MEAN, b3STD, b3VAR, b4MEAN, b4STD, b4VAR
18

Satellite Texture
(grid only)

mean, variance, homogeneity, contrast, dissimilarity,
entropy, second moment and correlation calculated by the

Grey Level Concurrence Matrix (GLCM) of each
spectral band

32

POIs
residential ratio, residential total, commercial ratio,

commercial total, transportation ratio, transportation total,
public ratio, public total, total number, company number

10

2861 index

traffic outflow, traffic inflow, traffic comfort,
medical comfort, residence, labor grade,

business population, evening peak outflow,
evening peak inflow, evening peak speed,

morning peak outflow, morning peak inflow,
morning peak speed, kindergarten comfort,
primary school comfort, consumption level,
shopping comfort, community average price

18

WorldPop pop density 1

Building height 1

Mobile statistic work pop, resident pop, visit pop 3

All features in Table 2 were obtained from verifiable data sources, which were also
verified by our team and have been widely used in other projects: (1) Gaofen satellite
images are processed using remote sensing image calibration. Visual verifications are
performed for the specific sample points; (2) For POI data, multiple POI points are selected
for verification using the visual method to ensure that POI points are consistent with the
actual sites in the real world. We have also developed a visualization tool to study POI
characteristics in each land type; (3) 2861 index data were originally produced based on
the open social data on the Internet with rigorous data processing. We verified the data
manually in Xiamen; (4) To verify the precision of mobile data, we validated the distribution
and the trend of data with the actual activities on the ground by analyzing the heat map
created by the raw grid data; (5) The WorldPop population dataset was downloaded from
the WorldPop website. The WorldPop team started complementing traditional population
sources with dynamic, high-resolution data for mapping human population distributions in
2004, cross-checked by Zhihuizhuji and 2861 data. (6) Visual verifications were performed
on building data using street view pictures from Baidu and online map information; (7) We
confirmed the precision of road data through field and visual verifications based on remote
sensing images; and (8) Haihang and Xiamen local teams verified 9741 parcel samples.
Through Tabulate Intersection selection, grid samples were processed initially, which were
further verified manually.

In addition to the features in Table 2, we further derived Road, Greenspace, Water
density functions for each grid.

(1) For road density function: OSM road data were used to calculate the area of roads.
Road width value was specified for each road according to its type, road areal vector
data were obtained by using the buffer tool in ArcGIS. After drawing the buffer
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regions of all types of roads, areal vector data of roads in Xiamen were generated. The
road density of each grid was calculated as the area of roads divided by the area of
the grid (Figure 10).

Figure 10. (a) Road grids; (b) Zoomed-in area of the red frame.

(2) For Green Density Function: We used Gaofen7 data to construct the density function.
In Gaofen7 satellite data, there are four bands which are RED, GREEN, BLUE, and
NIR, we used these bands and grid vector data to calculate NDVI and the fractional
green coverage. Specifically, the green density of each grid was calculated as the
greenspace area divided by the grid’s area (Figure 11).

Figure 11. (a) Greenspace grids; and (b) zoomed-in area of the red frame.
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(3) For Water Density Function: Like the NDVI mentioned above, the NDWI was cal-
culated as follows: the water density of each grid was calculated as the water area
divided by the grid’s area (Figure 12).

Figure 12. (a) Water grids; and (b) zoomed-in area of the red frame.

We first used exclusion–inclusion techniques [44]. Based on the road, green, and water
density function created above, we assigned the thresholds as 30%, 70%, and 75% for road,
green, and water, respectively, as we concluded that these are the optimal choices after
on-site and images verifications. For example, we set up a threshold of 0.7 according to the
green density index to determine whether the grid was greenspace. If the green density
index was above 0.7, the grid was more likely to be greenspace and vice versa.

For road, green, and water, the following land grids were identified, with 8380 road
grids, 23,258 greenspace grids, and 17,292 water grids. Visual inspection was performed.
The overall accuracy for the road was 90.37%, with 374 testing samples. The overall
accuracy for greenspace was 87.39%, with 333 testing samples. The overall accuracy for
water was 79.28%, with 362 testing samples. We applied the same procedures for parcel
land use analysis to exclude green and water parcels.

4.3. Random Forest (RF) for Urban Land Use Classification

We collected 2800 grid training samples and 600 grid testing samples. In the meantime,
we also collected 6284 parcel training samples and 699 parcel testing samples provided by
Haihang company, for which we have arranged a research team for on-site investigations
in Xiamen to verify the sample quality.

Firstly, we completed 13,000 experiments for the grid and 7000 for the parcel, respec-
tively. Each experiment runs 1000 times and uses unique combinations of different CMU
SFL features from different sources, including Satellite only, social data only, Satellite + POI,
Satellite + 2861 index, Satellite + WorldPop, Satellite + zhihuizuji mobile, All features, etc.
Second, we also conducted a total of 120,000 experiments to study the relationship between
training sample size and testing accuracy, which also covered different combinations of
CMU SFL features from different data sources. Third, we attempted a new method to use
parcel land training samples to train the model, then apply it to grid-based land classifi-
cation and vice versa. Because those samples are costly to process, such usage helps to
expand the studies to all cities in China.
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4.4. Using Moore Neighborhood to Improve Land Use Prediction

A new research method was developed to use Moore neighborhood to increase the
accuracy of the RF algorithm [45,46]. For the RF algorithm voting scheme, when two or
more predictions have similar probabilities, the high error rate is developed to be calculated
by testing samples, which will be described in detail in Section 5.1. We use Moore 3 × 3
neighborhood to determine the grid type with a threshold defined by the confidence level is
equal to or less than 60%. The algorithm is as follows: we select the Moore neighborhood of
eight cells (grids) around the uncertain grid. Of these eight cells, we calculate the number
of grids corresponding to the most confident prediction of the uncertain grid as A, and
the number corresponding to the second most confident prediction as B. Suppose A > B,
then the uncertain grid will be chosen as the most confident prediction, and vice versa. If
A and B are zero, then the most confident prediction voting wins. Take Figure 13 for an
example, the most confident prediction of the uncertain grid is Industrial, and the second
most confident prediction is Public. We have three certain grids in which confidence is
higher than a certain threshold (here is 60%) in the Moore Neighborhood, two of them are
Industrial and the other one is Public. According to the algorithm, we can determine the
type of uncertain grid as Industrial.

Figure 13. (a) Moore 3 × 3 neighborhood Representation; and (b) zoomed-in area of the red frame.

5. Results and Analysis
5.1. Grid Experiments and Performance

Different data sources and feature combinations contribute to overall accuracy (Figure 14).
(1) We compared the classification results derived from satellite data and social data. Satellite
only data achieved 65.97%, indicating the importance of high-resolution images. Social data
achieved 75.03%, indicating the importance of involving human activities in interpreting
land use functions. The CMU data model framework was created for using social data more
effectively. (2) We quantified the contribution of each data type in detail. Satellite spectral
only achieved 58.80%, which is almost the same as satellite texture. WorldPop data has only
one feature, but it achieved 45.08%, which indicates that the corresponding feature has a
greater contribution. POI data only achieved 55.87%, which surpassed other social data such
as WorldPop, Mobile statistic, and the 2861 index. (3) We tested each satellite data with a
combination of different social data sources. The combination of satellite and 2861 index data
achieved 75.86% and surprisingly surpassed other combinations, as shown in Experiment 2,
which indicated that 2861 index data is more complimentary to satellite data. (4) By combining
all satellite and social data, the overall accuracy achieved 80.67% with a kappa coefficient
of 0.7194, which indicates multiple dimensionalities of urban land uses are important to
complement high-level semantic urban land use differentiation.
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Figure 14. Accuracy of different feature combinations for Level I (run 1000 times, 2800 training, and
600 testing samples): (a) single data source; and (b) features combinations.

We further analyzed the importance of features contributing to the performance of the
RF model. As shown in Figure 15, the top 5, top 10, and top 15 of all features can achieve
68.91%, 75.47%, and 78.97%, respectively. The satellite with the top five social features
achieved 75.90%, and the top 10 social features achieved 79.24%.

Figure 15. Features importance and contributions for RF model (run 1000 times, 2800 train-
ing and 600 testing samples): (a) all features importance; (b) social features importance; and
(c) features combinations.

The confusion matrix results are as follows.
For Level I, the RF algorithm achieves 80.33% of OA with a kappa coefficient of 0.7146

(Table 3).

Table 3. Grid confusion matrix for Level I (2800 training & 600 testing samples).

Residential Public Commercial Industrial UA PA

Residential 204 25 14 22 87.55% 76.98%
Public 12 75 4 9 68.81% 75.00%

Commercial 7 5 38 6 67.86% 67.86%
Industrial 10 4 0 165 81.68% 92.18%

OA = 80.33%, Kappa coefficient = 0.7146

Based on the RF algorithm, the Moore neighborhood algorithm achieved 81.17% of
OA with a kappa coefficient of 0.7253 (Table 4).
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Table 4. Grid confusion matrix for Level I (Moore Neighborhood addition).

Residential Public Commercial Industrial UA PA

Residential 207 21 11 26 87.71% 78.11%
Public 15 74 2 9 71.15% 74.00%

Commercial 7 5 38 6 74.51% 67.86%
Industrial 7 4 0 168 80.38% 93.85%

OA = 81.17%, Kappa coefficient = 0.7253

For Level II, The OA achieved 76.55% with a kappa coefficient of 0.6847 (Table 5).

Table 5. Grid confusion matrix for Level II (2100 training & 516 testing samples).

Low
Resident

High
Resident Business Commercial Industrial Adm. etc. UA PA

Low Resident 130 0 1 16 24 3 84.42% 74.71%
High Resident 0 60 0 2 0 1 74.07% 95.24%

Business 1 9 7 1 1 0 77.78% 36.84%
Commercial 7 6 1 18 6 0 39.13% 47.37%

Industrial 6 0 0 1 157 4 80.51% 93.45%
Adm.etc. 10 6 0 8 7 23 74.19% 42.59%

OA = 76.55%, Kappa coefficient = 0.6847

We find that Public Management & Services, Industrial are easily misclassified as
Resident and vice versa. By examining the RF prediction voting scheme, we find that
prediction accuracy improved as the most confident prediction (Figure 16a) increases or the
difference between the most confident prediction and the second most confident prediction
increases (Figure 16b). As shown in the chart below for a total of 600 testing samples,
(a) indicates the most confident prediction increases from 0.3 to 1 (30% to 100%), and the
correct predictions increase; and (b) the difference between the most confident prediction
and the second most confident prediction increases from 0 to 1, and the correct predictions
increase. When the first and second most confident predictions are almost the same, the
correct prediction is less than 50%. Therefore, we need to focus on those uncertain ranges
of voting confidence to improve classification accuracy further.

Figure 16. Prediction probability distribution of RF model: (a) most confident prediction; and
(b) difference of the first and second confident prediction.

By setting up the threshold of confidence level to 60%, we improved the OA by
0.84%. We then used Moore neighborhood to further predict the grid type with different
combinations of data sources. The Moore neighborhood results are shown in Table 6. We
find that the lower the RF accuracy, the more significant the resulting improvement, ranging
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from 1% to 2%. When the accuracy surpasses 80%, the improvement becomes limited. All
in all, the results prove the algorithm’s effectiveness in grid land use prediction.

Table 6. Moore Neighborhood results.

Features Combinations RF Moore Neighborhood Accuracy Improved

Satellite 65.50% 67.33% 1.83%
Satellite + mobile 71.67% 72.83% 1.16%

All features 80.33% 81.17% 0.84%

5.2. Parcel Experiments and Performance

In parcel-based land use classification, we also quantified the contributions of different
feature combinations to overall accuracy (Figure 17). The OA achieved 69.54% for the RF
algorithm with a kappa coefficient of 0.55. Satellite only achieved an OA of 57.68%, while
social data only achieved 57.54%. Interestingly, the derived classifications from these two
scenarios were very close, indicating that social and satellite data are equally important to
land use classification at parcel levels. 2861 index data achieved an OA of 64.26%, higher
than other social data and verified the importance of more data dimensionality.

Figure 17. Accuracy of different feature combinations for Level I (run 1000 times, 6000 training, and
699 testing samples).

The confusion matrix results are as follows.
For Level I, the RF algorithm achieves 72.37% of OA with a kappa coefficient of 0.5841

(Table 7).

Table 7. Parcel Confusion matrix for Level I (4800 training & 485 testing samples).

Residential Public Commercial Industrial UA PA

Residential 197 24 11 21 84.19% 77.87%
Public 18 55 8 8 63.95% 61.80%

Commercial 12 6 35 12 58.33% 53.85%
Industrial 7 1 6 64 60.95% 82.05%

OA = 72.37%, Kappa coefficient = 0.5841

For Level II, the OA achieved 68.99% with a kappa coefficient of 0.5240 (Table 8).



Remote Sens. 2022, 14, 6143 18 of 24

Table 8. Parcel confusion matrix for Level II (4000 training & 445 testing samples).

Residential Business CommercialIndustrial Adm. etc. UA PA

Residential 188 7 11 28 19 85.07% 74.31%
Business 7 13 2 5 3 48.15% 43.33%
Commercial 4 2 17 7 4 50.00% 50.00%
Industrial 13 3 2 59 2 56.19% 74.68%

Adm.
etc. 9 2 2 6 30 51.72% 61.22%

OA = 68.99%, Kappa coefficient = 0.5240

A land use map was produced for land grid study by combining the results of RF
predictions with the road, green and water grids. For the land parcel study, a land use map
was produced by combining the results of RF predictions with green and water parcels.
The map is limited to the selected parcels for the area provided by Haihang. The detailed
maps of Xiamen are presented in Figure 18.

Figure 18. (a) Land use grid-based urban area map of Xiamen; (b) zoomed-in area of the right red
frame in graph (a); (c) zoomed-in area of the red frame in graph (b); (d) parcel-based map for the
same area of graph (c); (e) zoomed-in area of the left red frame in graph (a); (f) parcel-based map for
the same area of graph (e).

5.3. Sensitivity of Training Sample Size

We compared two scenarios, in which training sample sizes of different land types were
either proportional, as in the raw data, or balanced. The parcel data we used in this experi-
ment is shown in Table 9, and the results are shown in Figure 19. With 120,000 experiments,
we conclude that with the average parcel size of 6284, a total of 6000 training samples
under the scenario of feeding all features will reach 69.54% accuracy in the first scenario
and 73.25% in the second scenario. Overfitting occurs as we continue to add more samples
in both scenarios.

Table 9. Original sample structure.

Category Training Size Testing Size

Public 2723 303
Residential 2273 253
Industrial 707 78

Commercial 581 65
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Figure 19. Accuracy for different training sample size (run 1000 times each): (a) training samples
balanced; (b) from 0 to 400 samples of graph (a); (c) training samples proportionally; and (d) from 0
to 400 samples of graph (c).

5.4. Grid and Parcel Exchange Experiments

We used grid-based land use classification results to predict parcel-based land use. We
overlapped grids with land parcels, the most dominant land use was used to determine the
parcel land type. The confusion matrix results are listed in Table 10.

Table 10. Confusion matrix of grid and parcel exchange experiment I.

Residential Public Commercial Industrial UA PA

Residential 225 7 6 28 71.66% 84.59%
Public 27 53 4 14 74.65% 54.08%

Commercial 31 3 10 11 47.62% 18.18%
Industrial 31 8 1 138 72.25% 77.53%

OA = 71.36%, Kappa coefficient = 0.6121
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We also tested to predict grid-based land use using an RF algorithm trained by parcel
training samples. There are 6284 parcel training samples and 600 grid testing samples. The
confusion matrix results are listed in Table 11.

Table 11. Confusion matrix of grid and parcel exchange experiment II.

Residential Public Commercial Industrial UA PA

Residential 224 13 1 20 72.44% 87.96%
Public 30 55 0 16 79.73% 59.00%

Commercial 38 3 6 8 87.50% 12.96%
Industrial 31 3 1 151 78.46% 85.00%

OA = 71.69%, Kappa coefficient = 0.6825

6. Discussion
6.1. CMU Data Model and Data Granularity

We find that the combination of remote sensing and social data achieves the best
land classification performance results. In the meantime, the satellite data plus the top
5 and top 10 of social features achieved OA 75.90% and 79.24%, respectively, indicating
redundancy of multiple dimensionalities. PCA analysis can be used to further the data
model research, etc. [47,48]. Experiments also indicated that we can extend the experiments
to other cities efficiently with fewer but important data selections based on the CMU
framework. Secondly, CMU data model abstraction is multi-dimensional. Sparsity along
the geometric dimension for both grid or parcel types is common. For example, less or
non-POI data exist in some green space or rural area grids. Therefore, it is crucial to study
the data pattern using data visualization analysis tools such as CMU VAL. Thirdly, adding
additional social data to fulfill the sparsity along specific dimensions is necessary. In some
cases, when obtaining additional social information is difficult, one can explore using
the crowdsourcing method for adding additional CMU data sources [31]. Lastly, from a
data science perspective, data granularity and transparent feature structures provide data
insight. A CMU framework enables such capabilities.

In addition, the proposed grid-based CMU framework can be flexibly extended to
other cities in practice: (1) the digital structure of CMU data model is reusable for other
cities or urban areas; (2) data collection and processing work can be leveraged because of
the availability of remote sensing and social data in grid format from satellite imagery, 2861,
Zhihuizuji, Baidu, etc. [43]. In addition, area-specific data can be added as well; (3) For
CMU ASL, either algorithms already trained or training samples for a specific city can be
reused as a base for other cities. City-specific characteristics can be addressed with tuning of
the CMU ASL algorithms and adding additional relevant training samples. As more cities
are added, training samples and CMU ASL solutions will be accumulated for improved
performance and future use; (4) The new methods of combining Moore neighborhood and
RF algorithm, grid and parcel exchange analysis in land use prediction can also be utilized
and generalized to other cities and regions in China, or internationally.

6.2. Grid and Parcel Exchange Analysis

A large volume of data collection and costly data processing work are needed to
improve prediction accuracy. The data characteristics or training features are the same
for both parcel-based and grid-based training samples. Therefore, for example, using
grid-based training samples to train the RF tree model and apply it to the parcel-based
land classification saves time and cost. Such concepts and practices are common in transfer
learning models [49]. By doing this, one can leverage work already done for the collection
of training samples, which are labor intensive and costly.

Using grid-based land use classification results to predict parcel land use, we found
that the OA reached 71.36%, which is partially or even better than the parcel-based trained
model itself. While the grid-based model is more efficient to set up, this finding can
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be further expanded to use a grid-based model for parcel-based land use. On the other
hand, while using parcel trained RF model to predict grid land use, an OA of 71.69% was
achieved, which was lower than the aforementioned grid-based model; however it verifies
the feasibility of this new method.

6.3. Sensibility Analysis of Training Sample Size

We find that prediction accuracy improves with the increase of training sample size
and improves much faster while the sample size is less than 1000. As shown in Figure 19a,
it takes 80 samples to reach 70% of the accuracy range (with the range from 0% to 69.54%),
320 samples to reach 80%, and 1200 samples to reach 90%, respectively, which is consistent
with the stable sampling concept Gong et al. [50]. We verified that the accuracy curve cov-
ering these three key sample size points is the same in different feature combinations in the
first scenario of sample size testing. We need 40, 80 and 800 samples for the second scenario
to reach the same conditions, respectively. This is somewhat surprising since it reveals and
verifies that the sample size range for RF training accuracy can be accurately predicted.

6.4. Limitations and Future Research

Our study was limited to the urban area of Xiamen city and has not further researched
rural areas and other cities so far. In addition, we use the RF algorithm in this study because
it has been proven effective in land cover and use classification. However, it is worth
exploring other, more effective AI algorithms. Although we collected and processed a
larger amount of data and also studied and clarified the top data feature contributions,
we concluded that additional data sources are needed to enhance solution accuracies. To
expand the CMU model in volume and in higher dimension, we believe that new methods
to use AI and other means to automatically collect and process data define future research
needs and digital technology trends.

The CMU framework can be used to address the urban housing and renewal challenges
in terms of analyzing of quantity, quality, and distribution need [7], and provides policy
makers with timely updated information [51]. The CMU data model is multidimensional.
Additional data can be added and accumulated. With additional cities added, comparable
comparisons with similar regions, cities can be accomplished. With accumulations of
data, future growth projection and carrying capability studies can be added [52]. Such
capabilities are very important for policymaking and urban reviewal planning. In addition,
the CMU framework can be further used to study city-specific functions, such as traffic
control, economic analysis, environment managements, renewal energy planning, etc.

In particular, there are several areas of research interest for the future: (1) Grid-based
land use methodology can be extended to cover all cities. Knowledge sharing can be further
studied for CMU ASL AI algorithms and training samples sharing, as it has been done for
global land cover study [37] (2) For the setting up of the CMU data model to multiple cities
with multimillion data dimensions, it becomes necessary to use automated AI methods to
collect and process data for the model. Such studies are important for future digital and
intelligent city research; (3) Different AI algorithms can be added and/or tested with the
CMU data model, including SVM [53], ANN, CNN [54], etc. (4) Applications using AI
algorithms can be added to the framework in the CMU Application Solution Layer CMU
ASL for urban renewal development, traffic management, renewable energy planning, etc.;
(5) We used exclusion–inclusion techniques [44] to identify green, water, and road grids.
By combining the results with RF predictions, the overall accuracy is 84.06%. Since roads,
green space, and water cover more land areas, further analysis can be done for rural areas,
and to further study combinations of CMU ASL algorithms; and (6) As social data sources
are accumulated temporally, city development projections and simulations can be added to
the model [25,55–57].
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7. Conclusions

Addressing urban land use classification challenges in the development curve from
digital city, intelligent city to now meta city, we established a CMU framework for city-
specific studies. First, it combines remote sensing data with open social data, which can
be served as a framework for meta-city study from data collection, features summation,
and abstraction across space and time (historical simulation and future projections). The
CMU framework consists of five layers of functions, including the Foundation Layer (CMU
FL),Summation Feature Layer (CMU SFL), Density Index Layer (CMU DIL), Visualization
Analysis Layer (CMU VAL), and Application Solution Layer (CMU ASL). Second, we imple-
mented the proposed CMU framework for a systematic grid-based land use classification
by leveraging the city of Xiamen as a testbed. Third, the large data size of meta-city analysis
imposes challenges for data collection and processing. We studied the relationship between
grid-based and parcel-based land classifications and concluded that the two models com-
plement each other and can be reused robustly. Fourth, we also considered the factors
that neighboring grids influence each other by applying the Moore neighborhood concept
to the study. With the integration of Moore neighborhood methods, we can improve RF
accuracy by resolving RF tree prediction uncertainty, which can be leveraged as a good
strategy for guiding future land use classification practice. Finally, the proposed grid-based
CMU framework can be flexibly extended to other cities in practice, mainly because of
the availability of remote sensing and social data from satellite imagery, 2861, Zhihuizuji,
Baidu, etc. Such a study shall enable urban land use analysis and planning more effec-
tively by leveraging fast-advancing digital twin technology since most social data are more
conveniently available in a grid format. It presents a detailed demonstration of data-rich
experiment and model-driven framework for essential urban land use classification, which
can be adapted to any other cities across the globe.
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