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Abstract: UBathy is an open source software developed for bathymetry estimation from video
images. The proposed scheme is based on extracting the wave modes from videos of the nearshore
surface wave propagation. These videos can be formed either from raw camera images, which must
have been previously calibrated, or from georeferenced planviews. For each wave mode extracted
from the videos, the wave frequency and the spatially dependent wavenumbers are obtained. The
frequencies and wavenumbers from different videos are used to estimate the bathymetry by adjusting
the dispersion relationship for linear surface water waves. The bathymetry at different times can
further be weighted and aggregated using the Kalman filter. The new software is suitable for Argus-
type video monitoring stations and for moving cameras mounted on drones or satellites, and it is
meant for users familiar with coastal image processing and suitable for non-experienced users. The
software and an application example are available on the GitHub platform.

Keywords: bathymetry; video monitoring; remote sensing; beach; nearshore; coastal zone;
signal decomposition

1. Introduction

Coastal zone management and research requires knowing the bathymetry and its
changes [1,2]. Bathymetry has an immediate interest in decision making processes and,
further, bathymetric timeseries allow to understand morphodynamic processes and to
validate models which, in turn, are helpful to predict future changes and to analyze the
impact of potential human actions [3,4]. Managers and scientists (marine geologists, coastal
modelers, etc.), with different levels of technical background, are faced with the need for
bathymetry, preferably with high frequency and at a low cost. The development of accurate,
affordable and easy-to-use technologies can benefit all of them.

Techniques for direct bathymetry measurements such as bottom-contacting vehicles [5],
swath-sounding sonar systems [6] or bathymetric LIDAR [7], produce very high quality
bathymetry due to their high resolution. However, they are economically expensive and
time-consuming techniques. Hence, they are only used at most a few times a year for a given
site, except for very specific field campaigns. In the highly dynamic nearshore area, sporadic
campaigns are important to obtain a rough estimate of the characteristics or the current state of
the beach, but are of minor value to study its dynamics at the event scale.

The main alternative techniques to those listed above use sequential observations of
the sea surface to infer the bathymetry from how it affects sea wave characteristics. These
sequences of observations, which may come from satellite imagery [8], fixed coastal video
monitoring stations [9], drones [10] or radars [11], are used to analyze the water wave
propagation from which to infer the bathymetry. The methods are all based on the linear
dispersion relationship, which relates the wave period and the wavelength (or, equivalently,
the wave celerity) to the local water depth. In the nearshore zone, specific schemes have
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been developed to deal with non-monochromatic wave propagation in shallow waters,
namely: cBathy [9], UBathy [12] and COCOs [13]. These algorithms, initially developed
for videos obtained from fixed video monitoring systems (“Argus-like”, [14]), use videos
of planviews (projections of the raw images into the mean water level plane) of around
10 min at 2 Hz and can also be applied to videos from radar [15] and drones [16]. The
software proposed in this paper belongs to this category of schemes.

The cBathy algorithm [9] starts by transforming the time history of the intensity of
each pixel into the frequency domain. To obtain the local water depth at a given point,
cBathy considers a neighborhood and obtains the wave spatial pattern and the wave period
through frequency-domain empirical orthogonal functions of the cross spectral matrices.
The dispersion relationship then allows them to obtain estimates of the depth for each
dominant frequency and, also, a weighted average of them. A Kalman time filter over
the results of the available videos is required to obtain the bathymetry for successive
dates (Figure 1A). The excellent results of cBathy clearly show the capability of using
frequency and wavenumber values extracted from videos to estimate the bathymetry
from the dispersion relationship when it is combined with a Kalman filter. The algorithm
has recently been updated [17] to include, for instance, an adaptive scheme to determine
the optimum size for the mentioned neighborhood, and it is available as open source
Matlab toolbox.

The original UBathy algorithm [12] first splits the video in time to obtain sub-videos
that are analyzed individually. The Hilbert transform of each sub-video is decomposed in
space and time using empirical orthogonal functions (EOF). For the subsequent analysis,
the modes whose temporal behavior is periodic are considered. For each of these modes, the
wavenumber field is obtained locally fitting a plane to the phase of the spatial component
of the mode. Finally, once all the sub-videos have been analyzed, the local depth is
obtained by fitting the dispersion relationship to the set of pairs of wavenumbers and
periods found at each point. The results with this algorithm show that the global analysis
performed in the mode decomposition, while filtering the different wave constituents in
the videos, allows a good extraction of wave numbers and periods and an improvement in
the bathymetric estimation.

COCOs algorithm [13] splits the video in time and, for each sub-video, performs a
space-time decomposition of the Hilbert transform of the signal, similar to UBathy. In this
case, however, a dynamic mode decomposition (DMD) [18] is applied. This decomposition
does not force orthogonality of the space components of the modes and ensures periodicity
time-wise. The wavenumbers are obtained from the space components of the modes using
in this case a two-dimensional fast fourier transform (2D-FFT) in a neighborhood whose
size is obtained adaptively, and analyzing the wave celerity. By adjusting the Doppler-
shifted linear dispersion relationship, a bathymetry and an associated current field are
obtained for each sub-video. The estimation of the bathymetry is finally performed by
applying a Kalman filtering to the resulting bathymetry of consecutive sub-videos and
stopping the process once the convergence of the solution is found (Figure 1B). The COCOs
results support the benefits of a global analysis of the wave modes as well as the capability
of the Kalman filter for aggregating the bathymetry results within the video. This algorithm
is available as open source Matlab toolbox.

The aim of this work is to present an improved version of the UBathy algorithm,
including details of its open source software toolbox. The improvements include the
application of robust principal component analysis (RPCA) [19] and DMD algorithms
within the mode decomposition step, the use of adaptive neighborhoods for wavenumber
and local water depth estimation, the outlier exclusion through the use of RANdom
SAmple Consensus approach (RANSAC) [20] and, finally, the bathymetry aggregation
through Kalman filtering. The work is complemented with the software, developed to be
used by coastal community members not necessarily with programming expertise and,
as developed in Python, with no additional licensing costs of proprietary tools. As new
features, the software allows to obtain the bathymetry from video images covering different
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areas (with or without overlapping) and captured at different times. This allows large areas
to be covered and avoids problems of camera synchronization. In addition, the videos
can be based on calibrated raw images or georeferenced planviews (Figure 1C), allowing
the use of multiple image sources (fixed stations, drones, satellites, etc.). The theoretical
background and the main code characteristics are presented in Section 2. To illustrate the
performance of UBathy, Section 3 presents and discusses the results for different videos
obtained from a video monitoring station, including also some recommendations of use.
The paper ends in Section 4 with some conclusions.

Figure 1. Basic characteristics in regard data input and use of Kalman filter for cBathy (A), COCOs
(B) and the proposed improved version of UBathy (C).

2. Methods and Software Description

UBathy has been developed to estimate the coastal bathymetry from the propagation
of nearshore water waves as observed in video images. The main features of the software
and the methodology are listed below.

Software characteristics. UBathy is an open source software developed in (also open
source) Python3 and available at GitHub platform. It runs on any platform with a standard
installation of Python3.9 (i.e., with “The Python Standard Library”) and OpenCV, NumPy,
SciPy and matplotlib modules. The code is complemented with an example case so that
any user can fully execute it. A guided example is included to run on Jupyter Notebook
to facilitate its use to non-experienced users. The software is suitable for users who are
familiar with coastal image processing.

Videos sources. A novel aspect of UBathy is that allows to directly process videos of raw
camera images in addition to usual planview videos. In the first case (raw images), the
videos can be acquired typically from fixed video monitoring stations (“Argus” type, [14])
but also from new CoastSnap stations [21]. For their processing, only the calibration of
the camera is needed, without any further post-processing, together with the position of
the mean water level at the time of the recording. Videos of planviews can normally come
from fixed video monitoring stations or from the processing of drone flights. For planview
videos it is necessary to know their georeference and the position of the mean water level.

Mode decomposition. The extraction of the wave modes and corresponding wave periods is
performed by global analysis of the images. The software allows, at user’s request, to decom-
pose the videos in time (wave periods) and space (wave phase) using EOF, following [12], or
DMD [13]. In addition, the user can also reduce the signal noise of the videos by applying an
RPCA [19]. The wavenumber estimation uses local adjustments of the wave phase.
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Bathymetry estimation. The bathymetry is obtained by fitting the surface waves disper-
sion relationship with the wavenumbers and frequencies of the different modes, tak-
ing into account the different mean water levels. Another novel aspect of this soft-
ware is the flexibility to obtain the bathymetry by assembling videos that: (1) cover
different parts of the coastal area, (2) do not need to be recorded synchronously and
with the same sea level and, (3) are made of different types of images (planviews and raw
images). In addition to the bathymetry obtained from the above analysis, a Kalman filter is
used to obtain the bathymetry at a given time by accumulating the results obtained up to
that time.

The execution of the UBathy software is performed through the following steps:

Step 0: Video and data setup. The video frames, data for image georeferencing and mean
water level during the recording of the videos are provided.

Step 1: Generation of meshes. Generation of the spatial meshes to express the mode de-
composition, the wavenumbers and the bathymetry.

Step 2: Mode decomposition. The wave is decomposed into different modes, with the
corresponding wave period and spatial phase.

Step 3: Wavenumber computation. The spatial phase of each mode is analyzed to extract
the wavenumbers in the spatial domain.

Step 4: Bathymetry estimation. Estimation of the bathymetry from the set of periods and
wavenumbers of different videos.

Step 5: Kalman filtering. Determination of the bathymetry evolution by time filtering the
bathymetry results obtained from videos at different times.

Thereafter, Section 2.1 details the methodology and theoretical background for each of
the different steps and Section 2.2 describes the software execution procedure, including
the data structure, inputs and outputs.

2.1. Methodological Background
2.1.1. Generation of Meshes

For each video, the mesh where to obtain the modes (“M-mesh”) depends on whether
the video is made of planview or raw (oblique) images. If it is made of planviews, the mesh
are those xy-points of the planview which fall within the domain where the bathymetry is to
be estimated (Figure 2A). When the video is made of raw images, the mesh is build as a set
of xy-points within the bathymetry domain so that: (1) they correspond to integer-valued
pixels of the raw images, so as to avoid later interpolations, and, (2) they resemble, as
far as possible, a uniform equilateral triangle mesh of given resolution δM, so as to avoid
over-weighting the areas of the raw image where the pixel footprint in space is higher
(Figure 2B). For each video, the mesh where to obtain the wavenumber k (the “K-mesh”) is
made of the xy-points of a uniform equilateral triangle mesh of resolution δK that fall both
within the bathymetry domain and the xy-domain of the image, whether it is planview
(Figure 2C) or raw (Figure 2D). Finally, the mesh for the bathymetry (“B-mesh”) are the
xy-points of a uniform equilateral triangle mesh of resolution δB within the bathymetry
domain (Figure 3). This mesh is independent of the videos.
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Figure 2. Meshes for modes (top) and wavenumbers (bottom) for videos made up of planviews (A,C)
and raw images (B,D). The bathymetry domain is shown in blue; planview (A,C) or camera (B,D)
domains are shown in red.

Figure 3. Mesh for the bathymetry. The bathymetry domain is shown in blue.

2.1.2. Mode Decomposition

Following Simarro et al. [12], each video is first cut to obtain, every time step ∆t
(equal or higher than the time step between frames), a set of sub-videos of durations
w1, w2, . . . (Figure 4). The signal in each sub-video is decomposed in space and time to
estimate the wavenumbers and periods of the dominant wave components. Previously,
the RPCA algorithm by [19] can be applied, with IM iterations, to remove noise from the
signal. Further, the time Hilbert transform of the signal must be done before the mode
decomposition to obtain a natural retrieval of phases [12]. Since the Hilbert transform
generates overshoots at both ends of the time domain, the sub-videos are first increased at
both ends with the expected maximum period (Tmax, which is the maximum affection zone
of the overshoots) and, once Hilbert-transformed, cropped back to wi (Figure 5).

Two different space-time mode decompositions are allowed for the Hilbert-transformed
sub-videos: EOF [12] and DMD [13,22]. If EOF is applied, the modes that are considered
for further analysis are those explaining a percentage of the total variance above a critical
value (vE ∼ 2.5%), having a proper temporal periodic behavior (σω/ω 6 0.15, following
the notation in the original work) and with the period within a range [Tmin, Tmax] . If DMD
is applied, the rank for the dimension reduction embedded in DMD must be provided
(rD ∼ 6) and the modes considered for further analysis are all those with a period in the
range [Tmin, Tmax] . Either using EOF or DMD, the results for each sub-video is a set of
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modes. Each mode has a wave period and its complex-valued spatial component, given in
the M-mesh, which can be represented by an amplitude and a phase (Figure 6).

Figure 4. Sub-video generation from a video; the time step between frames is 1 fps (fps = frames
per second).

Figure 5. RPCA + Hilbert transform of the sub-videos.

Figure 6. Spatial phase of two modes obtained for videos of planviews (A) and raw images (B). The
white circle (A) represents the size of the neighborhood to estimate the wavenumber.

2.1.3. Wavenumber Computation

For the modes obtained in the above decomposition, the wave wavenumbers, k, are
computed using their period and spatial phase, which represents the phase of the wave
(Figure 6). This step can be performed in different ways ([13] and references therein): from
the phase gradient, performing spatial 2D-FFTs or, recalling the complex nature of the modes,
through particle image velocimetry techniques (cross-correlation). A modification of the
approach by Simarro et al. [12], based on computing the phase gradient, is considered here.

For each of the modes, the wavenumber k at each point P of the K-mesh is obtained
by adjusting the phase locally to a plane. To achieve this, the phase values of the points
of the M-mesh that are in a neighborhood of a given radius RK around point P are used
(e.g., the points within the white circle in Figure 6A for the black dot). The values of RK
are detailed below in this subsection. The phase values at these points are shifted to be
centered around zero to avoid phase jumps at ±π (following the “phase fitting” method at
Simarro et al. [12]) and then approximated with a plane kxx + kyy + α0, where kx, ky and
α0 are free coefficients. To remove the noise and the outliers in the phases, evident in some
areas of Figure 6, a RANSAC approach [20] is applied maximizing the number of points
with fitting errors below 0.25 rad ≈ 15◦. The wavenumber is then

k =
√

k2
x + k2

y.
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Once the wavenumbers k of a mode of frequency ω have been computed, a first
selection is performed using the parameter γ = ω2/ (gk) , in which those with γ > 1.2 are
discarded (gaps in Figure 7A,B). This parameter is also used to introduce two additional
parameters that will be used later, in the estimation of the bathymetry, to evaluate the
quality of the computed wavenumbers. For any point P of the K-mesh, the mean, µγ and
standard deviation, σγ, of γ (Figure 7C,D), are computed with the values in a neighborhood
of P of radius 0.5λ, with λ = 2π/k the estimated wavelength at P.

Regarding the radius RK, used to determine the neighborhood in which the phase is
fitted to a plane, it has to be taken into account that very small neighborhoods make the
results more sensitive to noise but large neighborhoods are likely to contain jumps of the
phase. Given these limitations, it is convenient to use an RK that is, at most, of the order of
one-half wavelength of the local wave. However, it is not known a priori since it depends
on the wave period and the local (unknown) depth. In order to circumvent this problem,
neighborhoods adapted to the different wave modes and depths are chosen.

As the frequency ω of a wave mode is known, the wavelengths corresponding to a
set of depths in the range in which the bathymetry will be estimated are used; dmin and
dmax, respectively, are the minimum and maximum obtainable depths; nK equispaced
intermediate depths are defined in this range (see Figure 8, where nK = 3)

dj = dmin +
j (dmax − dmin)

nK
, j = 1, . . . , nK. (1)

For each depth dj, the wavelength λj = 2π/k j is obtained from the dispersion relation-
ship ω2 = gk j tanh (k jdj) and the radius of the neighborhood is computed as RK,j = cKλj,
where cK is a factor of the wavelength that must be around 0.5. Consequently, the values of
k, γ, µγ and σγ will be obtained for each RK,j, assuming that larger radius will work better
in deeper regions and vice versa. This approach follows a similar philosophy of adaptivity
proposed by Gawehn et al. [13], Holman and Bergsma [17].

Figure 7. Wavenumber k (A), γ (B), µγ (C) and σγ (D) obtained from the spatial phases and period in
Figure 6A, taking RK the radius of the white circle in the same figure.
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Figure 8. Depths dj and wavelengths λj for RK,j.

2.1.4. Bathymetry Estimation

The outcome of computing wavenumbers for all RK’s of all modes of all sub-videos of
all the videos from which a bathymetry will be computed, is a (very large, in general) set of
tuples {x, y, ω, k, µγ, σγ, zs} , with zs the surface elevation, at each point of the K-meshes—
recall that γ = ω2/ (gk) is also provided. For the computation of the bathymetry, the
tuples with the most reliable values of k are selected by requiring that

|γ− µγ| 6 eB, σγ 6 eB, (2)

where eB ∼ 0.075 is a critical error (Table 1).
To estimate the bed elevation zb at a point P in the B-mesh, those tuples in a neighbor-

hood of radius RB, which is discussed below, are used. First, an error is computed for a
given depth zb of each j-th tuple as

ε j (zb) = γ− γ′ =
ω2

gk
− ω2

gk′
,

with k′ = k′ (ω, zs, zb) the wavenumber obtained by solving ω2 = gk′ tanh (k′ (zs − zb) ) .
Above, most j sub-indexes are avoided for readability (e.g., in ω, k and zs). The dispersion
relationship is solved using an improved version of the explicit approximation by Simarro
and Orfila [23]. Following a RANSAC-like approach, a first approximation of zb is found
by maximizing the amount of tuples that satisfy |ε j| < eB (Figure 9A) for zb’s in the range
corresponding to the given range of depths. In a second step, for the J tuples satisfying
|ε j| < eB (around 350 in Figure 9A), zb is obtained by minimizing (Figure 9B)

ε (zb) =

√√√√1
J

J

∑
j=1

ε2
j (zb) .

Following the same strategy as for the wavenumber, once zb has been estimated at
all possible points in the B-mesh, the quality of zb in a point P is assessed through the
standard deviation, σzb, of the values of zb in a neighborhood of radius RB around P. This
radius RB, also employed to select the tuples for the estimation of the bathymetry, is
computed by scaling a characteristic local wavelength, LB, as RB = cBLB, where cB ∼ 0.2
is a dimensionless coefficient and, at each point P of the B-mesh, LB is the average of
wavelengths obtained at the point closest to P of the K-mesh.

Figure 9. Estimation of zb from tuples (ω, k, zs) : RANSAC discard (A) and optimization (B).
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2.1.5. Kalman Filtering

The result of the previous steps is a set of bathymetries zb and (self) errors σzb obtained
at different times tj (i.e., zb,j and σzb,j) in points of a unique B-mesh. Following [9] the
Kalman filter is applied in time at each spatial point. The filtered bathymetry is initialized
at time t0 as

zKal
b,0 = zb,0 ,

and, to update the bathymetry from time tj−1 to time tj, it is

zKal
b,j = zKal

b,j−1 + Kj (zb,j − zKal
b,j−1) , (3)

where Kj is the “Kalman gain”. The Kalman gain, together with other useful variables, is
obtained as

Kj =
p

p + σ2
zb,j

, p = Pj−1 + Q2 (tj − tj−1)
2 , Pj = (1− Kj) p . (4)

Above, Pj, that is initialized as P0 = 0, is the a posteriori variance of the error: its square
root, a length, gives a measure of the quality of the Kalman filtered bathymetry. Moreover,
Q, with units of velocity, is the expected natural variability of the bed, e.g., 0.1 ms. The
value of Q could depend, in general, on the wave conditions and on the bathymetry itself,
but it is considered constant.

2.2. Software Implementation

This section briefly describes the structure and software workflow of UBathy. A de-
tailed description of the file structure, format of the files, software workflow and an appli-
cation example can be found at https://github.com/Ulises-ICM-UPC/UBathy (accessed
on 10 November 2022), site to be updated if any future changes or developments take
place. The code and the data used in this paper are hosted permanently on Zenodo at
https://doi.org/10.5281/zenodo.7360216 [24], see Appendix A.

2.2.1. Video and Data Setup

The user must provide the video frames from which the software will estimate the
bathymetry. These frames, uniformly distributed in time, must be either in image format
(PNG or JPEG) or in a container format (AVI, MPEG or QT) from which images of each
frame are extracted. For each video, the camera calibration file must be supplied in the case
that frames are raw camera images, or a file where the image is georeferenced in the case of
planviews. At https://github.com/Ulises-ICM-UPC (accessed on 10 November 2022) the
reader can find codes for camera calibration and planview generation from drones. For
each video, a file with the mean water level has to be included. In addition to the videos
and these files, the user has to provide a file with the spatial coordinates of the boundary
of the domain in which the bathymetry is to be estimated (xy_boundary.txt), a file with
the list of videos that compose the different bathymetry results (videos4dates.json) and
a main file of parameters (parameters.json) where the values of the parameters described
in Section 2.1, and few other introduced here, are assigned. The equivalence between the
parameters of the previous section and the name of the parameters in the parameters.json
file is detailed in the Table 1. It is also possible to provide ground truth bathymetry that
can be used to evaluate the results obtained with UBathy.

2.2.2. Generation of Meshes

The meshes for mode decomposition and wavenumber computation, which are spe-
cific to each video, and the mesh for bathymetry estimation, common to all videos, are
generated from the mesh resolutions set in parameters.json, the domain defined in
xy_boundary.txt and the spatial region covered by the images as described in Section 2.1.1.
These meshes are stored in a temporary scratch folder in NPZ format (a compressed for-

https://github.com/Ulises-ICM-UPC/UBathy
https://doi.org/10.5281/zenodo.7360216
https://github.com/Ulises-ICM-UPC
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mat for multiple arrays from Numpy). On user demand, plots of the meshes are also saved
in the scratch folder.

Table 1. List of variables in parameters.json, including the present nomenclature, the names in
parameters.json, the reference values considered in the examples and a suggested range of use
(whenever it is not site dependent).

Variable parameters.json Unit Example Ranges

generation of
meshes

δM delta_M m 2.5 -
δK delta_K m 5.0 -
δB delta_B m 5.0 -

mode
decomposition

∆t time_step s 30 [1–60]
{w1, w2, . . . } time_windows s {60, 90, 120} [30–150]
Tmin min_period s 3 -
Tmax max_period s 15 -
IM candes_iter - 50 [40–80]
- DMD_or_EOF - “DMD” “DMD” or “EOF”
rD DMD_rank - 6 [5–10]
vE EOF_variance - 0.025 [0.010–0.100]

wavenumber
computation

dmin min_depth m 0.5 -
dmax max_depth m 6.0 -
nK nRadius_K - 3 [2–5]
cK cRadius_K - 0.60 [0.40–0.60]
mK nRANSAC_K - 50 [25–100]

bathymetry
estimation

eB stdGammaC - 0.075 [0.050–0.150]
cB cRadius_B - 0.20 [0.10–0.30]

Kalman
filtering

tini Kalman_ini yyyyMMddhhmm 202007250800 -
tfin Kalman_fin yyyyMMddhhmm 202008010900 -
Q var_per_day m/day 0.1 [0.05–0.25]

2.2.3. Mode Decomposition

For the mode decomposition the user must set, taking into account the expected wave
periods, the limits of the range of wave periods to be considered (Tmin and Tmax) as well as
the parameters that adjust the splitting procedure of the videos into sub-videos. Two major
choices are made at this step: the type of decomposition to perform (EOF or DMD) and
whether (or not) to reduce the noise in the video using the RPCA algorithm. Those choices
will have a bearing on the quality of the decomposition but also on the computational cost
that is discussed in Section 3. As in the previous step, the parameters have to be set in the
parameters.json file. Again, the files generated by the code containing the period and
the spatial phase of the wave modes will be stored compressed in the scratch folder and,
optionally, plots of the decomposition will be generated.

2.2.4. Wavenumber Computation

In this step the user must decide the size of the neighborhoods used to calculate the
wavenumbers. This is achieved indirectly by setting the range of depths (dmin and dmax)
in which the bathymetry will be solved, the number of neighborhoods nK to be used and
the factor cK (see Section 2.1.3). The number of RANSAC iterations to remove outliers, mK,
must also be set (see Table 1). The outputs of this step are analogous to the preceding one.

2.2.5. Bathymetry Estimation

Finally, the estimation of the bathymetry at the B-mesh is done by composing the previ-
ously processed videos, from which periods and wavenumbers have been obtained. The set
of videos considered to compose each bathymetry are specified in the videos4dates.json
file. Further, the values of the critical error eB and coefficient cB to estimate the bathymetry
must be set (Section 2.1.4, Table 1). Similar to the other steps, the compressed results and
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plots with the bathymetric results are saved in the scratch folder. Here, additionally, a file
with the coordinates of the B-mesh points and another one with the bathymetry values and
its self-assessed errors are generated in plain text format. If reference bathymetry (ground
truth) have been provided, a file is also generated with the values of the bathymetry inter-
polated at the same B-mesh. If requested by the user, the corresponding plots are saved in
this same folder.

2.2.6. Kalman Filtering

On the basis of the bathymetric results obtained at different times, the user can
aggregate them through a Kalman filter. To achieve this, the different bathymetry results
and the corresponding (unique) B-mesh need to be provided. The bathymetry and B-
mesh should be located in the bathymetries folder and in a plain text format. In the
parameters.json parameter file, the time interval (tini and tfin, expressed as yyyyMMddhhmm)
over which the filtering is to be performed and the variability of bottom Q are specified.
Output files are generated in plain text format in the same folder, including optional plots.

3. Results and Discussion

For illustration purposes, but also to introduce some general recommendations of
use, this section presents the results using UBathy for videos obtained at the Argus-like
video station at Castelldefels beach (∼15 km south of the city of Barcelona, Spain, http:
//coo.icm.csic.es/, accessed on 10 November 2022). Castelldefels beach is a 4.5 km open
beach with an east to west orientation, composed of uniform sand with median grain
size ∼0.3 mm and presenting a relatively shallow nearshore zone with a dynamic bar
morphology [25]. The offshore mean significant wave height is 0.70 m, with maximum
heights up to 7.8 m and the averaged mean period is 4.3 s; calm conditions prevail during
the summer period and energetic conditions occur mostly from October to May [26]. The
station, already described, e.g., by [27], consists of five cameras located on top of a 30-meter
high tower and covering a shoreline length of around 1000 m. The calibration of the cameras
has been performed using the ULISES codes (https://github.com/Ulises-ICM-UPC [28],
accessed on 10 November 2022), and only two cameras are considered in this work (heading
South-East and South, Figure 10A and Figure 10B, respectively). The videos used in this
example were recorded between 25 July 2020 and 1 August 2020. A bathymetry survey
performed by the Barcelona Port Authority on 31 July 2020 is used as ground truth.

3.1. Bathymetry Estimation

In Section 3.1, the bathymetry is estimated from two videos obtained from different
cameras, both recorded on day 1 August 2020 (Figure 10). The videos were recorded with a
lag of 15 min, and the mean water levels at the start of the videos were 0.177 m (Figure 10A)
and 0.183 m (Figure 10B) according to the tidal gauge data provided by the Spanish Port
Authority “Puertos del Estado” (www.puertos.es, accessed on 10 November 2022).

Figure 10. Images from Castelldefels beach station. Raw images from the two (out of five) cameras
considered (A,B) and the planview (C) obtained from image B. The boundary of the domain to obtain
the bathymetry is shown in blue. The black part in C corresponds to the part of the planview domain
(rectangular) which is not reached by the camera.

http://coo.icm.csic.es/
http://coo.icm.csic.es/
https://github.com/Ulises-ICM-UPC
www.puertos.es
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To illustrate the capability of the software to jointly process videos of planviews and
videos of raw images, the video corresponding to Figure 10B has been projected to the
mean water level to a (rectangular) planview video with a resolution of 0.4 ppm (pixels
per meter) as it is shown in Figure 10C. Only the videos corresponding to Figure 10A,C are
considered to estimate the bathymetry. For lightness, the videos included in the GitHub
platform, and analyzed here, have been cropped to only 160 s at∼2 fps (frames per second).
Some relevant results for the full videos, of 600 s at the same frequency, are also presented
to show the potential of the software. The recommended rate (fps) is so that it allows the
result to contain &8 frames per wave period.

3.1.1. Generation of Meshes

Provided the domain where to obtain the bathymetry (in xy_boundary.txt, blue lines
in Figure 10), the meshes have been constructed setting, in parameters.json, the values
for δM, δK and δB in Table 1 (“example” column). The M-meshes for both videos are those
already shown in Figure 2 (top). The value of δM is not used for the planview video,
since the M-mesh is directly the squared mesh from the planview. Figure 2 also includes
(bottom) the K-meshes. Given that the values of the wavenumbers at K-mesh are computed
from the values of the modes at M-mesh, δM establishes the maximum reachable spatial
resolution and it is recommended that δK > δM to avoid wasted efforts. Finally, the B-mesh,
independent on the video, is the one in Figure 3. Following the same reasoning above in
regard to the reachable resolutions, it is recommended that δB > δK.

3.1.2. Mode Decomposition

In this illustration example, the modes have been obtained using the DMD and with
a rank rD set to 6 (Table 1). Furthermore, it is set to IM = 50 iterations to clean the
signal through RPCA before applying the DMD analysis. The use of RPCA increases
the computational cost, but this increment is relatively small as compared to the cost of
obtaining the wavenumbers. Finally, the parameters related to the sub-video generation (∆t,
w1, w2, . . . , Figures 4 and 5) and the limits for the allowed periods are also those introduced
in Table 1. With the above settings (i.e., the values in Table 1), 10 and 9 modes were obtained
for the raw and planview videos, respectively; their corresponding periods ranging from
4.96 s to 13.63 s and most of them being around 6 s. Figure 6 shows two of these modes. Of
note, using EOF the number of modes reduces to 3 and 4, respectively, while using again
DMD for the full videos the number of modes increases to 167 and 184 (summing up 351).
As already mentioned in the initial work [12], the areas with wave breaking manifest with
a poorly clean behavior of the modes, subsequently preventing a correct wave number
recovery. In this sense, the ideal conditions are observable but low amplitude waves.

Besides using RPCA, it is recommended that the time-windows wj are so that they
include several wave periods (namely > 5T with T the expected dominant wave period)
while being significantly smaller than the video duration. In regard to the time step ∆t,
which must always be equal or larger than the time-step between the video frames (1 fps),
the lower its value the greater the number of sub-videos to be analyzed, therefore increasing
the possibility of finding useful decompositions at a higher computational cost. In general
(not in this example to reduce the computational cost), a reasonable value for ∆t is 1/10-th
of the duration of the video.

3.1.3. Wavenumber Computation

Following with the example, for each of the above-mentioned 19 (=10 + 9) modes, the
wavenumber is obtained using the parameters shown in Table 1 (i.e., nK = 3, depths from
0.5 m to 6.0 m and mK = 50). Figure 7 shows the results obtained for one of the modes of
the planview video (the one in Figure 6A) and using RK,3 for d3 (the largest value). The use
of nK is one important novel aspect in UBathy since, together with the RANSAC, is the way
adaptivity is introduced. For each of the nine modes of the planview video, k, γ, µγ and
σγ (recall Figure 7) are computed using the three depths dj (note that, for each depth, the
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radius RK,j changes from mode to mode alongside with the period). For d1 (2.33 m) and
d3 (6.00 m), Figure 11 shows the number of modes for which the obtained values satisfy
γ < 1.2 and the conditions in equation (2) at each point of the K-mesh. As shown in the
figure, the small depth (d1) works worse than the largest (d3) in the bottom (deepest) part
of the plot, while slightly improves some parts of the shallower zone. The differences
are, however, relatively small. Provided that the differences have shown not to be very
significant, and that using different values of dj multiplies the computational effort, it is
recommended to consider small values of nK (2 or 3).

Figure 11. Number of useful pairs (ω, k) obtained for the planview video for d1 (A) and d3 (B).

3.1.4. Bathymetry Estimation

The result of the bathymetry using the pairs (ω, k) obtained from the 19 modes of the
two videos is shown in Figure 12A. The error relative to the ground truth bathymetry is also
shown (Figure 12C). The results obtained using the full videos (i.e., 600 s instead of 160 s)
are also included in the figure (right panels). Table 2 (“all dj” row) shows the number of
points of the B-mesh for which the bathymetry is solved, as well as the bias and root mean
squared error (RMSE) using the 160 s (left, the reference case) and 600 s (right) videos. The
benefits of using the full videos, that allow to obtain 351 modes instead of the 19 obtained
from the short ones, are to estimate bathymetry at more points and with smaller bias and
RMSE. The results are very good and, particularly for the full video, comparable to the
bathymetric survey considered as ground truth. In order to emphasize the influence of dj
on the results, Table 2 also includes the results obtained using exclusively the wavenumbers
obtained using d1, d2 or d3. As a general comment, according to the dispersion relationship,
the greater the period, the deeper the wave feels the bottom and therefore, the bathymetry
can be estimated to greater depths.

Table 2. Summary results for the bathymetry obtained for the cropped (160 s) and full (600 s) videos
using all dj at once (as in UBathy) and using one each time. The reference case is “all dj” with “videos
of 160 s”.

Videos of 160 s Videos of 600 s

Case Points Bias m RMSE m Points Bias m RMSE m

all dj 5609 −0.18 0.38 6174 −0.10 0.26

only d1 5270 −0.07 0.32 6134 +0.01 0.23
only d2 5282 −0.22 0.39 6026 −0.12 0.26
only d3 5105 −0.27 0.44 5977 −0.17 0.28
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Figure 12. Bathymetry (top, (A,B)) and errors (bottom, (C,D)), relative to the ground truth (zb,GT)
obtained using the 160 s (left, (A,C)) and 600 s (right, (B,D)) videos.

In the case of not using RPCA (IM = 0), maintaining the rest of parameters of the
reference case, the number of points is reduced in 10% and the RMSE increased in 15%.
Provided that RPCA contribution to the total computational effort is relatively small, its
use is recommended. On the other hand, in the case of not using RANSAC (mK = 0)
in the computation of the wavenumbers, again maintaining the values of the rest of the
parameters of the example, the bathymetry is obtained with a quality equivalent to the
reference case but only for less than 10% of the points of those obtained in the reference
example. The main reason for the loss of performance is that (not using) RANSAC no longer
corrects possible phase jumps due to excessively large RK values in the computation of
the wavenumber k. Reducing the size of the neighborhoods by decreasing cK and relaxing
the requirement of quality for the wavenumber k by increasing eB allows us to increase
the number of points at which the bathymetry can be estimated. However, the quality of
the results does not reach those obtained with RANSAC and large neighborhoods. The
quantitative values for this experiments are summarized in Table 3, and Figure 13 includes
two examples of interest. The best results without RANSAC, which is in fact a similar
approach as the one considered originally by [12], are obtained for cK = 0.2. Considering
these results, it is recommended to use RANSAC for wavenumber computation, although
it increases the computation time and is not essential to obtain acceptable results.

Table 3. Summary results for the bathymetry using RANSAC with eB = 0.075 (reference case) and
without RANSAC with eB = 0.15 and for different values of cK.

Videos of 160 s

Case Points Bias m RMSE m

RANSAC, cK = 0.6 5609 −0.18 0.38

no RANSAC, cK = 0.6 4420 −2.17 2.33
no RANSAC, cK = 0.4 5427 −0.86 1.12
no RANSAC, cK = 0.2 5989 +0.15 0.57
no RANSAC, cK = 0.1 4502 +1.12 1.69
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Figure 13. Bathymetry (top, (a,b)) and errors (bottom, (c,d)) obtained without RANSAC for cK = 0.6
(left, (a,c)) and cK = 0.2 (right, (b,d)).

3.2. Kalman Filtering

The aggregation of videos using the Kalman filter is performed with the bathymetry
information obtained with a daily video, starting at 08:30, from the camera corresponding
to Figure 10C. Results from up to 7 days prior to the day of the video analyzed in the
preceding section (1 August 2020) have been aggregated. This has been performed by setting
tfin = 202008010900 and decreasing tini day by day from 202007310800 to 202007250800.
For the bathymetry obtained only with the one-day video and for those resulting after
applying the Kalman filter, the number of resolved points and bias and RMSE with respect
to the bathymetry measured on 31 July 2020 have been calculated (Table 4, using the videos
of 160 s or 600 s). The bathymetry with a video and resulting from the aggregation of
7 previous days is shown in Figure 14 using the cropped 160 s videos.

The results for videos of 160 s show that applying the Kalman filter improves the
bathymetry obtained with a single video; after 3 days, the quality stabilizes and then
worsens very slightly. Conversely, for the full videos, the use of the Kalman filter may
appear to be a disadvantage. The reason for worsening the bathymetry with the use of
the Kalman filter is that the bathymetry obtained with the 600 s video on 1 August 2020 is
actually very good. In this case, the accumulation of bathymetry results of poorer quality
decreases the quality of the aggregated bathymetry. When considering the use of Kalman
filtering to aggregate results, this dilemma will always be present. The decision to use
this filter must take into account that the aggregation of bathymetry completes regions
that, in a particular video, have not been resolved and that the process of aggregation
takes into account the quality of the bathymetry evaluated internally by the algorithm.
Considering that the quality of the filtered bathymetry does not decrease significantly,
our recommendation is to aggregate results that are close in time whenever possible. In
case of using the Kalman filter, the user can always adjust the value of the Q parameter to
give more (higher values) or less (lower) relevance to the latest added bathymetry. In the
example, a value of Q = 0.1 m/day has been used and values in the range 0.05 m/day to
0.25 m/day would be recommended depending on how active the site is.
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Figure 14. Bathymetry (top, (A,B)) and errors (bottom, (C,D)) for cropped (160 s) videos without
using Kalman (left, (A,C)) and using Kalman filter starting 7 days before (right, (B,D)) .

Table 4. Influence of Kalman filtering using cropped (160 s) and full (600 s) videos.

Videos of 160 s Videos of 600 s

Case Points Bias m RMSE m Points Bias m RMSE m

no Kalman 4119 −0.18 0.39 4429 −0.09 0.22

1 day 4346 −0.15 0.33 4469 −0.13 0.24
2 days 4364 −0.20 0.33 4477 −0.17 0.27
3 days 4394 −0.15 0.28 4480 −0.14 0.24
4 days 4394 −0.15 0.28 4480 −0.14 0.24
5 days 4412 −0.15 0.28 4488 −0.13 0.23
6 days 4419 −0.17 0.29 4493 −0.15 0.28
7 days 4419 −0.17 0.29 4493 −0.16 0.29

4. Conclusions

The UBathy open source toolbox, presented in this paper, estimates nearshore bathymetry
from videos of calibrated raw images and georeferenced planviews. The videos may be ob-
tained from Argus-type video monitoring stations or from moving cameras, such as drones
or satellites. The software is appropriate for users who are familiar with coastal image
processing. The paper discusses in detail the specific methodology of the UBathy algorithm
and describes the use of the software. The algorithm incorporates advances over the last
decade in nearshore bathymetric estimation from videos. The inversion method is based
on [12] as well as it incorporates contributions from [9] (e.g., Kalman filter) and [13] (e.g.,
DMD and adaptive neighborhoods). In addition, further improvements of UBathy are
presented, such as the algorithm for determining the bathymetry from the period and
wavenumber of multiple wave modes which can come from multiple videos, the applica-
tion of RPCA to reduce the noise in the videos or the use of RANSAC to reduce outliers. The
toolbox is flexible, allowing the estimation of bathymetry by assembling videos recorded
at different times, at different sea levels and covering different areas. Extraction of wave
modes can be made either with EOF or DMD. The bathymetry estimated at different times
can be aggregated using a Kalman filter. The paper illustrates with an example the use
of the toolbox and its capability to estimate the bathymetry with a quality that is roughly
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similar to that of a bathymetric survey. The software is suitable for non-experienced users
and the application example is available on the GitHub platform.
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Abbreviations
The following abbreviations are used in this manuscript:

EOF Empirical orthogonal functions
DMD Dynamic mode decomposition
FFT Fast Fourier transform
RANSAC Random sample consensus approach
RPCA Robust principal component algorithm

Appendix A. Software Source Code

Software name: UBathy
Developers: Gonzalo Simarro, Daniel Calvete
Contact address: simarro@icm.csic.es
Cost: free
License: Creative Commons Attribution 4.0 International
Availability: https://doi.org/10.5281/zenodo.7360216
Year first available: 2022
New developments: https://github.com/Ulises-ICM-UPC/UBathy

(accessed on 10 November 2022)
Hardware requirements: PC, server.
System requirements: Windows, Linux, Mac.
Program language: Python (3.9)
Dependencies: OpenCV, NumPy, SciPy and matplotlib modules.
Program size: 100 KB
Documentation: README in GitHub repository and example in an editable Jupyter Notebook.
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