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Abstract: Chlorophyll-a(chl-a) has been used as an important indicator of water quality. Great efforts
have been invested to develop remote-sensing-based chl-a retrieval models. However, due to the
spatial difference in chl-a concentration, a single model usually cannot accurately predict the whole
range of chl-a concentration. To test the performance of precedent chl-a models, we carried out an
experiment along the upper and middle reaches of the Kaidu River and around some small ponds in
the Bayanbulak Wetland. We measured water surface reflectance in the field and analyzed the chl-a
concentration in the laboratory. Initially, we performed a sensitivity analysis of the spectrum band
to chl-a concentration with the aim of identifying the most suitable bands for various chl-a models.
We found that the water samples could be divided into two groups with a threshold of 4.50 mg/m3.
Then, we tested the performance of 11 precedent chl-a retrieval models and 7 spectral index-based
regression models from this study for all the sample datasets and the two separate datasets with
relatively high and low chl-a concentrations. Through a complete comparison of the performance
of these models, we selected the D3B model for water bodies with high chl-a concentration and
OC2 model (ocean color 2) for low chl-a concentration waters, resulting in the hierarchical and
piecewise retrieval algorithm OC2-D3B. The chl-a concentration of 4.50 mg/m3 corresponded to the
D3B value of −0.051; therefore, we used −0.051 as the threshold value of the OC2-D3B model. The
result of the OC2-D3B model showed a better performance than the other algorithms. Finally, we
mapped the spatial distribution and seasonal pattern of chl-a concentration in Bayanbulak Wetland
using Sentinel-2 images from 2016 to 2019. The results indicated that the chl-a concentration in the
riparian ponds was generally in the range of 8–10 mg/m3, which was higher than that in rivers with
a range of 2–4 mg/m3. The highest chl-a concentration usually appears in summer, followed by
spring and autumn, and the lowest in winter. The correlation between meteorological data and chl-a
concentration showed that temperature is the dominant factor for chl-a concentration changes. Our
analytical framework could provide a better way to accurately map the spatial distribution of chl-a
concentration in complex river systems.

Keywords: remote sensing; chl-a concentration; spectral index; piecewise algorithm; model
evaluation; sensitivity analysis; highland river

1. Introduction

The concentration of chlorophyll a (chl-a) has been extensively used to reflect water
transparency, the degree of eutrophication and the biomass of phytoplankton [1–7]. The
rapid and accurate determination of chl-a concentration in a wide range of water bodies
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is important in water environment monitoring. Compared with the traditional water
quality monitoring method based on field investigation, remote sensing technology has the
advantages of a low cost, wide range and high efficiency. With the development of high-
resolution and multi-source satellite sensors, the retrieval of water-environment-related
elements using remote sensing has been widely applied in the monitoring of water quality
and hydro-environmental pollution in large areas of water [8–17].

Previous studies have proposed a variety of chl-a-retrieving algorithms for different
optical types of waters. Generally, these algorithms can be grouped into three categories:
empirical models, semi-analytical models and analytical models [18,19]. The ocean color
algorithm OCx [2,7], SVM model [20] and LSTM model [21] are among the most commonly
used empirical models. The semi-analytical models include a two-band model [22], three-
band model [23–25], four-band model [26] and APPLE model [27]. In addition to these
models, the Fluorescence Line Height (FLH) [28], Maximum Chlorophyll Index (MCI) [29]
and Comprehensive Chlorophyll Index (SCI) [30] based on chlorophyll fluorescence char-
acteristics were also used to capture the chl-a concentration. The basic principle of these
algorithms is to build strong linkage between the reflectance of sensitive bands and the
chl-a concentration in water [5]. However, the spatial heterogeneity of the optical properties
and chl-a concentration of the waters makes these algorithms hard to apply universally.
To overcome the disadvantages of the traditional models, machine learning has been used
to enhance the predictability of remote-sensing-based chl-a models [31–36]. Due to the
limitations of data availability over a large area, the machine-learning-based algorithms
usually work regionally.

In recent decades, investigations of remote sensing estimations of chl-a concentration
in waters have mainly been concentrated in large-scale open areas such as oceans, coastal
seas or relatively static inland lakes [6,26,37–40]. In contrast, there were relatively few
focusing on rivers with varying flow rates and rapidly changing water quality. The river
channel is relatively narrow and could only cover a few pixels for low–medium-resolution
satellite images, which will bring great uncertainty to the results. Despite the development
of aerial photogrammetry, the high cost prevents us from implementing the field survey
over a large-scale area. Moreover, the high variability of the water composition resulting
from climate change and human disturbance makes it difficult to capture the conditions of
water quality. However, an experiment should be conducted in a complex river system to
validate the traditional model or algorithm.

In Class I water bodies, such as oceans, which are mainly composed of phytoplankton
and its secondary products, the optical characteristics (namely, absorption and scattering) of
chl-a in the blue and green bands are distinctly displayed on the spectrum curve. However,
in Class II water bodies with complex optical properties, the optical characteristics of chl-a
in the same bands are masked by the strong absorption of high-concentrated Colored Dis-
solved Organic Matter (CDOM) and Non-Algal Particles (NAP) in the water. Additionally,
in the red near-infrared band, the absorption of CDOM and NAP sharply decreases, and
the absorption proportion of chl-a greatly increases, finally forming the obvious spectral
peak–valley feature [41]. Therefore, the chl-a algorithm based on specific bands cannot
balance the optical characteristics of multiple types of water bodies. Some studies have
tried to classify the waters into different types in order to achieve the best modelling results.
For example, based on the degree of eutrophication, biomass and turbidity, we can divide
the waters in the same region into different types to establish an integrated model, which
could be generally applied to each water type [6,39,42–44]. This kind of model could
compensate for the shortcomings of using a single algorithm for different types of water.

The Bayanbulak river basin has complex river systems, with the coexistence of both
river- and pond-like wetlands. The topography in the river basin is relatively flat and the
terrains along the river channel tend to be flooded. Many ponds are distributed along the
adjacent riparian belt. It is of scientific significance to map the chl-a concentration in this
complex river system. In this study, we aimed to establish an integrated model to simulate
the chl-a concentration in a river–wetland interlinked fluvial system through a comprehen-
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sive analysis of field-measured water surface reflectance spectrum and chl-a concentration.
Then, we utilized long time-series Sentinel-2 images to capture the spatial and temporal
variations in chl-a concentrations in Bayanbulak basin. Finally, we determined the major
driver of chl-a concentration variation.

2. Materials and Methods
2.1. Study Area

The study area, Bayanbulak marshy meadow, is in the northwest of Hejing County
in Xinjiang (Figure 1), which is in the central mountain basin of the Tianshan Mountains,
with an average altitude of about 2500 m and a total area of about 15,000 km2. The mean
annual temperature was −4.5 ◦C, and the average temperature from April to September
was 5–10 ◦C. The land is mainly covered by typical alpine meadow grassland and is the
largest alpine grassland in China. Natural precipitation and the melt waters of glacier and
snow in Tianshan are the main supplies of water resources in wetlands. Due to the influence
of natural resources exploitation and rising temperature in these areas, the overall wetland
area was degraded from 1996 to 2015 [45]. Field investigation observed that grassland
degradation and desertification occurred in some places within the wetland.

Figure 1. Sampling sites in the Bayanbulak wetland in Xinjiang.

2.2. Data
2.2.1. Field Spectral Data Measurement and Water Sample Collection

During the field work, we collected 38 water samples from the main river channel
and the small riparian ponds in the middle and upper reaches of the Kaidu River from
16 July to 29 July 2018. For each sample, a volume of 1000 mL was collected and stored in a
dark environment at 0~4 ◦C. Then, we took these samples to the laboratory to extract chl-a
concentration. The summarized information of chl-a concentration is shown in Table 1.

The chl-a concentration for all samples was less than 10.00 mg/m3 (Table 1). In all
38 samples, the chl-a concentration of 26 samples was 2.00~4.50 mg/m3, showing that the
overall chl-a concentration in wetland water was low. Generally, water bodies with a chl-a
concentration of 2.60~7.20 mg/m3 were considered to have medium eutrophication, and those
within the range 1.00~2.60 mg/m3 had poor eutrophication [46]. According to this standard,
the water body in this study can be regarded as having low–medium eutrophication.
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Table 1. Descriptive statistics of the chl-a concentration of the samples.

Samples Min
(mg/m3)

Max
(mg/m3)

Mean
(mg/m3)

STD
(mg/m3) CV Number of

Samples

Total 2.53 8.72 4.29 1.65 0.39 38

Main
River 2.78 8.06 4.16 1.37 0.33 12

Ponds 2.53 8.72 5.33 1.98 0.37 13

Tributaries 2.67 5.24 3.37 0.67 0.20 13
STD: Standard Deviation. CV: Coefficient of Variance.

In the field, we simultaneously measured the water spectra using the Analytical
Spectral Devices (ASDs) FieldSpec® 3 field portable spectrometer (Malvern Panalytical,
Malvern, UK) when we collected water samples for laboratory analysis. This spectrometer
has a surveying wavelength ranging from 350 to 2500 nm. The sampling interval was
1.4 nm in the range of 350–1000 nm, and 2 nm in the range of 1001–2500 nm [47]. The
ASD spectroradiometer was initially calibrated at each sampling site before taking the
measurement. Then, we measured the spectrums from the reference whiteboard and river
water surface at each site. The measurement was taken at a 30 cm height above the surface
in a vertical downward direction under clear-sky conditions [47]. The reference whiteboard
was placed on a flat surface. Ten spectral measurements were taken consecutively to
minimize random errors from the surrounding environment. Water bodies are weak
radiators with a lower reflectance than other land-cover types. The mixed spectrums from
turbid water, river bottom, and adjacent land surfaces were complicated due to variations
in stream width, depth, and velocity [47]. To reduce the interference from the river bottom
and surrounding objects, we chose relatively deep water.

The measurement method in the field was the above-water observation method [48],
which can effectively reduce the influences of direct solar radiation and the surrounding
environment. The optical physical parameters in the field measurements consisted of
above-water total upward radiance L(λ), total incident irradiance Ed(0+), and downward
scattered radiance Lp(λ) of sky light. Ed(0+) is obtained by measuring the radiance
brightness LG(λ) of the standard reference plate, and the remote sensing reflectance of
the water body (Rrs(λ)) is calculated based on the measured physical variables using
Equation (1)

Rrs(λ) =
Lw(λ)

Ed(0+)
=

L(λ)− ρ× Lp(λ)

LG(λ)× π/ρb
× 100% (1)

where λ is the wavelength. Lw(λ) represents the water-leaving radiance, which is acquired
from L(λ). ρ is the reflectance of the air–water interface, which is related to the solar zenith
angle, wind speed, observation angle and water surface roughness, etc. ρb is the corrected
reflectance of the reference plate.

There were a total of 38 sampling sites in the field for water surface reflectance
spectral data. Of all the samples, two samples were eliminated because they had appar-
ently incorrect spectral curves due to interference from the measurement environment.
Figure 2a,b represents the remote sensing reflectance spectrum of sampling sites with
chl-a ≤ 4.50 mg/m3 and >4.50 mg/m3. Generally, the ranges of spectrum curves for differ-
ent band significantly varied. However, the “peak–valley” shape of the spectrum was like
that reported in the literature [5,9,39,49,50]. The reflectance of the visible band is higher
than that of the near-infrared band. The strong absorption of the components in the water
results from the low reflectance of the blue band. The reflectance was enhanced as the
wavelength increased. The reflectance spectrum peaked at about 455 nm. The reflectance
reached its highest peak at around 550~580 nm, which arose due to the scattering caused
by phytoplankton and suspended particles. From the red band to the near-infrared band,
the overall spectral reflectance decreases because of the absorption of hydrogen.



Remote Sens. 2022, 14, 6119 5 of 18

Figure 2. The reflectance spectrum curves of the water surface at the sampling sites (N denotes the
number of samples). (a) The in situ water surface reflectance spectrum of sampling sites with chl-a
concentration ≤ 4.50 mg/m3; and (b) in situ water surface reflectance spectrum of sampling sites
with chl-a concentration >4.50 mg/m3. The spectrum in the red box shows the spectral characteristics
caused by chl-a.

Notably, chl-a shows strong absorption at around 675 nm, while NAP and CDOM have
weaker absorption. Therefore, the reflectance spectrum of water with high chl-a concentra-
tion (Figure 2b) will form a chl-a spectrum valley. The peak at around 700 nm results from
the fluorescence due to the photosynthesis of phytoplankton after absorbing solar energy. It
is an important spectral feature to determine whether the water body contains chlorophyll.
From Figure 2a,b, we can observe that, in a water body with chl-a > 4.50 mg/m3, there is
a chl-a absorption valley of around 675 nm and fluorescence peak of around 700 nm. In
contrast, in the water body with chl-a ≤ 4.50 mg/m3, these features do not appear because
the reflectance in the near-infrared band is strongly influenced by other components, which
probably conceals the chl-a signal.

2.2.2. Remote-Sensing Data

The remote sensing datasets used in this study are the Sentinel-2 images with a high
spatial and temporal resolution provided by the Sentinel Data Center of European Space
Agency (ESA) (https://scihub.copernicus.eu/ (accessed on 18 May 2020)). Sentinel-2
consists of two polar orbit satellites, 2A and 2B, and is equipped with a Multi-Spectral
Instrument (MSI) with 13 wavelength bands, from visible and near-infrared to short-wave
infrared. MSI has three spatial resolutions (10 m, 20 m, 50 m) for different bands. The
width of each image scene is 290 km. The revisiting period of the same satellite is 10 days,
and when two satellites observe the same area, the revisiting period is reduced to 5d. The
downloaded Sentinel-2 L1C level images were geometrically corrected and radiometrically
calibrated. In order to obtain an accurate reflectance of water bodies, the atmospheric effects
were corrected using Sen2Cor (version 2.8), a special plug-in for atmospheric correction
released by ESA, which is highly consistent with the 6S model [51].

2.2.3. Meteorological Data

This study used daily meteorological data from Bayanbulak meteorological station
(84◦08′56′′E, 40◦01′58′′N), including temperature, precipitation, and sunshine duration.
These datasets were provided by China’s National Meteorological Science Data Center
(http://data.cma.cn/ (accessed on 15 June 2020)). For comparison with monthly average
chl-a concentrations derived from remote sensing data, we processed the meteorological
data into monthly values.

2.3. Methods
2.3.1. The Validation of the Classical Models

We divided water bodies into two categories according to the concentration of chl-a
of 4.50 mg/m3, as shown in Figure 2. In this study, we collected 11 types of commonly

https://scihub.copernicus.eu/
http://data.cma.cn/
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used chl-a models, an empirical and semi-analytical model, to test their applicability in our
study area (Table 2). We performed a comparison of these models in order to choose the
most suitable model or algorithm.

Table 2. Brief descriptions of the 11 types of chl-a retrieval algorithms used in this study.

Model Equation

Tchl-a [7]
R = Rrs(433)/Rrs(555) ∗ (Rrs(412)/Rrs(490))C0

Chl–a = 10(c1+c2 Log10(R)+C3 Log2
10(R))

C0 = −0.935, C1 = 0.342, C2 = −2.511, C3 = −0.277

OC2V4 [2]
R = Log10(max(Rrs(443), Rrs(490))/Rrs(560))

Chl–a = 10(c0+c1R+c2R2+c3R3+c4R4)

C0 = 0.2975, C1 = −21.502, C2 = −215.53, C3 = −784.5, C4 = −859.7

OC4V4 [2]
R = Log10(max(Rrs(443), Rrs(490), Rrs(510))/Rrs(560))

Chl–a = 10(c0+c1R+c2R2+c3R3+c4R4)

C0 = −0.599, C1 = −50.54, C2 = −578.38, C3 = −2525.7, C4 = −376.2

NDCI [52] NDCI = (Rrs(708)− Rrs(665))/(Rrs(708) + Rrs(665))
Chl–a = 4.0448 + 10.301 ∗ (NDCI)

FLH [28]
FLH = Rrs(λ2)− [Rrs(λ3) +

λ2−λ3
λ1−λ3

∗ (Rrs(λ1)− Rrs(λ3))]
λ1 : 665nm, λ2 : 681nm, λ3 : 708nm

Chl–a = 3.6268− 11.289 ∗ (FLH)− 17.743 ∗ (FLH)2

MCI [29]
MCI = Lw(λ2)− [Lw(λ1) +

λ2−λ1
λ3−λ1

∗ (Lw(λ3)− Lw(λ1))]
λ1 : 681nm, λ2 : 708nm, λ3 : 753nm

Chl–a = 5.6122− 2.1844 ∗ (MCI) + 0.6641 ∗ (MCI)2

SCI [30]

HChl =
[

Rrs(λ4) +
λ4−λ3
λ4−λ2

(Rrs(λ2)− Rrs(λ4))
]
− Rrs(λ3)

H4 = Rrs(λ2)−
[

Rrs(λ4) +
λ4−λ2
λ4−λ1

(Rrs(λ1)− Rrs(λ4))
]

SCI = HChl − H4 λ1 : 560nm, λ2 : 620nm, λ3 : 665nm, λ4 : 681nm
Chl–a = 5.7457− 7.9685 ∗ (SCI) + 5.7043 ∗ (SCI )̂2

G2B [22]
G2B =

Rrs(λ2)
Rrs(λ1)

λ1 : 659nm, λ2 : 692nm

Chl–a = 49.739− 124.14 ∗ (G2B) + 82.754 ∗ (G2B)2

D3B [25]
D3B = [Rrs(λ1)

−1 − Rrs(λ2)
−1] ∗ Rrs(λ3)

λ1 : 659nm, λ2 : 692nm, λ3 : 748nm
Chl–a = 6.9756 + 73.431 ∗ (D3B) + 344.53 ∗ (D3B)2

L4B [26]
L4B = [Rrs(λ1)

−1 − Rrs(λ2)
−1]/[Rrs(λ4)

−1 − Rrs(λ3)
−1]

λ1 : 659nm, λ2 : 692nm, λ3 : 705nm, λ4 : 748nm
Chl–a = 5.5923 + 11.566 ∗ (L4B) + 15.472 ∗ (L4B)2

Gchl-a [44] bb = 1.61 ∗ Rrs(779)/(0.082− 0.6 ∗ Rrs(779))
Chl–a =

(
Rrs(709)/Rrs(665) ∗ (0.7 + bb)− 0.4− b1.06

b
)
/0.016

2.3.2. Spectral Index Based Regression Model

The initially calculated Rrs could contain noise caused by the environment, measure-
ment angle and other factors. To eliminate the noise, we corrected the originally calculated
reflectance by normalization and first-order differential. The average reflectance of from 400
to 900 nm with a stable signal was used as the standard mean value. The ratio of reflectance
of each band to the average value was the normalized reflectance Rn(λ). The principle of
first-order differential was to obtain the first derivative of the initially calculated Rrs. We
implemented this in the software Origin 2021. Compared with the other processing meth-
ods, normalization can effectively enhance the correlation between reflectance and chl-a
concentration (Figure 3). In the range of visible bands, the absolute value of the correlation
coefficient between normalized reflectance and chl-a concentration between 524 and 576 nm
was greater than 0.70, with a maximum of 0.72 at 537 nm and almost zero at 428 nm and
678 nm. We used four forms of spectral indexes, Rn(λ), Rn(λ1)− Rn(λ2), Rn(λ1)/Rn(λ2),
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and (Rn(λ1)− Rn(λ2))/(Rn(λ3) + Rn(λ4)), to conceive four models XI-X4 with the input
of the four specific wavelengths (Table 3).

Figure 3. Correlation coefficient between single-band remote sensing reflectance and in situ
chl-a concentration.

Table 3. The optimal fitting equation between reflectance and chl-a concentration based on regres-
sion analysis.

Model Variable Equation R2

X1 X1 = Rn(537) chl− a = 3.2765X1
2 − 0.3799X1 + 3.1175 0.56

X2
X2 = (Rn(537)− Rn(428))

/(Rn(537) + Rn(428)) chl− a = 14.681X2
2 + 17.266X2 + 8.1809 0.48

X3 X3 = Rn(537)
Rn(678)

chl− a = 8.5277X3
2 − 0.2788X3 + 3.3603 0.36

X4
X4 = (Rn(537)− Rn(678))

/(Rn(537) + Rn(678)) chl− a = 8.6092X4
2 + 14.272X4 + 9.3707 0.34

X5 X5 = (Rrs(384)− Rrs(385)) ∗ 100 chl− a = 75435X5
2 + 1063.9X5 + 6.896 0.63

X6 X6 = Rrs(689)/Rrs(613) chl− a = 107.82X6
2 − 166.85X6 + 67.757 0.82

X7
X7 = (Rrs(625)− Rrs(624))

/(Rrs(625) + Rrs(624)) ∗ 100 chl− a = 105.97X7
2 + 45.711X7 + 8.2691 0.73

To compare the performance of the normalized reflectance Rn(λ) and the initially calcu-
lated Rrs in model building, we constructed the Rrs based spectral indexes, Rrs(λ1)− Rrs(λ2),
Rrs(λ1)/Rrs(λ2), and (Rrs(λ1)− Rrs(λ2))/(Rrs(λ3) + Rrs(λ4)) as basic variables to conceive
new models. The determination of the specific wavelengths used in these indexes was
based on the maximum correlation coefficients between chl-a concentration and the specific
spectral indexes (Figure 4). Eventually, we used the three representative spectral indexes,
Rrs(384)−Rrs(385), Rrs(689)/Rrs(613), and (Rrs(625)− Rrs(624))/(Rrs(625) + Rrs(624)), to
build three test models (X5–X7) to estimate the chl-a concentrations (Table 3).

The results from the model performance showed that the original water surface
reflectance could be better in chl-a model building because the models X5–X7 which used
non-normalized reflectance had higher correlation coefficients.



Remote Sens. 2022, 14, 6119 8 of 18

Figure 4. The distribution of correlation coefficient between in situ chl-a and the three specific indexes.
(a) correlation coefficient between in situ chl-a and Rrs(λ1) − Rrs(λ2); (b) correlation coefficient
between in situ chl-a and Rrs(λ1)/Rrs(λ2); and (c) correlation coefficient between in situ chl-a and
(Rrs(λ1)− Rrs(λ2))/(Rrs(λ3) + Rrs(λ4)).

2.3.3. Model Optimization Based on Spectral Index

In the remote estimation of chl-a concentration for Class II water bodies, 3.00–5.00 mg/m3

was usually considered as a low limit for red-NIR band algorithms, above which the model
prediction would be significantly improved [37,43]. Therefore, according to the measured
water quality data, we used cluster analysis to classify water samples and observed that
4.50 mg/m3 can be set as the threshold of chl-a concentration (Figure 5). We compared the
relationship between variables of each model in Table 2 and the chl-a concentration. We
found that variable D3B has the highest correlation with the measured chl-a concentration
(Figure 5). The corresponding value of D3B was −0.051 when the chl-a concentration was
4.50 mg/m3. To show the relationship between D3B and chl-a in different types of waters, a
detailed statistical analysis is given in Table 4. The results showed that the overlaps between
low and high D3B values occupied about 26% of the total chl-a samples. However, the overlap
of D3B ranges between the two groups of chl-a samples accounted for only 5%. The results
from the confusion matrix indicated that the classification accuracy reached 94.44%. Therefore,
D3B =−0.051 could be considered as a reliable threshold to divide all the samples into two
separate groups in order to build a more precise piecewise model.

Figure 5. Correlation between the calculated D3B value and measured chl-a concentration.
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Table 4. Descriptive statistics of the water samples with D3B = −0.051 and chl-a = 4.5 mg/m3

as threshold.

D3B chl-a Min. chl-a Max. chl-a Mean STD CV Number of samples

D3B ≤ −0.051 2.53 4.25 3.40 0.50 0.15 24
D3B > −0.051 2.67 8.72 6.05 1.73 0.28 12

chl-a D3B Min. D3B Max. D3B Mean SD CV Number of samples

chl-a ≤ 4.50 mg/m3 −0.092 −0.041 −0.072 0.014 −0.19 26
chl-a > 4.50 mg/m3 −0.047 0.026 −0.014 0.023 −1.69 10

2.3.4. Model Metrics

In order to evaluate the goodness of fit for each model, we used four statistical
parameters: determination coefficient (R2), root mean squared error (RMSE), mean absolute
error (MAE), and mean relative error (MRE) (Equations (2)–(5)),

R2 = 1− ∑n
i=1(xobs,i − xmod,i)

2

∑n
i=1
(
xobs,i − xobs,i

)2 (2)

RMSE =

√
∑n

i=1(xmod,i − xobs,i)
2

n
(3)

MAE =
1
n ∑n

i=1

(∣∣xmod,i − xobs,i
∣∣) (4)

MRE =
1
n ∑n

i=1(

∣∣∣∣ xmod,i − xobs,i

xobs,i

∣∣∣∣)× 100% (5)

where xobs,i is the measured value of the chl-a concentration in i-th sample data; xobs,i
denotes the average value of the measured value; xmod,i represents the modelled value; n is
the total number of samples. Typically, the higher the R2 value, and the lower the RMSE,
MRE, and MAE values, the higher the prediction accuracy of the model.

Generally, the verification or validation of the models used independent datasets
different from those used for model calibration to evaluate their goodness of fit. As there
was only one reconnaissance, the sample sizes were too small to divide into two groups to
satisfy the validation of the piecewise algorithms. In this study, we used the cross-validation
method to evaluate model precision. When choosing training sets, we set one sample aside
for model verification and used the rest of the samples for model calibration. We performed
this analysis for each sample in sequence.

3. Results
3.1. Piecewise Model Building

According to the water body classification standard, we applied an optimal statistical
model (X6) and 11 empirical and semi-analytical models to all the samples and two separate
groups of waters. The results of the model’s performance are shown in Figure 6.

For all the samples, except X6, G2B, D3B, and L4B, the relative errors of the other mod-
els were generally greater than 10% (Figure 6a). For low-chl-a-concentration water bodies
(Figure 6b), the group of OCx-form algorithms had a higher prediction accuracy (RMSE
< 0.25 mg/m3, MAR < 0.20 mg/m3, MRE < 6.00%) than statistical approach X6 and semi-
analysis algorithms G2B, D3B, and L4B. The OC2V4 algorithm performed slightly better
than OC4V4. For water bodies with high chl-a concentration (Figure 6c), the three models
G2B, D3B and L4B performed much better than the other models (RMSE < 0.60 mg/m3,
MAR < 0.50 mg/m3, MRE < 10.00%). Among them, the D3B model had the best modelling
accuracy, followed by X6. The group of OCx algorithms performed the worst. However,
the OC2V4 algorithm had a better predictability than the X6 and D3B algorithms when
they were employed in water bodies with a low chl-a concentration (Figure 7a,c,e). The
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model fitting results also showed that the D3B algorithm achieved the best predictability
in water bodies with a high chl-a-concentration, with the highest coefficient of determina-
tion of 0.91 and the lowest relative errors (Figure 7b,d,f). Although X6 had relative better
performance than other models for all the samples, we still need to construct a two-step
model to accurately capture the chl-a variation of different types of water bodies. Therefore,
the OC2V4 algorithm and the D3B algorithm were considered the best models in low-
and high-chl-a concentration water bodies, respectively. We used the integrated piecewise
model OC2-D3B to estimate the chl-a concentration in the following analyses.

Figure 6. The performance metrics of the twelve chl-a concentration retrieval models. (N is the
number of samples). (a) All water samples, (b) samples with low chl-a concentration, and (c) samples
with high chl-a concentration.

When D3B > −0.051, the D3B algorithms based on the reflectance of near-infrared
bands were used to estimate relatively high chl-a concentrations (>4.50 mg/m3). The
formula was written as:

Chl–a = 216.41 ∗ (D3B)2 + 76.206 ∗ (D3B) + 6.8731
D3B =

(
Rrs
−1(649)− Rrs

−1(692)
)
∗ Rrs(734)

(6)

When D3B ≤ −0.051, the OC2V4 algorithm based on the reflectance ratio of blue to
green bands was used to estimate relatively low chl-a concentration (<4.50 mg/m3). The
equation was written as:

Chl–a = 103.7327+33.617R+93.635R2−3.7135R3−198.18R4

R = Log10[max(Rrs(443), Rrs(490))/Rrs(560)]
(7)

Figure 7. Cont.
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Figure 7. In situ chl-a versus estimated chl-a of X6, OC2V4 and D3B in the two separate chl-a datasets.
Figures (a,c,e) showed the results of low chl-a concentration, while figures (b,d,f) showed the results
of high chl-a concentration. (N is the number of samples).

3.2. Spatial and Temporal Distribution of Chl-a Concentration

In this study, we used a Sentinel-2A image acquired on the sampling day on July 21
in 2018 to map the spatial distribution of chl-a concentration. There were 10 sampling
sites that we could locate on the image. Then, we utilized OC2V4, D3B, and OC2-D3B
algorithms to estimate the chl-a concentration. For the OC2V4 algorithm, we chose bands
1, 2, and 3 of Sentinel-2A, and for the D3B algorithm we chose bands 4, 5, and 6, according
to the spectral bands of the field measurement used for model calibration. In order to fully
utilize the satellite image information, we adjusted the representative spectral wavelengths
in our original model to the central wavelength of the corresponding bands of the satellite
image. Then, we used the remote-sensing-based piecewise algorithms to estimate the
spatial distribution of chl-a concentration (Figure 8). From Figure 8, the estimated the
values of OC2V algorithm of rivers and lakes in this water area are generally in the
range of from 2.00 to 4.00 mg/m3 and 0.00 to 2.00 mg/m3, while the estimated values of
D3B algorithm in rivers and lakes are generally in the range of from 1.00 to 2.00 mg/m3

and 6.00 to 10.00 mg/m3. We also compared the remote sensing estimated value with
the measured value at the sampling sites (Figure 9). The OC2V4 algorithm obviously
underestimated the chl-a concentration when the measured value was high, and the
D3B algorithm overestimated the chl-a concentration when the measured value was low.
Therefore, the integrated algorithms OC2-D3B could achieve better predictability than the
other models when applied to the remote estimation of chl-a concentration in a complex
river system (Figure 8c).
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Figure 8. Spatial distribution of estimated chl-a using the OC2V4 (a), D3B (b), and OC2-D3B (c).

Figure 9. Estimated chl-a concentration versus in situ measured chl-a concentration (P denotes
sample site number).

The spatial distribution of the chl-a concentration derived from the OC2-D3B algorithm
indicated that the chl-a concentration in the riparian wetlands was higher than that in
rivers (Figure 8c). The finding could be supported by laboratory experimental analysis.
This phenomenon could be attributed to the different hydrodynamic conditions in rivers
and ponds on floodplains. Differing from the river flow, the water in small ponds along
the river was static and the phytoplankton biomass could be stored in the ponds for a long
time. These water bodies had a weak self-cleaning ability and benefited from the survival
of phytoplankton. Previous investigations also showed that, in terms of hydro-chemical
composition, the phytoplankton biomass in rivers was much lower than that in lakes [53].
The water temperature and depth, wind speed, nutrition, and other physical-chemical
factors were also influencing factors causing variations in chl-a concentration in water
bodies [54,55].

To reveal the seasonal patterns of overall chl-a concentration in the complex river
system, we selected Sentinel-2 images from 2016 to 2019 with low cloud cover to analyze the
mean monthly chl-a concentration. A year was divided into four seasons according to the
climate: March, April and May for spring; June, July and August for summer; September,
October and November for autumn; and December and January and February for winter.
We took the average chl-a concentration in the study area as the chl-a concentration of the
month. The remote sensing estimated mean monthly chl-a concentration during 2016–2019
indicated that the chl-a concentration has obvious seasonal changes (Figure 10). The chl-a
concentration in summer was the highest, followed by spring and autumn, and that in
winter was the lowest. The inter-annual variation in the remote-sensing-estimated chl-a
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concentration showed that there was not much difference between the years. The average
quarterly values of chl-a concentrations from 2016 to 2019 were 3.94 mg/m3 in spring,
5.34 mg/m3 in summer, 5.08 mg/m3 in autumn and 2.11 mg/m3 in winter. The predicted
value of the chl-a concentration was well within the range of the field investigations, which
demonstrated that our piecewise algorithm could perform well in the remote estimation of
chl-a concentration in the study area.

Figure 10. (a) Temporal variation in mean monthly chl-a concentration in study area from 2016 to
2019, and (b) the seasonal variation of multi-year average chl-a concentration.

4. Discussion
4.1. Comparison of Model Accuracy

Through comparisons of the predicted and measured chl-a concentrations for each
verification sample, we can observe that there was a good agreement between these two
values (RMSE = 0.51 mg/m3, MAE = 0.40 mg/m3, MRE = 9.10%) (Figure 11). This indicates
the feasibility of the piecewise algorithm.

Figure 11. Comparison of the estimated (OC2-D3B) and measured chl-a concentrations after cross validation.

We utilized the piecewise algorithm OC2-D3B to estimate the chl-a concentration for
the whole dataset, and then compared the results with those derived from the spectral
index model X6, empirical model OC2V4 and semi-analytical algorithm D3B (Figure 12).
It was obvious that the modelled chl-a concentrations from X6 and D3B algorithms were
more scattered in the range of low chl-a compared to measured values. Although the
OC2V4 algorithm performed well in the low chl-a concentration, it overestimated the
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chl-a concentration in the high range. In total, the piecewise algorithms OC2-D3B had
better predictability, with a determinant coefficient of 0.96, RMSE of 0.32 mg/m3, MAE
of 0.24 mg/m3, and MRE = 5.71%. The experiments in this study demonstrated that the
piecewise algorithm would perform better than the individual model.

Figure 12. In situ chl-a versus estimated chl-a of X6 (a), OC2V4 (b), D3B (c) and OC2-D3B (d) for all
the samples.

4.2. Influencing Factors of Chl-a Concentration Change

From Section 4.2, we can observe that the chl-a concentration showed apparent sea-
sonal change patterns. As the study area was located in a high mountain area, it suffered
less human disturbance. Therefore, in the following analyses of the controls on chl-a con-
centration, we attached importance to meteorological factors. Along with the observation
data from Bayanbulak meteorological station, we analyzed the influence of three meteo-
rological factors on the changes in chl-a concentration in water bodies, including mean
monthly temperature, monthly precipitation and mean monthly sunshine hours from 2016
to 2019. As meteorological factors have a delayed effect on phytoplankton in water, we also
analyzed the influence of meteorological factors in the previous month on water bodies’
chl-a concentration. The results revealed that the lag effect of meteorological factors on the
chl-a concentration was not enormous in this study area. Consequently, we only discussed
the effect of meteorological factors on the chl-a concentration in the corresponding month.

The climate in the study area was characterized by simultaneous rain and hot weather,
with obvious seasonal changes. High temperatures and large amounts of rain occur in
the summer and low temperatures and less precipitation in winter (Figure 13a,c). The
monthly sunshine duration shows complex patterns (Figure 13). We can observe that
the changes in chl-a concentration in the water are more consistent with the changing
trends of temperature and precipitation. Chl-a concentration reached the highest in sum-
mer and the lowest in winter. However, the precipitation was more concentrated within
the three months of summer, and the precipitation in other months was low and stable.
The relationship between meteorological factors and chl-a concentration (Figure 13b,d,f)
suggest that temperature had a higher correlation with chl-a and temperature than pre-
cipitation. The correlation coefficient between mean monthly sunshine duration was only
0.38, which indicated that the chl-a concentration of water bodies was probably dominated
by temperature and precipitation, and the temperature control is more prominent. This
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implied that vegetation growth was mainly controlled by temperature and precipitation at
high altitudes.

Figure 13. The temporal change of chl-a concentration and its controls, including temperature (a),
precipitation (c) and sunshine duration (e). The (b,d,f) represent the correlation between chl-a and
temperature, precipitation and sunshine duration.

5. Conclusions

Based on the water samples and field-measured spectral information, we performed a
comprehensive comparison of the traditional models and our spectral index models. To
enhance the prediction accuracy, we finally divided the waters into two groups and built a
piecewise algorithm to map the chl-a concentration in the Bayanbulak basin. The findings
of this study were as follows.

(1) Although spectral normalization can distinctly eliminate environmental noise and
enhance the correlation between remote-sensing reflectance and chl-a concentration,
the models based on spectral normalization did not have a higher performance that
the models based on the initially calculated reflectance. This means that the original
reflectance could be used to build chl-a models.

(2) According to the performance of various algorithms after optimization, it is difficult
to capture the total change in chl-a concentration using only a single algorithm in
water bodies with complex conditions. Although some semi-analytical algorithms,
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such as G2B, D3B and L4B, had higher accuracy for all types of water bodies, with an
average relative error within 20%, their prediction accuracy in water bodies with a
low chl-a concentration (≤4.50 mg/m3) was obviously lower than in water bodies
with high chl-a concentration. Therefore, a more reliable framework is needed to
improve the modelling results.

(3) The spectral sensitivity analyses showed that the water bodies could be divided
into two types (>4.50 mg/m3 and ≤4.50 mg/m3) when the three-band reflectance
variable D3B was −0.051. Finally, we constructed an integrated piecewise model to
more accurately map chl-a concentration. The modelling results indicated that our
piecewise model has a better performance in all types of water bodies (R2 = 0.96,
RMSE = 0.32 mg/m3, MAE = 0.24 mg/m3, MRE = 5.71%).

(4) The chl-a concentration in our study area had a seasonal pattern. The concentration
in summer is the highest, followed by spring and autumn, and the lowest in winter.
The chl-a concentration in small ponds and riparian wetlands was higher than that in
rivers. The correlation between meteorological variables showed that temperature
was probably the main driver for variations in chl-a concentration.
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