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Abstract: This study focused on optimizing the placement of shortwave infrared (SWIR) bands for
pixel-level estimation of fractional crop residue cover (f R) for the upcoming Landsat Next mission.
We applied an iterative wavelength shift approach to a database of crop residue field spectra collected
in Beltsville, Maryland, USA (n = 916) and computed generalized two- and three-band spectral
indices for all wavelength combinations between 2000 and 2350 nm, then used these indices to
model field-measured f R. A subset of the full dataset with a Normalized Difference Vegetation
Index (NDVI) < 0.3 threshold (n = 643) was generated to evaluate green vegetation impacts on
f R estimation. For the two-band wavelength shift analyses applied to the NDVI < 0.3 dataset, a
generalized normalized difference using 2226 nm and 2263 nm bands produced the top f R estimation
performance (R2 = 0.8222; RMSE = 0.1296). These findings were similar to the established two-band
Shortwave Infrared Normalized Difference Residue Index (SINDRI) (R2 = 0.8145; RMSE = 0.1324).
Performance of the two-band generalized normalized difference and SINDRI decreased for the full-
NDVI dataset (R2 = 0.5865 and 0.4144, respectively). For the three-band wavelength shift analyses
applied to the NDVI < 0.3 dataset, a generalized ratio-based index with a 2031–2085–2216 nm
band combination, closely matching established Cellulose Absorption Index (CAI) bands, was
top performing (R2 = 0.8397; RMSE = 0.1231). Three-band indices with CAI-type wavelengths
maintained top f R estimation performance for the full-NDVI dataset with a 2036–2111–2217 nm band
combination (R2 = 0.7581; RMSE = 0.1548). The 2036–2111–2217 nm band combination was also
top performing in f R estimation (R2 = 0.8690; RMSE = 0.0970) for an additional analysis assessing
combined green vegetation cover and surface moisture effects. Our results indicate that a three-band
configuration with band centers and wavelength tolerances of 2036 nm (±5 nm), 2097 nm (±14 nm),
and 2214 (±11 nm) would optimize Landsat Next SWIR bands for f R estimation.

Keywords: Landsat Next; crop residue; non-photosynthetic vegetation; tillage; lignocellulose;
shortwave infrared; CAI; SINDRI; LCPCDI; NDTI; NDVI; SWIR

1. Introduction

The Landsat Next satellite, scheduled for launch at the end of this decade, is expected
to provide multispectral imagery at spatial resolutions of 10 m to 20 m [1,2]. Increases in
the number of bands and finer spatial resolutions compared to previous Landsat missions
(multispectral imagery at 30 m) will advance remote sensing-based studies in many fields
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including agriculture, ecology, forestry, hydrology, and minerology. In this research effort,
we focus on Landsat Next capabilities in characterizing non-photosynthetic vegetation
(NPV) which has critical applications in agricultural and ecological studies. An important
type of NPV is crop residue, namely the NPV that remains on agricultural fields post-
harvest. Agricultural fields that are managed with higher levels of fractional crop residue
cover (f R) are less prone to erosion, have greater soil organic carbon, and more stable soil
moisture [3–6]. The amount of f R on fields also serves as an important indicator of tillage
intensity, particularly when measured in late spring immediately after the planting of
summer crops [7,8].

In past Landsat missions, a shortwave infrared (SWIR) spectral region spanning
2000–2500 nm (sometimes referred to as “SWIR2”) has been measured by a single band [9].
The SWIR2 band spanned approximately 2080 to 2350 nm for Landsat 4 and 5 Thematic
Mapper (TM) and Landsat 7 Enhanced Thematic Mapper+ (ETM+) [10]. A single SWIR2
band is still used for Landsat 8 and 9 Operational Land Imagers (OLI and OLI2, respectively)
but has a narrowed spectral response (approximately 2110 to 2290 nm). Similarly, the
Sentinel-2 MultiSpectral Instruments (MSI) use a single SWIR2 band, approximately 2100
to 2280 nm. Use of a single SWIR2 band in global Earth resource monitoring missions limits
the spectral separation of NPV from soils, green vegetation, and other land cover types,
even when using approaches comparing SWIR2 reflectance to SWIR1 reflectance [1,11].
SWIR1, spanning 1400–1850 nm, is also covered by a single band centered at approximately
1610 nm [12].

Over the past 30 years, the lignin and cellulose (lignocellulose) absorption features
centered near 2100 nm and 2300 nm have been exploited by applying imaging spectrometer
data to NPV detection and characterization [13–17]. Some of these imaging spectrome-
ters/missions include the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), Earth
Observing One (EO-1) Hyperion, and PRecursore IperSpettrale della Missione Applicativa
(PRISMA). To date, both airborne and spaceborne imaging spectrometers have been limited
in coverage, e.g., swath footprint and revisit intervals. Narrow band multispectral imagers
with multiple SWIR bands, like those on the WorldView-3 (WV3), also offer capabilities
in resolving lignocellulose absorption features, but, like spaceborne and airborne imaging
spectrometers, are limited in coverage. In comparison, current imaging systems with global
coverage and regular revisit intervals, such as sensors on Landsat and Sentinel-2, have
limited capabilities in resolving lignocellulose absorption features due to poor SWIR sam-
pling by broad band sensors, e.g., SWIR2. To better resolve the lignocellulose absorption
features present in NPV, Landsat Next’s imaging system is expected to feature regular
global coverage and three relatively narrow bands covering the heritage SWIR2 spectral
region. Figure 1 provides a depiction of potential Landsat Next SWIR band placements
compared to ETM+, OLI, MSI, WV3, and spectrometer data with similar spectral sampling
as hyperspectral AVIRIS and PRISMA bands.

Despite band width limitations, f R estimates have, at times, been provided by
Landsat/Sentinel-2 satellites with global coverage [18–22]. In some of the most successful
regional-scale crop residue studies incorporating Landsat/Sentinel-2 SWIR imagery, the
accuracy assessing broad categories of f R and associated tillage intensity generally ranges
between 55 and 79% and requires the use of regionally-specific approaches [22–24]. Well-
calibrated, site-specific studies utilizing Landsat/Sentinel-2 SWIR bands may offer higher
accuracies in f R estimation (>80%). In general, both regional-scale and site-specific crop
residue studies using Landsat/Sentinel-2 imagery make use of spectral indices computed
from SWIR2 and SWIR1 bands like the Normalized Difference Tillage Index (NDTI) [18,20].
While site-specific studies using NDTI to estimate f R can achieve fairly high accuracies,
high levels of inter-site variability in NDTI values for fixed f R values make such indices ill-
suited for global mapping efforts [19–21]. Site-specific studies incorporating spectral angle
mapping (SAM) from Landsat/Sentinel-2 bands have demonstrated some of the highest
levels of performance in f R estimation (>90%) [25,26]. Additionally, South et al. (2004) [27]
demonstrated that SAM consistently outperformed statistical classification approaches
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when using Landsat imagery to classify tillage intensity categories (>92% vs. <72%). How-
ever, it remains unclear how effectively such approaches can be scaled regionally or globally,
as no such large-scale studies have been carried out to our knowledge, and current SAM
approaches are ultimately reliant on spectrally broad reflectance contrasts that may lack
sufficient biophysical specificity, e.g., near infrared—SWIR1—SWIR2 comparisons.

For f R estimation, finer spectral resolution data sources offer improved accuracies
over coarser resolution data sources since the later cannot accurately detect lignocellulose
absorption features at 2100 and 2300 nm [11,20,28] (Figure 1). Finer spectral resolution data
sources are particularly suited for application of spectral unmixing for f R estimation when
there is a preponderance of mixed pixels containing f R, fractional soil (f S), and fractional
green vegetation (f GV) that result from different field management practices like tillage
and planting. Bannari et al. (2006) [28] provide an illustrative comparison of spectral
unmixing approaches applied to hyperspectral and broad band multispectral data sources,
with the former yielding higher accuracies in f R estimation. Daughtry et al. (2006) [11]
provide a similar hyperspectral vs. broad band multispectral comparison using spectral
index approaches, demonstrating higher f R estimation performance for hyperspectral
indices with R2 ranging from 0.774 to 0.850 while broad band indices R2 ranged from 0.108
to 0.498. Yue et al. (2019) [29] provide a comparison of both hyperspectral indices and
SAM approaches compared to broad band multispectral indices, demonstrating that both
hyperspectral approaches outperform broad band multispectral indices in laboratory-based
f R estimation. Multispectral imagery with narrow-to-moderate band widths (<60 nm) offers
similar improvements in f R estimation accuracy compared to broad band multispectral
data sources. Hively et al. (2018) [20] demonstrated performance differences between
narrow band multispectral SWIR indices derived from WV3 imagery compared to Landsat-
simulated SWIR indices derived from convolved WV3 bands, with the former exhibiting f R
estimation performance improvements of 10% or greater under conditions of minimal f GV
and minimal surface moisture variability. In f R estimation studies where significant f GV
is present or surface moisture is highly variable, finer spectral resolution imagery vastly
outperforms heritage Landsat SWIR bands [30–32].

The prior paragraphs convey a critical limitation for accurate spaceborne monitoring
of crop residue and associated agricultural tillage: few current satellites possess the op-
timal characteristics for retrieving f R including regular revisit cadence, global coverage,
fine spatial resolution, and fine spectral resolution in the SWIR2 region. These current
limitations and future satellite needs extend beyond conventional agricultural applications
as accurate characterization of fractional NPV cover (f NPV) is critical in the assessment of
wild vegetation health, drought condition, and rangeland forage quality [33–36]. Although
our study focused on f R assessment for agricultural applications, many of our findings
could be broadly applicable to non-agricultural f NPV assessment as well.

An initial evaluation of prospective Landsat Next SWIR bands for f R and f NPV char-
acterization was carried out by Hively et al. (2021) [37] using established spectral band
locations from satellite missions including Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER), Hyperion, and WV3, in addition to heritage Landsat
bands. These bands are shown in Figure 1. This previous study found that narrow bands
positioned near lignocellulose absorption features were substantially more accurate in f R
estimation than heritage Landsat bands (R2 of 0.81 and 0.77, respectively, for two-band and
three-band indices, compared to R2 of 0.44 for Landsat heritage indices). In the current
research effort, we sought to improve upon the evaluation of previous band locations by
implementing an iterative wavelength shift approach that assesses f R estimation capa-
bilities across all band combinations in the portions of the SWIR most relevant to crop
residue characterization (2000–2350 nm) [38]. We evaluated f R estimation error using
spectral indices based on two- and three-band combinations covering the SWIR2 region.
After identifying the top-performing spectral bands using the iterative wavelength shift
approach, we assessed how well these wavelengths performed in f R estimation under
conditions of variable surface moisture and f GV presence compared to the wavelengths of
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established crop residue indices. Ideally, the findings of this research effort will be useful
for further informing SWIR band placements for the Landsat Next mission and developing
a methodology useful for generalized spectral band selections for biophysical variables
pertinent to other application areas.
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Figure 1. Comparison of SWIR bands on current multispectral sensors with field-collected spectra.
The solid lines correspond to 1 nm interval (30 nm bandwidth) spectra, the points correspond to
surface reflectance (SR)-processed 10 nm spectra, and dashed lines correspond to 10 nm spectra
with atmospheric artifacts (atm-processed). The 10 nm spectra provide an illustration of imaging
spectrometer capabilities, e.g., PRISMA and AVIRIS, with and without atmospheric correction.
Previously evaluated Landsat Next (LSN) bands are depicted with gray bars [37]. For LSN bands, a
combination of 2040, 2100, and 2210 nm bands corresponds to an absorption-centered index, e.g., CAI,
and a combination of 2100, 2210, and 2260 nm corresponds to a peak-centered index, e.g., LCPCDI.
Crop residue lignocellulose absorption features at 2100 and 2300 nm are effectively identified by LSN
bands, and WV3 bands for the 2300 nm feature. Current Landsat/Sentinel-2 SWIR bands do not
accurately resolve these absorption features.

2. Materials and Methods

To optimize the placement of Landsat Next SWIR bands for f R estimation we used
a database of agricultural field spectra from Dennison et al. (2019) [39]. The Denni-
son et al. (2019) dataset contains spectra that were originally collected by Daughtry and
Hunt (2008) [30] and Quemada and Daughtry (2016) [40] at the United States Department of
Agriculture Beltsville Agricultural Research Center (BARC) in Beltsville, MD, USA. Spectra
were collected using Analytical Spectral Devices (ASD) field spectrometers (Malvern Pana-
lytical, Westborough, MA, USA). Native sampling intervals of these field instruments is
approximately 2 nm in the SWIR2 region, with a coarser spectral resolution of up to 12 nm
depending on the specific instrument [39]. The instruments use cubic spline interpolation
to resample spectra at a 1 nm interval.

Daughtry and Hunt (2008) collected 600 field spectra in situ from seven different BARC
agricultural fields, and included varying cover of crop residue, soil, and three live crops
(corn (Zea mays L.), soybeans (Glycine max (L.) Merr.), and wheat (Triticum aestivum L.)).
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Quemada and Daughtry (2016) collected field spectra over manually manipulated plots
with varying crop residue cover and surface moisture. For both datasets, spectra were
collected using an 18◦ foreoptic positioned 2.3 m above the surface with a 0◦ view zenith
angle. A digital camera was positioned next to the foreoptic, and a photograph was taken
of the field-of-view of each spectrum. f R, f S, and f GV were determined for each spectrum
by point sampling the corresponding photograph (Daughtry and Hunt, 2008; Quemada
and Daughtry, 2016). Quemada and Daughtry (2016) also measured soil and crop residue
relative water content (RWC) for each field-of-view, and a RWC threshold of 60% used by
Dennison et al. (2019) provided a total of 316 field spectra from this experiment. More
details on RWC categories are provided in Section 2.4.

To assess f R estimation performance, we applied an iterative wavelength shift ap-
proach to these agricultural spectra, hereafter referred to as the “BARC dataset” or simply
“dataset”, computing generalized spectral indices, then using linear regressions to model
index values as a function of field-measured f R. We performed the iterative wavelength
shift analysis on two version of the BARC dataset: (1) 10 nm interval and bandwidth spectra
with Gaussian spectral response functions previously published in Dennison et al. (2019),
hereafter referred to as the “10 nm dataset” and (2) 1 nm interval, 30 nm bandwidth spectra
calculated by applying a 30 nm moving-average filter to the original 1 nm field spectra
collected by Daughtry and Hunt (2008) and Quemada and Daughtry (2016), hereafter
referred to as the “1 nm interval dataset”. The 10 nm dataset was processed to both sur-
face reflectance (SR-processed) and surface reflectance with simulated sensor noise and
atmospheric artifacts added (atm-processed). The atm-processed 10 nm spectra provide a
general indication of atmospheric errors for Landsat Next f R estimation since these errors
were simulated for an imaging spectrometer with 10 nm bandwidths while Landsat Next
will be a multispectral imaging system with ≥30 nm bandwidth for SWIR2 bands. Readers
are directed to Dennison et al. (2019) [39] for a more thorough description of formulation
of the 10 nm datasets. The 1 nm interval dataset was only processed to surface reflectance.

For both the 10 nm and 1 nm interval datasets, we created a subset of the datasets based
on each spectrum’s NDVI values, as abundant green vegetation has been found to impact
f R estimates. We computed NDVI from Landsat 8-simulated bands (Equation (1)) and
selected the spectra with NDVI < 0.3 to represent low-vegetation conditions, producing
650 spectra for the 10 nm dataset and 643 spectra for the 1 nm interval dataset, with the
difference in NDVI < 0.3 counts attributed to slight differences in band formation. The NDVI
threshold of 0.3 was selected as this has been found to consistently represent a threshold
for minimal green vegetation [20,31,34]. This allowed us to assess green vegetation effects
by comparing results from the full-NDVI and NDVI < 0.3 datasets. The NDVI formula
used in this study is shown in Equation (1).

NDVI = (OLI5 − OLI4)/(OLI5 + OLI4) (1)

where OLI denotes reflectance simulated for Landsat 8 OLI bands 4 and 5 (visible red and
near infrared) as subscripts.

For the iterative wavelength shift analysis, we implemented an approach similar to
Serbin et al. (2009b) [41], in which a two-band iterative generalized normalized differ-
ence index (gNDI) routine was used to determine which two reflectance wavelengths
produced maximum correlation with ground-measured f R. The Serbin et al. (2009b) gNDI
approach was applied to several field spectroscopy studies conducted across the United
States and results were aggregated to produce a composite R2 value across sites. The
original gNDI analysis was performed for all wavelengths from 400 nm to 2500 nm. In this
study, we limited the iterative wavelength shift analysis to wavelengths between 2000 and
2350 nm as this portion of the SWIR region has been found to most consistently contain
spectral variability related to the presence of lignocellulose absorption features present in
NPV [38,41,42]. We excluded wavelengths greater than 2350 nm that contained significant
sensor noise. To assess f R estimation performance using the iterative wavelength shift
approach, we computed the coefficient of determination (R2) and root mean squared error



Remote Sens. 2022, 14, 6128 6 of 29

(RMSE) (Equations (2) and (3)) across all unique wavelength combinations between 2000
and 2350 nm by computing a spectral index and using ordinary least squares regression to
model f R.

R2 = 1 − ∑n
i=1 (yi − ŷi)

2

∑ n
i=1 (yi − yi)

2 (2)

RMSE =

√√√√ n

∑
i=1

(ŷi − yi)
2

n
(3)

where yi and ŷi are observed (field-measured f R) and predicted (index-estimated f R) values,
respectively, yi is the average observed value, and n is the number of samples.

We performed the iterative wavelength shift analysis for generalized two-band indices
(Equations (4) and (5)) and generalized three-band indices (Equations (11)–(13)). In per-
forming this analysis across the 2000–2350 nm wavelength range, we seek to identify the
wavelengths most useful for f R characterization with Landsat Next SWIR bands. R2 and
RMSE are given equal consideration in performance assessments as maximizing explained
variance and minimizing predictive error are both critical in selecting optimal wavelengths.

2.1. Two-Band Iterative Wavelength Shift Approach

The mathematical form of the gNDI spectral index from Serbin et al. (2009b) [4] is
shown in Equation (4).

gNDIi,j,s =
Ri,s − Rj,s

Ri,s + Rj,s
(4)

where R denotes reflectance, subscripts i and j denote wavelengths for bands 1 and 2 and
subscript s denotes a given spectrum. Each spectrum corresponds to a field-measured
f R value. The entire dataset of gNDI values was used to model f R values (n = 916 for
full-NDVI; n = 650/643 for NDVI < 0.3), resulting in an R2 and RMSE value for each i, j
wavelength in a two-dimensional spectral space.

In addition to implementing the two-band iterative gNDI approach, we also used a
two-band generalized difference index (gDI) (Equation (5)), as Hively et al. (2021) [37]
found this form of SWIR spectral index to be less susceptible to influence from green
vegetation when estimating f R.

gDIi,j,s = Ri,s − Rj,s (5)

Two established crop residue indices that provide examples of two-band normalized
difference and simple difference index forms are the Shortwave Infrared Normalized
Difference Residue Index (SINDRI) and Shortwave Infrared Difference Residue Index
(SIDRI) [37,41] (Equations (6) and (7)). Note gNDI and gDI will evaluate all specific
wavelength combinations in the 2000–2350 range, including combinations identical to
SINDRI and SIDRI.

SINDRI = (R2210 − R2260)/(R2210 + R2260) (6)

SIDRI = R2210 − R2260 (7)

where R denotes reflectance, and the corresponding subscript denotes central wavelength
for either a narrow band multispectral or hyperspectral sampling.

2.2. Three-Band Iterative Wavelength Shift Approach

We built on the two-band iterative wavelength shift approach from Serbin et al. (2009b)
by including a third band. This modification was motivated by the fact that numerous
studies have found three-band spectral indices to perform especially well for crop residue
characterization and often better than two-band spectral indices [30,31,43,44]. We initially
calculated two broad classes of indices using three-band generalized iterative approaches.
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These classes included three-band absorption-at-center indices, hereafter referred to as side
peak indices, and three-band peak-at-center indices, hereafter referred to as center peak
indices. The “peak” terms refer to a higher reflectance value in regions spectrally adjacent
to absorption features in dry plant matter centered near 2100 and 2300 nm (Figure 1).
A well-established three-band side peak index is the Cellulose Absorption Index (CAI) [43]
(Equation (8)). A more recently established, yet illustrative example of a three-band
center peak index is the Lignin Cellulose Peak Center Difference Index (LCPCDI) [37]
(Equation (9)). In this effort, we also test a second version of the LCPCDI with slightly
shifted wavelengths (Equation (10)).

CAI = 0.5 ∗ (R2040 + R2210)− R2100 (8)

LCPCDI = (2 ∗ R2210)− (R2100 + R2260) (9)

LCPCDIv2 = (2 ∗ R2220)− (R2130 + R2270) (10)

In the case of CAI, the spectral “side” terms R2040 and R2210 generally exhibit higher
reflectance values than the subtracted spectral “center” term R2100, with this later term cor-
responding to a lignocellulose absorption feature around 2100 nm for an NPV target [38,42].
In the case of LCPCDI, the spectral center term R2210 generally exhibits higher reflectance
than the R2100 and R2260 terms which overlap with lignocellulose absorption features at
2100 nm and 2300 nm, respectively, for an NPV target [38,42]. Figure 1 provides an illustra-
tion of these differences for example crop residue, soil, and green vegetation spectra from
the BARC dataset. The 2040–2210 nm region/bands correspond to CAI with reflectance
side peaks, while the 2100–2260 nm region/bands correspond to LCPCDI with a reflectance
center peak for crop residue.

With the CAI and LCPCDI providing examples of side peak and center peak difference
indices, respectively, we proceed noting that mathematically, side peak difference and
center peak difference indices produce identical absolute values when computed with the
same reflectance values for each band. Thus, for simplicity’s sake, figures and references
will proceed with mention of the generalized Center Peak Difference Index (gCPDI) only
(Equation (11)). In addition to the gCPDI, we also computed a generalized Center Peak
Ratio Index (gCPRI) (Equation (12)) to compare three-band ratio indices to the more
commonly implemented three-band difference indices, e.g., CAI and LCPCDI. Unlike the
side peak and center peak difference indices, the ratio versions of these indices will not
produce identical absolute values and thus, a generalized Side Peak Ratio Index (gSPRI)
is computed and shown in Equation (13) to illustrate this is a unique index compared
to gCPRI.

gCPDIi,j,k,s =
(
2 ∗ Rj,s

)
− (Ri,s + Rk,s) (11)

gCPRIi,j,k,s =
2 ∗ Rj,s

Ri,s + Rk,s
(12)

gSPRIi,j,k,s =
Ri,s + Rk,s

2 ∗ Rj,s
(13)

where R denotes reflectance, subscripts i, j, and k denote wavelengths for bands 1, 2, and 3,
respectively. The subscript s denotes a given spectrum.

2.3. Iterative Wavelength Shift Approach Applied to BARC Spectra Datasets

We used the iterative wavelength shift approach to first analyze the 10 nm dataset
processed with and without combined sensor noise and atmospheric artifacts (atm- and
SR-processed, respectively). Leading with the 10 nm dataset wavelength shift analysis
enabled us to determine whether atmospheric correction-based error sources, i.e., errors
from atmospheric artifacts, were minimal enough to proceed with the wavelength shift
analysis on the 1 nm interval dataset with surface reflectance processing only. While the
atm-processed version of the 10 nm dataset only provided a limited comparison from one
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simulation of errors from a standard atmosphere and specific sensor, the comparison to
the SR-processed dataset is assumed to be generally informative. After the 10 nm dataset
analysis was performed and results demonstrated minimal differences between the atm-
and SR-processed datasets (Results Sections 3.1 and 3.3), we proceeded to apply the iterative
wavelength shift approach to the 1 nm interval dataset (Results Sections 3.2 and 3.4).

We created an additional modified version of the three-band iterative wavelength shift
approach applied to the 1 nm interval dataset to better identify multiple spectral regions
useful for f R estimation. While the results from the two-band wavelength shift analysis
identified a single high performance (high R2, low RMSE) spectral region for f R estimation,
the three-band analysis indicated the presence of multiple high R2/low RMSE clusters,
hereafter referred to as “high correlation clusters”. To allow for the analysis of multiple
high correlation clusters, we applied an empirical threshold of 2100 nm to band 1 to capture
R2 and RMSE for the slightly lower-correlation clusters. In the proceeding analyses, the
terms “gCPDI”, “gCPRI”, and “gSPRI” denote the best performing bands across the entire
2000–2350 nm range, while “gCPDI>2100”, “gCPRI>2100”, and “gSPRI>2100” denote best
performing bands with a band 1 > 2100 nm constraint.

2.4. Assessment of Moisture and Green Vegetation Impacts on Crop Residue Estimation

The Quemada and Daughtry (2016) [40] subset of the 1 nm interval BARC dataset
was used for assessment of the impact of soil and crop residue RWC on f R estimation
for top-performing wavelength shift analysis identified wavelengths. This dataset was
originally collected by Quemada and Daughtry (2016) as part of a study assessing spectral
index-based f R estimation performance under varying RWC conditions. The total spectra
(n = 316) were split into three RWC categories: 0.0–0.1 (n = 135), 0.1–0.25 (n = 101), and
0.25–0.60 (n = 77) [40]. These RWC classes were selected based on findings that crop
residue spectral index performance was notably diminished after RWC exceeded 0.25.
Quemada and Daughtry (2016) spectra contained no f GV, meaning this dataset provides a
largely controlled assessment of f R estimation with f S being the other cover type. We first
assessed performance of the top-performing two- and three-band indices identified in the
wavelength shift analysis (Equations (4), (5) and (11)–(13)) as a function of varying RWC
using R2 and RMSE metrics. We then compared the performance of iterative wavelength
shift indices to established crop residue indices.

In addition to established CAI, SINDRI, and LCPCDI, we evaluated several additional
indices tested in Hively et al. (2021) [37] including the Lignin-Cellulose Absorption Index
(LCA), ratio version of CAI left peak (rCAILP), ratio version of CAI right peak (rCAIRP),
and the aforementioned heritage NDTI (Equations (14)–(17)).

LCA = ((2 ∗ (R2210))− (R2100 + R2330) (14)

rCAILP = (R2040 − R2100)/(R2040 + R2100) (15)

rCAIRP = (R2210 − R2100)/(R2100 + R2210) (16)

NDTI = (OLI6 − OLI7)/(OLI6 + OLI7) (17)

where R denotes reflectance, and the corresponding subscript denotes central wavelength
for either a narrow band multispectral or hyperspectral sampling, and OLI denotes sim-
ulated reflectance from Landsat 8 OLI bands 6 and 7 (SWIR1 at 1610 nm and SWIR2 at
2200 nm, respectively) as subscripts.

Similar to the RWC analysis, the green vegetation analysis assessed the influence of
varying f GV levels on f R estimation accuracy. For the green vegetation analysis, we used the
Daughtry and Hunt (2008) [30] subset of the 1 nm interval BARC dataset which contained
all original spectra published in that study (n = 600). Like the RWC analysis, spectra were
split into f GV classes of 0.0–0.1 (n = 327), 0.1–0.3 (n = 136), 0.3–0.6 (n = 46), 0.6–0.9 (n = 44),
and 0.9–1.0 (n = 47). These class ranges were chosen to keep a similar number of samples
for the higher f GV ranges where the total samples were fewer relative to the lower f GV
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ranges. Like the RWC assessment, established crop residue indices were compared to
top-performing iterative wavelength shift-identified indices and band wavelengths.

For our final analysis, we combined the RWC and green vegetation analyses to de-
termine if the relative f R estimation of the top-performing bands changed under these
combined conditions. We computed a composite R2 and RMSE for three RWC classes
(0.0–0.6) and three f GV classes (0.0–0.6) to determine the best-performing bands for Landsat
Next SWIR2 as these composites equally weight performance across a range of conditions
expected to diminish f R estimation accuracy. These composite metric values were then
compared to results from the 1 nm and 10 nm iterative wavelength shift analyses from the
whole BARC dataset which skewed towards low f GV and low RWC conditions. Our final
analysis identified top-performing band centers and established wavelength tolerances by
identifying the top-performing wavelength ranges for each band.

3. Results

The following sections proceed with findings from the two-band iterative wavelength
shift analysis, hereafter referred to as “wavelength shift analysis” for brevity, first applied
to the 10 nm BARC dataset (Section 3.1) followed by application to the 1 nm interval BARC
dataset (Section 3.2). This analysis is followed by the three-band wavelength shift analysis
applied to the 10 nm and 1 nm interval BARC datasets, respectively (Sections 3.3 and 3.4).
In both two-band analyses, the maximum correlations in two-dimensional spectral space
are visualized with black or gray circles while established indices are identified with red
triangles for comparison. In the three-band analyses, histogram-style bars are used to
identify maximum correlations in three-dimensional spectral space in addition to estab-
lished indices with bars of different colors. In the wavelength shift analyses, use of the
terms “band 1”, “band 2”, and “band 3” refers to bands comprising a given index where
band 1 is the shortest wavelength and band 3 is the longest wavelength. The three-band
wavelength shift analysis with the 1 nm interval BARC dataset features an additional
routine assessing secondary spectral regions of high f R estimation performance with the
“band 1 > 2100 nm” constraint. The findings of the best performing wavelengths from the
two-band and three-band wavelength shift analyses applied to the 1 nm interval dataset
were then used to assess f R estimation accuracy under conditions of variable RWC and
green vegetation (Section 3.5).

3.1. Two-Band Wavelength Shift Analysis Using the 10 nm BARC Dataset

The two-band wavelength shift analysis applied to the 10 nm dataset demonstrated
that wavelengths of highest f R estimation performance cluster around SINDRI/SIDRI
wavelengths of 2210 nm for band 1 and 2260 nm for band 2 as indicated by higher R2 and
lower RMSE (Figures 2 and 3). Figures 2 and 3 provide a side-to-side comparison of f R
estimation performance for gNDI and gDI indices. In nearly all cases, the SR- and atm-
processed spectra showed minimal differences in performance with regards to difference in
R2 and RMSE and identified the same top-performing bands (Table 1 and Supplementary
Materials).

While the atm-processed and SR-processed spectra produced similar results, f R estima-
tion performance varied more substantially between index type (gNDI vs. gDI), and NDVI
level (minimal green vegetation vs. full range). Most notable were the large differences in
R2 values for the NDVI < 0.3 vs. full-NDVI datasets, with the former exhibiting R2 values
0.25 greater for gNDI, and 0.07 greater for gDI, demonstrating the effect of spectral inter-
ference from green vegetation. For the full-NDVI dataset, gNDI maximum R2 was 0.5303
while gDI was 0.6887 indicating that indices based on a simple difference may be more
effective for f R estimation under high levels of green vegetation. The maximum R2 for gDI
for the full-NDVI dataset occurred at wavelengths of 2220 nm and 2270 nm. The gNDI for
the NDVI < 0.3 dataset produced the highest R2 of all assessments (Figure 2a) with a value
of 0.7879 for the same 2220 nm and 2270 nm wavelength combination, indicating these are
ideal wavelengths for a two-band configuration for Landsat Next SWIR2. The f R estima-
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tion performance between gNDI and SINDRI was comparable (R2 = 0.7879 vs. R2 = 0.7766,
RMSE = 0.1408 vs. RMSE = 0.1587, respectively). In the comparable gDI analysis with the
NDVI < 0.3 dataset, the top-performing band 1 was 2210 nm, while the top-performing
band 2 was 2330 nm. While this represents a rather large wavelength shift for band 2 when
compared to SIDRI with 2210 and 2260 nm bands, the f R estimation results were similar
between gDI and SIDRI (R2 = 0.7578 vs. R2 = 0.7306, RMSE = 0.1504 vs. RMSE = 0.1587).
Figure 2b illustrates that while 2330 nm was top performing as band 2, a wide range of
shorter band 2 wavelengths offer comparatively high f R estimation accuracy. These results
are summarized in Table 1.
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Figure 2. Performance metrics for two-band wavelength shift indices computed from the 10 nm
dataset NDVI < 0.3 subset with n = 650: (a) gNDI-R2, (b) gDI-R2, (c) gNDI-RMSE, (d) gDI-RMSE. In
all panels, the gray/black circles represent the band combination that produced the best f R estimation
performance, as defined by the respective performance metric. The red triangles depict the band
combination of a comparable heritage index. Results shown are from SR-processed spectra. The
results for atm-processed spectra identified the same top-performing bands as the SR-processed
spectra and are shown in Table 1. Supplementary Materials Figures S1 and S2 provide side-by-side
comparisons of SR-processed (panels a and c) and atm-spectra (panels b and d) results.
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Figure 3. Performance metrics for two-band wavelength shift indices computed from the full-NDVI
10 nm dataset with n = 916: (a) gNDI-R2, (b) gDI-R2, (c) gNDI-RMSE, (d) gDI-RMSE. In all panels, the
gray/black circles represent the band combination that produced the best f R estimation performance,
as defined by the respective performance metric. The red triangles depict the band combination of
a comparable heritage index. Results shown are from SR-processed spectra. The results for atm-
processed spectra identified the same top-performing bands as the SR-processed spectra and are
shown in Table 1. Supplementary Materials Figures S3 and S4 provide side-by-side comparisons of
SR-processed (panels a and c) and atm-spectra (panels b and d) results.

3.2. Two-Band Wavelength Shift Analysis Using the 1 nm Interval BARC Dataset

Given that the comparison between SR- and atm-processed 10 nm spectra exhibited
minimal differences in performance compared to other analysis factors, we proceeded with
an assessment with the 1 nm interval SR dataset to increase the spectral precision of our
analysis. We approached the 1 nm interval wavelength shift analysis in a nearly identical
manner as the 10 nm analysis noting that the SR-processed 10 nm spectra and 1 nm interval
spectra are similar in processing, but not identical in terms of band properties, as the 1 nm
interval dataset features a 30 nm band width expected for a multispectral imaging system
on Landsat Next, while the 10 nm spectra correspond to those of an imaging spectrometer.
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Table 1. 10 nm BARC dataset f R estimation performance comparison with the two-band wavelength
shift analysis. The highest R2 values for NDVI < 0.3 (upper rows; n = 650) and full-NDVI (lower
rows; n = 916) have been bolded. The lowest RMSE for NDVI < 0.3 and full-NDVI have been bolded.
Band-1 and Band-2 denote the wavelengths with the highest f R estimation performance for both R2

and RMSE. For example, for gNDI, 2220 and 2270 nm exhibited the highest R2 values, and these same
wavelengths exhibited the lowest RMSE.

Index NDVI n R2 RMSE Band-1 Band-2

gNDI-SR <0.3 650 0.7879 0.1408 2220 2270
gNDI-atm <0.3 650 0.7734 0.1458 2220 2270

gDI-SR <0.3 650 0.7578 0.1504 2210 2330
gDI-atm <0.3 650 0.7428 0.1553 2210 2330

SINDRI-SR <0.3 650 0.7766 0.1587 2210 2260
SINDRI-atm <0.3 650 0.7610 0.1653 2210 2260

SIDRI-SR <0.3 650 0.7306 0.1788 2210 2260
SIDRI-atm <0.3 650 0.7089 0.1783 2210 2260
gNDI-SR full 916 0.5303 0.2157 2180 2250

gNDI-atm full 916 0.4709 0.2290 2180 2250
gDI-SR full 916 0.6887 0.1756 2220 2270

gDI-atm full 916 0.6870 0.1761 2220 2270
SINDRI-SR full 916 0.3896 0.2459 2210 2260

SINDRI-atm full 916 0.3613 0.2516 2210 2260
SIDRI-SR full 916 0.6458 0.1874 2210 2260

SIDRI-atm full 916 0.6505 0.1861 2210 2260

For both the 1 nm interval and 10 nm datasets, gNDI and gDI performed quite
similarly. Both datasets demonstrated that gNDI produced higher maximum R2 values
and lower minimum RMSE values than gDI. Overall, the 1 nm interval dataset wavelength
shift analysis (summarized in Table 2) exhibited higher performance than the 10 nm
dataset analysis summarized in Table 1. This is likely attributable to a higher resolution
interval sampling, although the band width (30 nm vs. 10 nm) and spectral response
function (boxcar vs. Gaussian) likely played a role as well. Isolating the contributions
of these specific band parameters was not an objective of this research effort, but it is
notable that the 1 nm interval bands were configured in a manner more closely simulating
the expected band configurations for Landsat Next as currently established [2]. Despite
the differences in band configurations, similar optimal wavelengths were established
in 1 nm interval and 10 nm analyses. The 1 nm interval gNDI exhibited the highest
performance in fR estimation with band 1 at 2226 nm and band 2 at 2263 nm, although
SINDRI was quite comparable in terms of performance (R2 = 0.8222 vs. R2 = 0.8145,
RMSE = 0.1296 vs. RMSE = 0.1324, respectively). For the 1 nm interval gDI analysis, band
placements were similar to the 10 nm analysis with band 1 at 2211 nm, and a slightly
different band 2 placement at 2316 nm. Figure 4 provides a side-by-side comparison of
1 nm gNDI and gDI performance (NDVI < 0.3) and demonstrates general patterns nearly
identical to the 10 nm analysis. The same is true for Figure 5 providing a comparison of
gNDI and gDI under the full-NDVI range, where gDI with band 1 at 2227 nm and band 2
at 2259 nm exhibited much higher performance in fR estimation than the best performing
gNDI (gDI R2 = 0.7258 vs. gNDI R2 = 0.5865). Overall, the two-band 1 nm interval results
indicate that band 1 placement can be shifted up to 2230 nm (2210–2230 nm), and the results
largely agree with 10 nm analysis that optimal placement for band 2 is between 2260 and
2270 nm in a case of Landsat Next SWIR2 being comprised of two bands.
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Table 2. Two-band wavelength shift analysis performance for 1 nm interval (30 nm bandwidth) BARC
dataset. For nearly all statistical performance metrics (R2, RMSE), the 1 nm interval dataset results
demonstrate higher explained variance and lower error than the 10 nm dataset in f R estimation but
identify very similar top-performing bands (see Table 1). Band-1 and Band-2 denote the wavelengths
with the highest f R estimation performance for both R2 and RMSE. Top-performing bands and indices
for each NDVI case have been bolded.

Index NDVI n R2 RMSE Band-1 Band-2

gNDI <0.3 643 0.8222 0.1296 2226 2263
gDI <0.3 643 0.7889 0.1412 2211 2316

SINDRI <0.3 643 0.8145 0.1324 2210 2260
SIDRI <0.3 643 0.7686 0.1478 2210 2260
gNDI full 916 0.5865 0.2024 2170 2256
gDI full 916 0.7258 0.1648 2227 2259

SINDRI full 916 0.4144 0.2409 2210 2260
SIDRI full 916 0.7022 0.1718 2210 2260
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Figure 4. Performance metrics for two-band gNDI and gDI using 1 nm interval dataset with NDVI
< 0.3 subset with n = 643: (a) gNDI-R2, (b) gDI-R2, (c) gNDI-RMSE, (d) gDI-RMSE. All spectra
processed to surface reflectance. In all panels, the gray/black circles represent the band combination
that produced the best f R estimation performance, as defined by the respective performance metric.
The red triangles depict the band combination of a comparable heritage index.
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Figure 5. Performance metrics for two-band gNDI and gDI using 1 nm interval full-NDVI dataset
with n = 916: (a) gNDI-R2, (b) gDI-R2, (c) gNDI-RMSE, (d) gDI-RMSE. All spectra were processed to
surface reflectance. In all panels, the black circles represent the band combination that produced the
best f R estimation performance, as defined by the respective performance metric. The red triangles
depict the band combination of a comparable heritage index.

3.3. Three-Band Wavelength Shift Analysis Using the 10 nm BARC Dataset

For the three-band wavelength shift analysis applied to the 10 nm dataset, the CAI-
type bands were top performers (Figures 6 and 7). For the NDVI < 0.3 datasets, the best
performing three-band index was gCPRI-SR with 2030 nm, 2080 nm, and 2220 nm band
centers (R2 = 0.8148 and RMSE = 0.1315). For the full-NDVI dataset, the best performing
three-band index was gSPRI-SR with 2030, 2110, and 2210 nm band centers, (R2 = 0.7176
and RMSE = 0.1673). In no case did the top-performing bands change between the SR- and
atm-processed datasets, although SR-processed datasets performed better.

Despite the high performance of CAI-type bands, LCPCDIv2 performed better than
CAI itself for f R estimation with the NDVI < 0.3 dataset (Table 3). However, LCPCDIv2 and
LCPCDI exhibited a much lower performance in f R estimation than CAI for the full-NDVI
dataset. The top-performing difference-based index (comparable formulation to CAI and
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LCPCDI) was gCPDI-SR with wavelengths of 2050, 2090, and 2220 nm. However, the
gCPDI-SR exhibited a lower f R estimation performance (R2 = 0.7822 and RMSE = 0.1427)
compared to gCPRI-SR indicating ratio-based indices may perform better than difference-
based indices overall, even with very similar top-performing wavelengths (Figure 6).
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 Figure 6. Three-band wavelength shift analysis f R estimation results for the 10 nm dataset with NDVI
< 0.3 subset. (a) gCPDI (NDVI < 0.3) surface reflectance, (b) gCPDI (NDVI < 0.3) with atmospheric
artifacts, (c) gCPRI (NDVI < 0.3) surface reflectance, (d) gCPRI (NDVI < 0.3) with atmospheric
artifacts. Note that in the case of panels a–b, the maximum correlation band combination is so similar
to CAI band locations that the yellow bar partially obscures the dark gray bar. The spectral location
of LCPCDIv2 (with band 1 central wavelength of 2130 nm) relative to LCPCDI shifts closer to a
secondary high correlation cluster. NDVI < 0.3 dataset has n = 650. Rotational, interactive versions of
panels a and c are provided in Supplementary Materials Figures S5 and S6.

Combined impacts of high NDVI values and atmospheric artifacts reduced f R estima-
tion performance in the full-range NDVI dataset. Figure 7 shows a pronounced decrease
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in the area of the high correlation cluster for gCPDI-atm (panel b) compared to gCPDI-SR
(panel a), specifically in the CAI wavelength region. This decrease in performance occurs
along band 3 (the z-axis) primarily. This level of performance decrease was not visible
in Figure 6 with the NDVI < 0.3 dataset nor is a performance decrease present for the
ratio indices (Figure 7, panels c–d). The full-NDVI gCPDI-SR and gCPDI-atm have similar
maximum R2 values of 0.6941 and 0.6830, respectively (Table 3). Full-NDVI CAI-SR also
exhibits a comparable R2 value of 0.6716. However, for the full-NDVI CAI-atm, R2 value
drops to 0.5807. This is the largest atmospheric artifact-based decrease in f R estimation
performance for a single index in the entire iterative wavelength shift analysis (Results
Sections 3.1–3.4). This finding potentially indicates that CAI-type difference indices may not
be as robust to green vegetation interference when atmospheric artifacts—water vapor and
carbon dioxide residuals in this case—are also present. However, under these conditions,
ratio-based indices with CAI-type wavelengths performed well and exhibited the only
well-defined high correlation clusters in panels c and d for Figure 7.

Table 3. Three-band wavelength shift analysis comparison for 10 nm BARC dataset. The highest R2

values for NDVI < 0.3 (upper rows) and full-NDVI (lower rows) have been bolded. In nearly all cases,
spectral bands close to CAI-type bands (2040, 2100, 2210 nm) are top performers. NDVI < 0.3 dataset
has n = 650. Full-NDVI dataset has n = 916. Band-1, Band-2, and Band-3 denote the wavelengths
with the highest f R estimation performance for both R2 and RMSE.

Index NDVI n R2 RMSE Band-1 Band-2 Band-3

gCPDI-SR <0.3 650 0.7822 0.1427 2050 2090 2220
gCPDI-atm <0.3 650 0.7816 0.1431 2050 2090 2220
gSPDI-SR <0.3 650 0.7822 0.1427 2050 2090 2220

gSPDI-atm <0.3 650 0.7816 0.1431 2050 2090 2220
gCPRI-SR <0.3 650 0.8148 0.1315 2030 2080 2220

gCPRI-atm <0.3 650 0.8082 0.1341 2030 2080 2220
gSPRI-SR <0.3 650 0.8121 0.1325 2030 2080 2220

gSPRI-atm <0.3 650 0.8026 0.1361 2030 2080 2220
CAI-SR <0.3 650 0.7486 0.1533 2040 2100 2210

CAI-atm <0.3 650 0.7507 0.1529 2040 2100 2210
LCPCDI-SR <0.3 650 0.7129 0.1638 2100 2210 2260

LCPCDI-atm <0.3 650 0.6947 0.1692 2100 2210 2260
LCPCDIv2-SR <0.3 650 0.7625 0.1490 2130 2220 2270

LCPCDIv2-atm <0.3 650 0.7516 0.1527 2130 2220 2270
gCPDI-SR full 916 0.6941 0.1741 2040 2090 2160

gCPDI-atm full 916 0.6830 0.1772 2030 2080 2160
gSPDI-SR full 916 0.6941 0.1741 2040 2090 2160

gSPDI-atm full 916 0.6830 0.1772 2030 2080 2160
gCPRI-SR full 916 0.7148 0.1681 2030 2110 2210

gCPRI-atm full 916 0.7143 0.1682 2030 2110 2210
gSPRI-SR full 916 0.7176 0.1673 2030 2110 2210

gSPRI-atm full 916 0.7171 0.1674 2030 2110 2210
CAI-SR full 916 0.6716 0.1804 2040 2100 2210

CAI-atm full 916 0.5807 0.2038 2040 2100 2210
LCPCDI-SR full 916 0.4622 0.2308 2100 2210 2260

LCPCDI-atm full 916 0.4381 0.2360 2100 2210 2260
LCPCDIv2-SR full 916 0.5782 0.2044 2130 2220 2270

LCPCDIv2-atm full 916 0.5564 0.2097 2130 2220 2270

3.4. Three-Band Wavelength Shift Analysis Using the 1 nm Interval BARC Dataset

We applied the three-band wavelength shift analysis to the 1 nm interval dataset,
including a sub-processing routine identifying the differences in performance between the
spectral locations of the top-performing wavelength shift indices across the 2000–2350 nm
range (approximately corresponding to CAI band spectral region; ~2000–2200 nm) and
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spectral regions where the band 1 > 2100 nm constraint was imposed (approximately
corresponding to LCPCDI spectral region; ~2100–2300 nm).
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Figure 7. Three-band wavelength shift analysis f R estimation results with the 10 nm full-NDVI dataset.
(a) gCPDI (full-NDVI) surface reflectance, (b) gCPDI (full-NDVI) with atmospheric artifacts, (c) gCPRI
(full-NDVI) surface reflectance, (d) gCPRI (full-NDVI) with atmospheric artifacts. Note that the top-
performing index wavelengths (determined by R2) largely cluster in the CAI wavelength region. Al-
though the LCPCDI high correlation clusters were maintained for the difference indices (panels a–b),
this was not so for the ratio indices (panels c–d). Full-NDVI dataset has n = 916. Rotational, interactive
versions of panels a and c are provided in Supplementary Materials Figures S7 and S8.

The findings of the three-band wavelength shift analysis indicate that bands with
CAI-type wavelengths are top performers. For the NDVI < 0.3 dataset the gCPRI was the
top-performing index with wavelength positions of 2031, 2085, and 2216 nm (Figure 8,
Table 4). These top-performing bands are similar to CAI bands of 2040, 2100, and 2210 nm.
The top-performing gCPRI>2100 shifted to a three-band combination of 2184, 2216, and
2262 nm. The differences in R2 between gCPRI vs. gCPRI>2100 were not substantial for the
NDVI < 0.3 dataset, with 0.8397 compared to 0.8262, respectively. When the gCPRI>2100
was evaluated with the full-NDVI dataset, the best performing bands were 2223, 2225,
and 2258 nm. This indicates that having a third band provided little additional utility in
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f R estimation performance compared to a two-band difference index with a wavelength
range limited to 2000–2350 nm. This is directly evidenced by comparing the three-band
gCPRI>2100 R2 of 0.7260 to the two-band gDI R2 of 0.7258 (2227 nm and 2259 nm bands) for
the full-NDVI dataset. An important limitation to address with this analysis and associated
findings is that the longer wavelength cutoff of 2350 nm did not allow for evaluation
of three-band indices fully resolving a 2300 nm absorption feature as this would ideally
include noise-free reflectance observations extending to 2400 nm for the third band.
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Figure 8. Three-band wavelength shift analysis f R estimation results with the 1 nm interval dataset.
(a) gCPDI (NDVI < 0.3), (b) gCPRI (NDVI < 0.3), (c) gCPDI (full-NDVI), (d) gCPRI (full-NDVI).
Note that in all cases the maximum correlation cluster (yellow bar) is again close to CAI (dark gray
bar). While LCPCDIv2 performs well in panels a–c, the best index with the band 1 (B1) > 2100 nm
constraint generally shifts the best performing band 1 closer to 2180 nm. Panel d with the full-NDVI
and gCPRI is the only case where the LCPCDI-type correlation cluster is not visible as R2 values do
not exceed 0.64.
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Table 4. Three-band wavelength shift analysis for 1 nm interval BARC dataset. The rows with bold
text indicate the top-performing indices in f R estimation with and without the band 1 > 2100 nm con-
straint and the NDVI < 0.3 and full-NDVI datasets. The underlined values indicate top performance
with the band 1 < 2100 nm constraint. Band-1, Band-2, and Band-3 denote the wavelengths with
the highest f R estimation performance for both R2 and RMSE, with the only exception to this being
gCRPI where R2 top-performing Band-1 wavelength was 2031 nm, while RMSE top-performing
Band-1 wavelength was 2032 nm (2031* denotes this exception).

Index NDVI n R2 RMSE Band-1 Band-2 Band-3

gCPDI <0.3 643 0.8021 0.1367 2041 2083 2225
gSPDI <0.3 643 0.8021 0.1367 2041 2083 2225
gCPRI <0.3 643 0.8397 0.1231 2031* 2085 2216
gSPRI <0.3 643 0.8360 0.1244 2031 2084 2216

gCPDI>2100 <0.3 643 0.8009 0.1371 2163 2220 2313
gSPDI>2100 <0.3 643 0.8009 0.1371 2163 2220 2313
gCPRI>2100 <0.3 643 0.8262 0.1281 2184 2216 2262
gSPRI>2100 <0.3 643 0.8241 0.1289 2185 2216 2262

CAI <0.3 643 0.7714 0.1469 2040 2100 2210
LCPCDI <0.3 643 0.7466 0.1547 2100 2210 2260

LCPCDIv2 <0.3 643 0.7806 0.1440 2130 2220 2270
gCPDI full 916 0.7338 0.1624 2041 2089 2154
gSPDI full 916 0.7338 0.1624 2041 2089 2154
gCPRI full 916 0.7567 0.1553 2036 2100 2169
gSPRI full 916 0.7581 0.1548 2036 2111 2217

gCPDI>2100 full 916 0.7260 0.1648 2223 2225 2258
gSPDI>2100 full 916 0.7260 0.1648 2223 2225 2258
gCPRI>2100 full 916 0.6517 0.1858 2208 2270 2320
gSPRI>2100 full 916 0.6574 0.1843 2208 2270 2320

CAI full 916 0.7119 0.1690 2040 2100 2210
LCPCDI full 916 0.4984 0.2229 2100 2210 2260

LCPCDIv2 full 916 0.5862 0.2025 2130 2220 2270

3.5. Moisture and Green Vegetation Impacts on Fractional Crop Residue (fR) Cover Estimation

The broad band NDTI index, based on heritage SWIR1 and SWIR2 bands and com-
monly used in crop residue studies, performed worse than all other indices across RWC
classes (Figure 9). Two-band CAI variants exhibited a pronounced performance drop
(decrease in R2 and increase in RMSE) for the higher RWC class (0.25 to 0.60). This is
likely attributable to the fact that the 2040 nm band is sensitive to liquid water absorp-
tion, which changes the slope of reflectance in this portion of the SWIR2 spectrum. The
2100 nm band, with a 30 nm band width, likely has some sensitivity to water absorption
as well. When high RWC is present, two-band index sensitivity to RWC may be greater
than f R when computed from 2040 and 2100 nm bands. In contrast, the three-band CAI
appears to remain stable, likely because it estimates absorption feature depth and in theory
should be less impacted by diminished reflectance in the 2040 nm band since the more
stable 2200 nm band would help compensate for shorter wavelength changes in reflectance
slope (Figure 10). In general, the three-band indices performed better than the two-band,
but SINDRI maintained relatively high performance (R2 ~ 0.9) and was least impacted
by change in RWC class (Figure 10). Overall, index performance for the RWC analysis
(Figure 10) was somewhat higher than for the overall analysis (Tables 1–4) likely due to the
absence of green vegetation in the reduced dataset.

In the green vegetation analysis, nearly all indices exhibited a decrease in both R2 and
RMSE above 0.3 f GV. For reference, an f GV level of 0.3 has been found to correspond to an
NDVI value of approximately 0.473 while an f GV level of 0.6 corresponds to an NDVI of
0.683 for green cover crops [45]. The decrease in both R2 and RMSE is likely attributed to
variance in index values diminishing for a given f GV category while also becoming less
correlated with f R (regression error and explained variance both decreasing). NDTI was
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the worst performing index as indicated by low R2 and increased RMSE compared to other
indices (Figures 11 and 12). The two-band rCAIRP was the second worst performing index
overall after NDTI. In terms of the heritage indices (Figure 11), three-band CAI was again
a top-performing index. The wavelength shift index that performed best across a range
of f GV conditions was the gSPRI computed from the full-NDVI dataset (Section 3.4). The
gCPDI (full-NDVI dataset) also performed well. Compared to these two top-performing
wavelength shift indices, CAI was a comparable performer and performed far better than
SINDRI for f GV categories above 0.3. In the majority of cases for RWC and f GV analyses, the
top-performing index bands are spectrally close to CAI band wavelengths (Figures 9–12).
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Figure 10. Wavelength shift spectral index (SI) f R estimation performance according to RWC class
(with heritage SINDRI and CAI for performance comparison). Left panel is R2 and right panel is
RMSE. Note that “-fNDVI” denotes wavelength shift index derived from the 1 nm interval full-NDVI
dataset, other wavelength shift indices are derived from the NDVI < 0.3 dataset.
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class, with heritage SINDRI and CAI for performance comparison. Left panel is R2 and right panel
is RMSE.

The findings of the RWC and green vegetation analyses are summarized in Table 5. The
last column of Table 5 is an average value for R2 and RMSE computed across the three RWC
classes and three f GV classes up to 0.6. This f GV cutoff was selected as it corresponds to an
NDVI value approaching 0.7 where f R retrievals would become increasingly challenging
due to low fractional coverage and physical shading by standing green vegetation. For the
two-band analysis, conventional SINDRI and SIDRI bands at 2210 and 2260 nm performed
best in f R estimation across the different classes (Table 5). However, in terms of the three-
band analysis, the conventional CAI was outperformed by gSPRI-fNDVI with slightly
different bands at 2036, 2111, and 2217 nm. We noted that in terms of RMSE, all top-
performing indices were close in derivation to CAI, exhibiting only slight differences
in wavelength. These wavelength differences provide insights as to what wavelength
tolerances may be appropriate for a three-band Landsat Next SWIR2 configuration. We
used these wavelength ranges to establish final central wavelengths.
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Table 5. Comparison of f R estimation results for each index by RWC and f GV (GV) classes. The last
column is an average computation of index performance across all RWC classes and the GV classes
from 0.0 to 0.6 (* denotes higher f GV classes were excluded from computation). The best performing
RMSE (with associated R2) are indicated by bold text (two 2-band indices and five 3-band indices).
The central wavelengths and ranges for bands 1, 2, and 3 in the best performing three-band indices
are used to establish final band locations.

Index Metric RWC-0.0-0.1 RWC-0.1-0.25 RWC-0.25-0.6 GV-0.0-0.1 GV-0.1-0.3 GV-0.3-0.6 GV-0.6-0.9 GV-0.9-1.0 Average *

NDTI R2 0.867 0.817 0.429 0.396 0.003 0.002 0.000 0.184 0.419
SINDRI R2 0.918 0.910 0.877 0.820 0.790 0.635 0.283 0.097 0.825
SIDRI R2 0.904 0.912 0.912 0.771 0.787 0.719 0.420 0.173 0.834
LCA R2 0.914 0.918 0.887 0.733 0.625 0.428 0.051 0.013 0.751
CAI R2 0.930 0.947 0.890 0.838 0.780 0.716 0.539 0.294 0.850

rCAILP R2 0.924 0.911 0.456 0.480 0.434 0.315 0.217 0.559 0.587
rCAIRP R2 0.931 0.897 0.365 0.513 0.064 0.009 0.001 0.373 0.463
gCPDI R2 0.925 0.945 0.910 0.804 0.701 0.594 0.327 0.028 0.813
gCPRI R2 0.945 0.953 0.904 0.839 0.706 0.533 0.265 0.019 0.813

gCPDI-fNDVI R2 0.928 0.948 0.867 0.751 0.755 0.767 0.560 0.266 0.836
gSPRI-fNDVI R2 0.948 0.950 0.837 0.812 0.852 0.814 0.485 0.411 0.869

gCPRI>2100 R2 0.919 0.908 0.868 0.818 0.733 0.506 0.178 0.004 0.792
gCPDI>2100 R2 0.888 0.898 0.896 0.750 0.787 0.741 0.367 0.071 0.827

gNDI R2 0.909 0.895 0.858 0.821 0.783 0.598 0.226 0.038 0.810
gDI R2 0.888 0.898 0.896 0.753 0.790 0.741 0.363 0.087 0.828

NDTI RMSE 0.110 0.103 0.217 0.261 0.299 0.196 0.086 0.022 0.197
SINDRI RMSE 0.087 0.072 0.101 0.142 0.137 0.118 0.073 0.024 0.109
SIDRI RMSE 0.094 0.071 0.085 0.160 0.138 0.104 0.065 0.023 0.109
LCA RMSE 0.089 0.069 0.097 0.173 0.183 0.148 0.084 0.025 0.126
CAI RMSE 0.080 0.055 0.095 0.135 0.140 0.104 0.058 0.021 0.102

rCAILP RMSE 0.083 0.071 0.211 0.242 0.225 0.162 0.076 0.016 0.166
rCAIRP RMSE 0.080 0.077 0.229 0.234 0.289 0.195 0.086 0.020 0.184
gCPDI RMSE 0.083 0.056 0.086 0.148 0.164 0.125 0.070 0.024 0.110
gCPRI RMSE 0.071 0.052 0.089 0.134 0.162 0.134 0.074 0.025 0.107

gCPDI-fNDVI RMSE 0.081 0.055 0.105 0.168 0.148 0.095 0.057 0.021 0.108
gSPRI-fNDVI RMSE 0.069 0.054 0.116 0.145 0.115 0.084 0.062 0.019 0.097

gCPRI>2100 RMSE 0.086 0.073 0.104 0.143 0.154 0.138 0.078 0.025 0.116
gCPDI>2100 RMSE 0.101 0.077 0.093 0.168 0.138 0.100 0.068 0.024 0.113

gNDI RMSE 0.092 0.078 0.108 0.142 0.139 0.124 0.076 0.024 0.114
gDI RMSE 0.101 0.077 0.093 0.167 0.137 0.100 0.069 0.024 0.112

For the three-band analysis, top-performing band 1 wavelengths ranged from 2031
to 2041 nm for CAI, gCPDI, gCPRI, gCPDI-fNDVI, and gSPRI-fNDVI with the central
band in this range being identical to band 1 of top-performing gSPRI-fNDVI. For this
reason, placing band 1 at 2036 nm with a ±5 nm tolerance will likely perform best in f R
estimation. For band 2, wavelengths typically fell within the lignocellulose absorption
feature centered at 2100 nm, but with a wide spectral range spanning from 2083 nm to
2111 nm for the top-performing indices. Given this finding, centering band 2 at 2097 nm
with a ± 14 nm tolerance is expected to yield high f R estimation performance. The range
of band 3 wavelengths was quite large, spanning from 2154 to 2225 nm. The gCPDI-
fNDVI band 3 wavelength of 2154 nm was somewhat of an outlier compared to other top-
performing indices. Table 4 indicates that the 2150–2170 nm wavelength range for band 3
may be unique to center peak indices computed with the full-NDVI dataset. Comparatively,
side-peak ratio indices performed better in f R estimation for the full-NDVI dataset as shown
in Table 4. Given these findings, we limited the wavelength range of band 3 to the three
central wavelengths of the top five indices in Table 5, establishing a new range of 2210
to 2217 nm and a band 3 center of 2214 nm with a tolerance of ± 11 nm (ranging up to
2225 nm). This central wavelength and tolerance range would not include the 2150–2170 nm
wavelengths for band 3 but does cover the conventional CAI band 3 at 2210 nm.

4. Discussion

To evaluate optimal Landsat Next SWIR band placements for f R estimation, we applied
wavelength shift analyses to the 1 nm interval (30 nm bandwidth) and 10 nm BARC spectra
datasets and assessed f R estimation accuracy. For the two-band wavelength shift analysis
applied to the 10 nm dataset, wavelengths similar to the 2210 and 2260 nm bands that
formulate the well-established SINDRI index outperformed other spectral regions in f R
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estimation. The f R estimation accuracies of SINDRI with NDVI < 0.3 observed in this
study fell between those previously established in Serbin et al. (2009b) [41] with an R2

of 0.741 for a U.S.-scale dataset and Hively et al. (2018) [20] with an R2 of 0.940 for a
single-date, local-scale dataset. In the two-band wavelength shift analyses with gNDI, the
top-performing bands were 2220 and 2270 nm with the NDVI < 0.3 dataset. When the
two-band analyses were performed with the full-NDVI dataset, the 2220 and 2270 nm
bands were again top-performing but with the gDI rather than gNDI.

For the 1 nm interval dataset analysis with NDVI < 0.3, gNDI was the top performer
in f R estimation with identified bands at 2226 and 2263 nm, but SINDRI offered very
similar performance with f R estimation differences less than 0.01 for R2 and 0.0028 for
RMSE. For the full-NDVI 1 nm interval dataset analysis, gDI was the best performing index
where it exhibited considerably higher f R estimation performance than gNDI even with
gDI having similar top-performing bands at 2227 nm and 2259 nm. The findings of both
two-band analyses (10 nm and 1 nm interval datasets) indicate that the approximate band
ranges of 2210–2230 nm for band 1 and 2260–2270 nm for band 2 provide a best overall
solution for the case of Landsat Next SWIR2 being comprised of two bands. While gDI
maintained more consistent performance for the different NDVI thresholds than gNDI,
gDI was not the top performer in f R estimation and further would be expected to be the
least stable of all generalized indices tested in both the two- and three-band analyses.
The expected lack of stability compared to normalized difference indices is due to the
gDI, including SIDRI, being reliant on a simple reflectance difference between two bands
and featuring no-scaling type adjustments that may partially compensate for variation in
surface brightness, including ground-shading, surface anisotropy/bidirectional reflectance
distribution function effects, and uncertainties/errors in surface reflectance retrievals [46].
With the Landsat Next mission’s global mapping focus, this presents a challenge, as f R
estimation accuracy would vary considerably depending on f GV cover. While multiple
indices (including NDVI) could be used for pixel-level f R estimation using two SWIR
bands at 2200 nm and 2270 nm, this approach could produce inconsistencies in derived f R
products, and complicates product development compared to a single index approach.

The inclusion of an additional band for the three-band wavelength shift analyses (Re-
sults Sections 3.2 and 3.4) improved f R estimation performance while being less impacted
by f GV compared to the two-band indices in general. This finding comports with previous
work by Serbin et al. (2009b) [41] who demonstrated that the three-band CAI exhibited
similar f R estimation performance to SINDRI across a wide range of conditions but was
notably less impacted by the presence of green vegetation. For the three-band wavelength
shift analysis applied to the 10 nm dataset, the spectral regions associated with CAI bands
(2030–2050 nm, 2080–2110 nm, and 2210–2220 nm) were found to be top performers for
the NDVI < 0.3 dataset (Figure 6) and the full-NDVI dataset (Figure 7), indicating robust
performance across a range of vegetation conditions. Wang et al. (2013) [47] found CAI to be
more correlated with vegetation dry matter content than both SINDRI and NDTI while also
being less correlated with vegetation moisture content, partially explaining CAI’s high f R
estimation accuracy in this study compared to other indices. This is a critical performance
difference between the three-band and two-band indices since crop residue surveys are
often conducted during the spring season when green winter cover crops have reached
maximum biomass and summer cash crops are emerging, meaning that satellite-based f R
estimation techniques would require resilience to f GV effects. For the 10 nm analysis, the
gCPRI with 2030, 2080, and 2220 nm bands was found to be top performing in f R estimation
for the NDVI < 0.3 dataset. For the full-NDVI dataset, gSPRI with 2030, 2110, and 2210 nm
bands was found to be top performing. Only the central band 2 shifted by more than
10 nm in this comparison. The overall findings presented in Table 3 indicate that for indices
computed from CAI-type wavelengths (2040, 2100, and 2210 nm), there is a fair degree of
latitude in spectral placement of band 2.

For the 1 nm interval dataset, gCPRI exhibited top performance with bands at 2031,
2085, and 2216 nm and an R2 = 0.8397 and RMSE = 0.1231. This was the top f R esti-
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mation performance across all wavelength shift analyses (Results Sections 3.1–3.4), and
these wavelengths are nearly identical to the top-performing bands in the 10 nm dataset
analysis. Also comparable to the 10 nm dataset analysis, for the 1 nm interval analysis
with full-NDVI gSPRI was top-performing with three bands at 2036, 2111, and 2217 nm
and an R2 = 0.7581 and RMSE = 0.1548. Compared to gSPRI, gCPRI performed quite
comparably for the full-NDVI dataset in terms of f R estimation performance while identify-
ing the same band 1 wavelength of 2036 nm but identified different band 2 wavelengths
(2100 nm vs. 2111 nm) and band 3 wavelengths (2169 nm vs. 2217 nm). This indicates that
there is a fair degree of latitude in the placements of bands 2 and 3, while band 1 should
ideally remain fairly fixed. Although CAI-type wavelengths were top-performing across
the three-band wavelength shift analysis, ratio indices outperformed difference indices
by R2 values greater than 0.035 in certain cases. Further, difference indices were more
prone to errors in estimation of f R when both full-NDVI and atmospheric artifacts were
present (Figure 7 panels a–b vs. panels c–d). Assessment of index type was not the primary
focus of this study, but considering these findings, a more in-depth investigation of index
formation could provide critical information on development of f R products suitable for
regional and global scale mapping efforts.

To provide a more thorough assessment of the wavelength shift analysis findings
in determining final band recommendations for Landsat Next SWIR2, we evaluated top-
performing indices under conditions of varying RWC and f GV. Nearly all narrow band
multispectral indices comprised of multiple SWIR2 bands resolving lignocellulose absorp-
tion features exhibited R2 values approaching or exceeding 0.9. NDTI, comprised of a
single SWIR2 band, was the only index that had R2 values well below 0.9. Further, NDTI
exhibited a greater rate of decrease in R2 values as a function of increasing RWC than other
indices, indicating this index proves unreliable in f R estimation under conditions of varying
moisture, as has been demonstrated by analyses in Quemada et al. (2018) and Quemada
and Daughtry (2016) [32,40]. The NDTI-f R correlations of R2~0.45 for the 0.25–0.60 RWC
class were slightly lower, but in a similar range as those observed across sites with mul-
titemporal Landsat imagery in Thoma et al. (2004) [48]. Our findings indicate that RWC
variability may partially explain lower performance in NDTI-based f R estimation, as would
be expected in analyses using multitemporal satellite imagery. Decreased f R estimation
performance of the high RWC class (0.25 to 0.6) was also observed for the two-band CAI
type indices (Figure 9) as would be expected for two-band indices with wavelengths of
varying liquid water absorption strength. Comparatively, the performance of two-band
SIDRI and SINDRI indicate that indices with 2210 nm and 2260 nm bands provide far
better performance in f R estimation in terms of robustness to RWC in the event of Landsat
Next being limited to two SWIR2 bands. In the two-band case, SINDRI/SIDRI bands
at ~2210 nm and 2260 nm perform much better than other two-band combinations, e.g.,
two-band CAI variants. For the green vegetation analysis, both two-band CAI indices
performed somewhat poorly at higher f GV levels. LCA and SINDRI performed moder-
ately and SIDRI somewhat better than SINDRI. CAI exceeded all established indices in f R
estimation with increasing f GV (Figure 11).

In comparison to the wavelength shift generalized indices, (Figures 10 and 12), CAI
still maintains good performance relative to the generalized indices, but gSPRI-fNDVI is
also a top performer across vegetation classes and is the highest performer for the 0.10–0.30
and 0.30–0.60 categories. The gSPRI-fNDVI bands (2036, 2111, and 2217 nm) were top
performing in the RWC analysis. In the three-band wavelength shift analysis with the 1 nm
interval BARC dataset, the wavelengths of the best performing band 1 were between 2031
and 2041 nm, indicating that this narrow spectral range represents an ideal band placement.
The central wavelength of this range is 2036 nm, which was the best performing band in
the top performing generalized index (gSPRI-fNDVI) across RWC and green vegetation
analyses as shown by the across-class average R2 and RMSE in the last column of Table 5,
supporting our selection of the 2036 nm wavelength for band 1. The combined findings
of the RWC and green vegetation analyses indicate that the recommendation of band 2 at
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2097 (±14 nm) is ideal and well supported. For band 3, the top-performing wavelengths
range from 2154 to 2225 nm. Although this a wide range, the two top-performing band 3
wavelengths were 2216 and 2217 nm. These top-performing wavelengths are less than a
20 nm shift compared to the Landsat 8 SWIR2 band center at 2200 nm, supporting some
level of mission continuity with Landsat 4–9, albeit with a narrow band width. This
slight increase in wavelength for band 3 was found to be advantageous for improving f R
estimation performance in general. This supports our final selection of 2214 nm for band
3 from a top-performing wavelength range of 2110 to 2217 nm. However, like band 2,
we note there is a wide range of wavelengths that will represent good performance in f R
estimation for Landsat Next with a three-band configuration for SWIR2.

Overall, what was critical to this study’s focus was the consistent identification of
high-performing bands at CAI-type wavelengths. The indices producing the lowest RMSE
in f R estimation for the combined RWC and green vegetation analysis were all three-band
indices with CAI-type wavelengths (including CAI itself). Our selection of final bands
centered at 2036, 2097, and 2214 nm provides three bands well-suited for resolving the
2100 nm lignocellulose absorption feature of crop residue and other NPV over a range of
conditions. The selected cutoff at 2350 nm in our analysis due to spectrometer noise may
have limited our ability to fully examine the 2350 to 2500 nm spectral range. It is possible
that clean spectra with high SNR measurements free from artifacts may reveal a different
pattern in the wavelength shift analysis for two- or three-band indices; for example, a
three-band index centered on the 2300 nm absorption feature that is evidenced in NPV
spectra with high SNR. However, given lower radiance levels at longer wavelengths and
the influence of atmospheric water vapor, clear satellite observations of the longward edge
of the 2300 nm absorption feature may be difficult to obtain with broad band multispectral
sensors. While our findings comport with former studies and establish well-evidenced
band selections, it is critical to note the limitations of this study, the first of which is the
limited geographic extent of this study, with all spectra being acquired from fields in the
same region. This study was also limited to maize, soybean, and wheat crop residue
spectra. Performing a similar analysis with a more globally representative distribution of
spectra could greatly improve this analysis. Second, our analysis only compared SR- and
atm-processed spectra from a single atmospheric correction simulation. Before establishing
finalized band placements for Landsat Next, a more detailed assessment of atmospheric
impacts on f R estimation performance is needed.

5. Conclusions

This study used a wavelength shift approach to locate optimal wavelength positions
of 1 nm interval (30 nm bandwidth) multispectral bands and 10 nm hyperspectral bands
for use in spectral indices estimating fractional crop residue (f R) cover. The results of
the analyses for two-band spectral indices indicate that Shortwave Infrared Normalized
Difference Residue Index (SINDRI) and Shortwave Infrared Difference Residue Index
(SIDRI) bands around 2210 nm and 2260 nm have good performance in f R estimation.
Wide ranges of SINDRI/SIDRI (from 2210 to 2230 for band 1 and from 2260 to 2270 for
band 2) yielded high performance. We developed a novel approach with the three-band
wavelength shift analysis finding that three-band generalized indices perform best in
f R estimation when bands are spectrally positioned in the Cellulose Absorption Index
(CAI) region (~2040, ~2100, and ~2210 nm). The top-performing three bands across the
generalized Center Peak Difference Index (gCPDI), generalized Center Peak Ratio Index
(gCPRI), generalized Side Peak Ratio Index (gSPRI), and heritage CAI were found to be
2036, 2097, and 2214 nm. We found that with this three-band case for Landsat Next SWIR2
a wide range of wavelengths were acceptable for the second band (from 2085 to 2115 nm)
and third band (from 2160 to 2230 nm), but the first band should be located as closely to
2036 nm as possible, as the wavelength shift analysis consistently identified 2036 (±5 nm)
as a top performer in f R estimation. It should be noted that CAI and gSPRI performed
best in f R estimation across a range of fractional green vegetation (f GV) and relative water
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content (RWC) categories illustrating their robust performance across a wide range of
ground conditions. While the LCPCDI-type wavelengths (band 1 > 2100 nm constraint)
performed comparably in f R estimation under conditions of limited green vegetation and
with varying RWC levels, CAI-type wavelengths outperformed LCPCDI-type wavelengths
when moderate levels of green vegetation were present. This finding further supported our
selection of 2036–2097–2214 nm CAI-type bands for Landsat Next SWIR2. Although this
research effort was illustrative overall, it was limited in the sense that it did not have an
assessment of the full impact of atmospheric absorption features, variability in background
soils, nor a broad array of crop residue/non-photosynthetic vegetation (NPV) types. Future
research on these topics could address knowledge gaps and improve crop residue and NPV
characterization capabilities for Landsat Next across a wider range of conditions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14236128/s1, Figures S1–S4 provide side-by-side comparisons of
SR-processed (surface reflectance) and atm-processed (surface reflectance with atmospheric artifacts)
spectra fractional crop residue cover (f R) estimation performance. Supplemental Figures S1–S4
expand on the findings presented in Figures 2 and 3 and Table 1 of the main publication. Figures
S5–S8 are the rotational, interactive versions of Figure 6a,c and Figure 7a,c from the main publication.
Figures S5–S8 are provided in the supplementary materials allowing further exploration of the
three-band wavelength shift analysis f R estimation performance.
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Abbreviations

atm abbreviation for spectra with atmospheric residuals
AVIRIS Airborne Visible/Infrared Imaging Spectrometer
BARC Beltsville Agricultural Research Center (USDA)
CAI Cellulose Absorption Index
ETM+ Enhanced Thematic Mapper Plus (on Landsat 7)
f GV Fractional green vegetation cover
f R Fractional crop residue cover
f S Fractional soil cover
gCPDI Generalized Center Peak Difference Index (three-band)
gCPRI Generalized Center Peak Ratio Index (three-band)
gDI Generalized Difference Index (two-band)
gNDI Generalized Normalized Difference Index (two-band)
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gSPRI Generalized Side Peak Ratio Index (three-band)
LCA Lignin Cellulose Absorption index
LCPCDI Lignin Cellulose Peak Center Difference Index
LCPCDIv2 Lignin Cellulose Peak Center Difference Index version 2
MSI Multispectral Instrument (on Sentinel-2)
NDTI Normalized Difference Tillage Index
NDVI Normalized Difference Vegetation Index
NPV Non-photosynthetic vegetation
OLI Operational Land Imager (on Landsats 8 and 9)
PRISMA PRecursore IperSpettrale della Missione Applicativa
rCAILP Ratio CAI—Left Peak (two-band)
rCAIRP Ratio CAI—Right Peak (two-band)
RWC Relative water content
SI Spectral index
SIDRI Shortwave Infrared Difference Residue Index
SINDRI Shortwave Infrared Normalized Difference Residue Index
SR Surface reflectance
SWIR Shortwave infrared
SWIR1 Shorter wavelength SWIR region and band for OLI and MSI (~1600 nm)
SWIR2 Longer wavelength SWIR region and band for OLI and MSI (~2200 nm)
TM Thematic Mapper (on Landsat 5)
WV3 WorldView-3
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