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Abstract: Despite their importance to ecosystem services, wetlands are threatened by pollution and 

development. Over the last few decades, a growing number of wetland studies employed remote 

sensing (RS) to scientifically monitor the status of wetlands and support their sustainability. Con-

sidering the rapid evolution of wetland studies and significant progress that has been made in the 

field, this paper constitutes an overview of studies utilizing RS methods in wetland monitoring. It 

investigates publications from 1990 up to the middle of 2022, providing a systematic survey on RS 

data type, machine learning (ML) tools, publication details (e.g., authors, affiliations, citations, and 

publications date), case studies, accuracy metrics, and other parameters of interest for RS-based 

wetland studies by covering 344 papers. The RS data and ML combination is deemed helpful for 

wetland monitoring and multi-proxy studies, and it may open up new perspectives for research 

studies. In a rapidly changing wetlands landscape, integrating multiple RS data types and ML al-

gorithms is an opportunity to advance science support for management decisions. This paper pro-

vides insight into the selection of suitable ML and RS data types for the detailed monitoring of 

wetland-associated systems. The synthesized findings of this paper are essential to determining best 

practices for environmental management, restoration, and conservation of wetlands. This meta-

analysis establishes avenues for future research and outlines a baseline framework to facilitate fur-

ther scientific research using the latest state-of-art ML tools for processing RS data. Overall, the 

present work recommends that wetland sustainability requires a special land-use policy and rele-

vant protocols, regulation, and/or legislation. 
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1. Introduction 

Wetlands are the most valuable dynamic biophysical resources [1] existing at the ter-

restrial-aquatic interface [2] and the hub of a great variety of flora and fauna species [3]. 

Wetlands, which are landscape features that exist all over the world, in every kind of cli-

mate zones from the tropics to the tundra [4], provide an appropriate living environment 

for aquatic vegetation and various biological activities and play an irreplaceable role in 

improving the environment and mediating the ecological balance [5]. 

They serve multiple ecological functions and values [6,7]. Erosion prevention, flood 

control, pollution alleviation, climate regulation, sewage purification, biodiversity 

maintenance, water storage and groundwater recharge, and wildlife support are just a 

few of the functions that wetlands perform [7–10]. Wetlands also contribute to tourism 

facilities, bio-energy production, and social benefits [8]. As such, understanding the dis-

tribution of wetland types and sites is crucial to ensure sustainable management and 
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assessment of resource use [3]. As such, wetlands have been referred to as the “kidneys” 

of nature [11] because of the many environmental services and ecological benefits they 

provide. 

In terms of levels and purposes, more than 50 definitions of wetlands throughout the 

world have been presented [12,13]. The varying definitions come from the characteristics 

of the wetlands and how they are managed in different countries. However, in most def-

initions, wetlands are regarded as a unique ecosystem formed by interactions between the 

local area’s geomorphology, hydrology, soil, and ecology. As defined explicitly in the 

Ramsar Convention, wetlands are distinct ecosystems that can be detected and monitored 

on a variety of scales using satellite remote sensing (RS) imagery and machine learning 

(ML) algorithms [14]. The combination of RS and ML can greatly relieve the heavy burden 

of manual work for wetland-related studies and offer huge potential and a wide scope of 

application space in these areas. 

Even though there is a lack of reliable data, it is a concern to stakeholders that wet-

lands continue to be lost and degraded, as no science-based protocols are available in the 

most wetland regions to guide the monitoring of wetlands [6,7]. Under the joint influence 

of natural accumulation, artificial reclamation, and urbanization, wetlands are constantly 

changing over time. Moreover, several factors influence wetland changes, including the 

local terrain, hydrology, soil, economy, population, and policy. As such, wetland sustain-

ability requires special land-use policy and relevant regulation and/or legislation to mon-

itor and assess the status of these crucial habitats locally, regionally, and globally. Fur-

thermore, the rapid expansion of agricultural areas and urbanization are important factors 

in wetland areas having decreased significantly over the past three decades. Wetland re-

sources can be effectively preserved by having up-to-date information on the status and 

extent of land cover within the ecosystem [15]. 

Monitoring and assessing wetlands by RS is an advanced analytical approach [16,17] 

that allows for faster, less destructive, and more geographically expansive observation of 

the spatiotemporal changes in wetlands, as well as changes in the surrounding land use 

and land cover (LULC). Currently, Satellite RS technology is acknowledged as the most 

powerful source of data for wetland identification by the U.S. Army Corps of Engineers 

(USACE) [18], and it has been extensively and successfully employed to monitor, assess, 

and preserve wetland areas in the past 50 years [12,18]. As a complement to conventional 

approaches in wetland monitoring, RS has the potential to deepen our understanding of 

both local and global patterns of landscape and biodiversity. Through the development 

of satellite and sensor technology as well as ML algorithms, human involvement in wet-

land delineation has gradually decreased, leading to progress in techniques and algo-

rithms for mapping these natural resources with RS tools [19,20]. Using various satellite 

datasets (e.g., Landsat, Sentinel, MODIS, …), researchers have produced land cover maps 

that include wetlands at national, provincial, regional, and local scales. 

With the increased development of optical and radar sensor platforms, space-borne 

sensors are becoming more accurate and useful in characterizing wetland extent and dis-

criminating LULC types [21]. A broad range of users, organizations, and researchers can 

now benefit from technological advances in open-access satellite data streams, cloud com-

puting, and data science to perform fast, accurate, large-scale, and high-resolution land 

cover classifications [22–24]. Recently, the advent of the Google Earth Engine (GEE, 

https://earthengine.google.com (accessed on 20 August 2022)) has provided a professional 

platform to assist geoscientists interested in geo-big data analysis [7,25]. This cloud-based 

platform has revolutionized the processing and analysis of open-source earth observation 

data, introduced automatic training sample migration possibilities, and supports some 

ML methods [7,26]. The most impressive feature of GEE is its ability for large spatial and 

temporal scale environmental (e.g., wetland) monitoring through parallel computation 

service. 

Meanwhile, the development of data science algorithms and the open-source Python 

language environment and its packages (such as TensorFlow and Keras) have resulted in 

https://earthengine/
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detailed modeling and analysis of a wide variety of open-source satellite data sets. There-

fore, coupling easy access RS satellite data with data analysis, visualization, geo-compu-

tation, modeling, and ML tools/packages has dramatically enabled scientists to map and 

monitor landcover within larger regions more accurately and in an automated and repeat-

able way. Currently, the combined use of GEE with state-of-the-art deep learning (DL) 

models in wetland studies is absent from the literature and has not yet been well docu-

mented. 

As listed in Table 1, several review papers have summarized the studies conducted 

on wetlands from different perspectives. Given its importance, a meta-analysis of studies 

on the capabilities of RS sensors, features, and ML models for monitoring and character-

izing worldwide wetlands is overdue. Thus, we reviewed the literature related to RS data 

and the methods of producing spatial information on wetlands. 

Table 1. List and a brief summary of previous reviews related to the topic. The list was sorted by 

publication date (the number of citations is reported by 30 June 2022 on the WoS database). 

# Reference First Author Year #Citation Publication Journal 
Review Type Reviewing 

Period DR * QR * 

1 [This Paper] Jafarzadeh, H. 2022 0 Remote Sensing ✓ ✓ 1990–2022 

2 [27] Czapiewski, S. 2021 0 Land ✓ ✓ 2010–2021 

3 [28] Mirmazloumi, S.M. 2021 0 Remote Sensing  ✓ 1976–2020 

4 [29] Montgomery, J. 2021 1 Remote Sensing ✓  N/A 

5 [30] Gxokwe, S. 2020 9 Remote Sensing ✓  2000–2020 

6 [31] Adeli, S. 2020 31 Remote Sensing  ✓ 1991–2019 

7 [13] Mahdianpari, M. 2020 21 Remote Sensing  ✓ 1980–2019 

8 [32] Chasmer, L. 2020 14 Remote Sensing ✓  1973–2018 

9 [33] Chasmer, L. 2020 6 Remote Sensing ✓  1973–2018 

10 [34] Minasny, B. 2019 34 Earth-Science Reviews ✓ ✓ N/A 

11 [11] Mahdavi, S. 2018 79 GIScience & Remote Sensing ✓  N/A 

12 [12] Guo, M. 2017 154 Sensors ✓  1964–2015 

Note: * DR and QR stand for descriptive review, quantitative review, respectively. 

The findings of the available review studies indicate that a further review paper 

should be carried out to compare the different techniques and concepts. Moreover, to the 

best of our knowledge, a comprehensive review of recent achievements regarding ML and 

DL for global wetland studies using RS data is still lacking. In order to reach this objective, 

the following lead questions are considered, and the current meta-analysis sought to ad-

dress them: 

• Which ML method is best suited to monitor wetlands surface cover and adjacent ar-

eas and provide the best result from RS imagery? To what extent are the commonly 

applied ML approaches valid? 

• How have they varied over the last decades? 

• What are the key factors in ML model selection for wetland studies? Are there any 

specific problems that are being solved preferentially by a specific algorithm? 

• How important is optical imagery compared to SAR data? What is the contribution 

of clear-sky observations from SAR imagery relative to optical imagery? 

• Is multi-sensor (multi-source dataset) integration more accurate for wetland area de-

lineation than a single sensor? 

• What are the individual and combined contributions of SAR and optical data to wet-

land monitoring? 

• What are the common satellite sensor types utilized for wetland studies? 

• What are the common RS image features utilized for wetland studies? 

• What are recommended steps for future wetland studies and management? 
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Toward responding to these important questions and describing future needs, em-

pirical evidence is needed for protecting natural resources, resolving conflicts, and appro-

priately managing common pool resources of wetland areas among stakeholders. As a 

step in reacting to these calls, this paper’s main objective is to help find the best combina-

tion of data sources and methods to successfully follow the needs of wetland studies, as 

pictured in Figure 1. 

 

Figure 1. A conceptual overview of the use of ML and RS tools to derive productions. 

The paper is structured as follows. A searching procedure will be defined as the first 

step in finding and evaluating the candidate studies in consideration of this paper’s ob-

jectives. Our next step is presenting a typology of the main wetland-based practices with 

their definitions. We identified the following main categories of practices: classification, 

change detection (CD), vegetation mapping, biomass estimation, wetland area delinea-

tion, hydrological characterization, soil, and carbon estimation. We reviewed RS-based 

studies used to address each practice. In turn, the most critical features of the studies are 

highlighted and discussed, as are the research requirements for producing accurate and 

robust information on the wetlands. Finally, we present recommendations for future re-

search in this field. In the conclusion section, the findings of this meta-analysis are sum-

marized regarding the questions mentioned earlier. 

2. Methods 

2.1. Bibliographic Base and Search Query Definition 

In preparation for this meta-analysis and systematic review, the Science Citation In-

dex (Web of Science (WoS) Core Collection) bibliographic database was used on and up 

to 30 June 2022 to retrieve scientific documents, including papers published in journals 

and conference proceedings constrained to the time span from 1990 to 2022. For this pur-

pose, three sets of keywords were systematically defined, providing a logical literature 

search query to locate highly relevant references in the database (see Figure 2). To retrieve 

papers that incorporated RS data and ML tools to address a wetland application, the 

search was conducted in the topic field (i.e., title/abstract/keyword) using the keywords 

listed in the second and third columns. However, to narrow down the search results and 
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make them more specific, the first column keywords were only searched in the title field. 

Consequently, the predefined search query retrieved 528 journal and conference papers 

in the primary search in the WoS database. Afterward, the PRISMA checklist, known as 

the methodology of Preferred Reporting Items for Systematic Reviews and Meta-Anal-

yses, was followed [35,36] to delineate the papers that fit within the scope of the topic and 

are eligible to be included in this meta-analysis. An overview of the paper selection meth-

odology as per the PRISMA statement and review process is outlined in Figure 3. 

 

Figure 2. The predefined search query and list of keywords to prepare the procurements of this 

meta-analysis. 

The screening of the resulted 528 potential papers was then started to filter them by 

title and abstract, providing 404 candidates. The meta-analysis did not consider docu-

ments categorized as review studies, book chapters, reports, and non-English papers. In 

the next stage, by assessing the full texts of those candidates, only publications utilizing 

RS and ML techniques in wetland monitoring were selected as the final items for review 

to comply with the predefined inclusion criteria and maintain a controllable workload 

while focusing on the lead questions and objectives of the current study. Finally, a total of 

344 papers were included in our meta-analysis procedure (see Figure 3). 
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Figure 3. Paper selection and the review process flow diagram. A total of 528 papers were found in 

our primary search in the WoS database. 

2.2. Extracted Attributes from the Screened Records 

The review process was conducted based on the 344 selected papers by full-text reads 

while looking for and focusing on a set of primary attributes. Looking at the previous 

review papers in the field of wetland studies, several study characteristics (presented in 

Table 2) were identified for the analysis of the final set of included papers in the context 

of our systematic review using a custom-made data extraction worksheet. In the current 

meta-analysis, these attributes are summarized to attain an overview of how RS imagery 

and ML techniques have been used to support wetland studies. 

Table 2. A listing of extracted sub-fields/attributes considered for the content analysis of included 

papers. 

# Attribute Type Categories 

1 Publication Title Free-text - 

2 Keywords Free-text - 

3 Authors Free-text First Author Name 

4 
First Author Affilia-

tion 
Free-text University/Organization Country 

5 Publication Year Free-text Published Year 

6 Document Type Classes Journal; Conference 

7 Source Free-text Published Journal or Conference 

8 Publisher Classes MDPI, IEEE, Elsevier, etc. 

9 Citation Numeric - 

10 Study Focus/Objective Classes 
classification, change detection, vegetation map-

ping, etc. 
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11 Study Area Country Free-text Countries all around the world 

12 Study Area Extent Classes Very small, Local, Regional, Provincial, National 

13 Data Type Classes Multispectral, Hyperspectral, SAR, etc.  

14 Sensor type Classes Landsat, Sentinel, RADARSAT, etc. 

15 Feature Type Classes 
Imagery Features, Spectral Indices, Textural metrics, 

etc. 

16 Methodology Classes ensemble learning, decision tree, DL-based, etc. 

17 Accuracy Assessment Numeric Overall Accuracies analysis based on seven factors 

18 Processing Tools Classes ArcGIS, ENVI, Python, SNAP, etc. 

3. Results and Discussion 

A detailed report of the systematic review will be provided in this section. We will 

begin by giving an overview of the general characteristics of wetland publications, includ-

ing the author affiliations, journals, and the number of publications per year/journal/pub-

lisher. Afterward, study objectives and applications, study regions, data and sensor type, 

and ML algorithms utilized in the literature will be discussed. 

3.1. General Characteristics of Wetland Publications 

3.1.1. Scientific Productions Trend 

Figure 4 reflects the temporal distribution of the total number of reviewed papers 

along with the publication trends from three top publishing countries among 344 papers 

reviewed using PRISMA from 1997 to 2022. As shown, there is an increasing trend of sci-

entific publications highlighting the importance of wetlands to the scientific community. 

The apparently drastic reduction from 2021 to 2022 can be attributed to the fact that the 

query results are until the middle of 2022. Considering the growing number of RS sensors 

and their promising performances in environmental monitoring tasks, about 67% (n = 232 

out of 344) of the papers were published in the last five years (2018–2022). 

 

Figure 4. Temporal distribution and the total number of reviewed papers per year, and publication 

trends from three top publishing countries. 

3.1.2. Keyword Frequency Analysis 

A word cloud based on keyword frequencies is shown in Figure 5. Keyword size is 

calculated by the frequency of occurrence of each keyword in all included papers. The size 

of each particular keyword corresponds to how frequently it appears throughout all pa-

pers in the review. Considering the combination for the literature search, “Wetland” and 
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“Remote Sensing” were the most frequently mentioned keywords in the reviewed litera-

ture. Note that there was a lack of consistency in the keywords because the reviewed pa-

pers came from a wide variety of journals in different formats. Therefore, some simplifi-

cations were made before feeding the keywords into the word-cloud generator. Our ap-

proach was to convert plural keywords into singular forms, capitalize all the keywords, 

and exclude those rarely appearing in the reviewed papers. 

 

Figure 5. Word cloud shows the most frequent terms in wetland studies. The larger the text, the 

more frequently the word appeared in considered papers. 

3.1.3. Journal and Conference Analysis 

The eligible publications in our systematic review appeared in 88 different journals 

and conferences, illustrating the diversity of disciplines interested in wetland studies. 

Among the selected papers, 307 and 37 were journal and conference papers, respectively 

(see Figure 6). 

 

Figure 6. The number of journal and conference publications included in the meta-analysis. 

Among peer-reviewed publishing journals, 51 have published one or two papers on 

the topic. The majority of reviewed sources come from 8 peer-reviewed journals (with a 
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share of 52%); see Figure 7a. Only journals with at least three publications are included in 

this figure. As shown, the highest number (top five) of publications associated with wet-

land studies occurs in the Remote Sensing (MDPI), Remote Sensing of Environment (RSE), 

International Journal of Applied Earth Observation and Geoinformation, IEEE Journal Selected 

Topics in Applied Earth Observation and Remote Sensing (IEEE-JSTARS), and Canadian Journal 

of Remote Sensing (CJRS) journals. 

As shown in Figure 7b, the order of the publisher centers, whose journals account for 

the majority of the published papers is as follows: MDPI, followed by Elsevier, and IEEE 

(with an overall share of 70%). Moreover, 14% of the journal papers were published by 

Taylor & Francis, 9% by Springer, 5% by SPIE, and only 2% by WILEY. Among the confer-

ence proceedings, the IEEE International Geoscience and Remote Sensing Symposium 

(IGARSS), with 63% of papers (n = 23 out of 37), is the first ranked conference for publish-

ing papers with the focus on wetland studies. 

 
(a) 

 
(b) 

Figure 7. An overview of (a) the journals included in this meta-analysis and the number of papers 

per journal. (b) A listing of the leading publishers and the number of papers per publisher. 

3.1.4. First Author Affiliation Analysis 

The spatial distribution of the first author’s affiliations illustrated in Figure 8 clearly 

indicates the dominant share has Asian affiliations (with 42%), with 35% having Chinese 

affiliations alone. Furthermore, North American affiliations (with 40%) ranked second in 

this review, with 21% coming from the USA and 17% from Canada. Around 13% of pub-

lications are attributed to European affiliations. The high percentage of publications from 
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Chinese, USA, and Canadian affiliations can be associated with the extensive wetland 

coverage in these countries, which need to be studied, as well as a significant contribution 

of papers with strong methodological backgrounds. Researchers conducted such studies 

to develop ML algorithms and evaluate RS datasets considering field data collection for 

wetland studies. 

 

Figure 8. Country and continent-based overview of first author affiliations. Among the continents, 

Asia (with 42%), America (with 40%), and Europe (with 13%) hold the largest shares, and among 

countries, China (with 35%), the USA (with 21%), and Canada (with 17%) hold the largest shares. 

3.1.5. Citation Analysis 

Analysis of citations provides a way to identify papers that have a significant impact 

on the field. Citation analysis also indicates the quality and objectivity of a paper by 

demonstrating the number of researchers or scholars who are attracted to cite that paper. 

As a result, the citation numbers of all considered papers until 30 June 2022 were extracted 

from the WoS database in order to identify those that contributed the most. In Table 3, 

papers were ranked based on the number of citations; however, we also calculated the 

average citation per year to lessen the effect of elapsed time since the publication of the 

cited documents. 

Table 3. List of highly cited papers in the database, ranked by the total number of citations (as of 30 

June 2022). 

Rank Ref. First Author Total Citations Average Citation 
Publication 

Year 

1 [37] Millard, K 260 37.14 2015 

2 [38] Dronova, I 176 16 2011 

3 [39] Bwangoy, JRB 169 14.08 2010 

4 [40] Baker, C 168 10.5 2006 

5 [41] Mandianpari, M 155 31 2017 

6 [42] Han, XX 147 21 2015 

7 [43] van Beijma, S 142 17.75 2014 

8 [44] Liu, T 138 34.5 2018 

9 [45] Corcoran, JM 130 14.44 2013 

10 [46] Mahdianpari, M 114 38 2019 

3.2. Study Focus and Applications 

Knowledge of the status and extent of wetlands is essential to a series of research 

questions and applications. Thus far, many studies have characterized wetlands and 
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monitored, mapped, and assessed them over time using a variety of satellite datasets with 

different spatial and temporal resolutions [47,48]. Satellite imagery, such as the Landsat 

series, Sentinel, SPOT, and MODIS, provide long-term spatial data archives to assess, 

monitor, and manage ecological environments. These data collections have been widely 

utilized in environmental studies, for instance, in LULC change analysis, wetland status 

monitoring and extent mapping, biomass estimation, soil moisture retrieval, inundation 

mapping, and water level monitoring [7,49–52], amongst others. 

As depicted in Figure 9, satellite imagery is mainly applied in seven major applica-

tion domains for wetland studies: (1) the generation of landscape-type thematic maps for 

wetland types; (2) the dynamic change analysis of wetlands; (3) wetland vegetation map-

ping; (4) the survey and recognition of wetland extent; (5) the evaluation and estimation 

of biomass in wetland areas; (6) wetland hydrological characterization and surface water 

hydroperiod; and (7) soil and carbon estimation. The share of each of these applications 

within the reviewed literature is also presented in Figure 9. Of all reviewed publications, 

51% investigate wetlands from the perspective of the classification of wetland classes. Fol-

lowing the classification, 14% of the publications analyzed wetlands’ changes. Wetland 

vegetation mapping and wetland extent recognition are in third and fourth places, with a 

share of 12% and 7% among all reviewed papers. Since the classification and CD frame-

works have the most significant shares, a brief discussion of these applications is pre-

sented below. 

 

Figure 9. Overview of the diversity of application domains of RS Earth observations in wetland 

areas. 

3.2.1. Classification 

Wetland cover classification arises from the monitoring and management needs to 

categorize wetland ecosystems into several types displaying different landscapes within 

wetlands. Traditional in situ surveys are too costly and slow to meet the demand for ex-

tensive and fast monitoring of wetland habitats [11]. The RS technology, in contrast, offers 

labor- and cost-effective advantages for mapping and assessing wetlands due to its intui-

tive observations of the ground in the broad coverage area, along with timely, regular, 

and rapid monitoring capabilities [53–55]. 

With the current advancement in Earth observation instruments (e.g., multi/hyper-

spectral, synthetic aperture radar (SAR), etc.), there are ever more types of airborne or 

space-borne images with different resolutions available (i.e., spatial/spectral/temporal res-

olution). This leads to significant demand for intelligent Earth observation based on RS 

imagery, enabling the smart identification and classification of wetland areas from 
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airborne and space platforms. The problem of scene classification has emerged as an active 

research area in RS data analysis and has drawn remarkable attention in recent years, as 

it is essential for effectively interpreting remotely sensed images. It attempts to label given 

scene images correctly based on their contents with predefined semantic land cover cate-

gories [56]. Currently, satellite image data for Earth observation are being made continu-

ously available to the public. Governmental programs, including the ESA’s Copernicus 

and NASA, are putting considerable effort into making such data freely available for uni-

versities and institutions, researchers, scientists, and technology experts to use in order to 

inspire innovation and entrepreneurship. 

3.2.2. Change Detection 

As one of the leading research topics in earth systems, land cover CD in terrestrial 

surfaces has profound implications for human society and ecosystems (especially in wet-

land ecosystem functioning) [57]. Due to their vulnerability and sensitivity to variations 

in the environment, wetlands have become key regions for monitoring land cover changes 

over time. Wetland ecosystems interact with the physical environment, including hydrol-

ogy, meteorology, and topography, in a variety of ways. Land cover CD in wetland sites 

provides an understanding of the patterns of the spatial distribution of wetland surface 

cover and the complexity of its spatiotemporal variations [38]. 

As the most comprehensive and longest time-series RS image available, Landsat im-

agery is one of the most suitable data sources that provide suitable spatial and spectral 

resolutions as well as free-of-charge imagery. Moreover, in many developing countries, 

the limited data resources make Landsat imagery an important data source for filling the 

knowledge gaps in investigating local small-scale wetland dynamics. 

Using satellite imagery for wetland CD involves a variety of methods, which can 

broadly be divided into two categories: (1) change enhancement approaches, including 

direct comparison, vegetation indices differentiating, spectral mixture analysis, and fuzzy 

CD, and (2) ‘from-to’ change information extraction approaches [58–60]. The former meth-

ods (e.g., image differencing) do not indicate what types of land cover have been changed; 

they only provide information on whether there has been a change or not, and in some 

cases, measure the relative magnitude of that change. By contrast, the latter methods, such 

as the post-classification comparison approaches, are the most commonly used and effec-

tive CD techniques [61]. Post-classification comparison methods use separate classifica-

tions for images acquired at different times to produce different maps from which ‘from-

to’ land-cover change trajectories can be detected [62]. In addition, ‘from-to’ quantitative 

information about the type of LULC changes can be gained from a cross-tabulated change 

matrix [63]. 

Among all wetland CD methods in our meta-analysis, the post-classification ap-

proach is the most-employed technique, with a share of n = 46 out of 49. Taking a time 

interval perspective, CD studies can be categorized into two categories: 1) long-term CD 

and 2) short-term CD. As depicted in Figure 10, short-term CD (i.e., CD studies within a 

period of (1) 1–5 years and (2) 5–10 years) has a share of 20%, and long-term CD (i.e., CD 

studies within a period of (1) 10–20 years, (2) 20–30 years, and (3) 30–40 years) has a share 

of 80% among all post-classification change analysis papers. Long-term CD provides a 

better understanding of wetland trends and sudden changes; therefore, it is helpful to 

protect and analyze the dynamics of wetlands. 
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Figure 10. Frequency of short-term and long-term CD. 

3.3. Case Study Analysis 

The worldwide distribution of study regions grouped by countries of case studies is 

shown in Table 4. As shown, most studies were conducted in study areas in China (35%), 

the USA (19%), and Canada (18%). Additionally, the literature review found the following 

study areas were studied at least four times: South Africa (n = 12), India (n = 9), Australia 

(n = 9), France (n = 6), Indonesia (n = 6), Iran (n = 5), Brazil (n = 4), Turkiye (n = 4), and 

Sweden (n = 4). 

Based on the extent of the study sites, the publications were categorized into five 

groups (see Table 4). To have consistency with [28], these divisions are considered in terms 

of the following five groups: (1) very small (less than 100 km2), (2) local (between 100 km2 

and 3000 km2), (3) regional (more than 3000 km2 and less than a provincial scale), (4) pro-

vincial, and (5) national (country-wide) scales. This investigation shows that most wetland 

RS studies call attention to very small, local, and regional scales and that very few consider 

provincial or country-wide scales. 

Table 4. Overview of study site locations grouped by countries coupled with various scales of the 

study site’s extent. Sites with four or more studies were included. 

# Study Area (Country) #Studies VS L R P N # Study Area (Country) #Studies VS L R P N 

1 

 

(120) 39 50 27 3 1 7 

 

(6) 5 1 0 0 0 

2 

 

(66) 34 21 8 2 1 8 

 

(6) 4 2 0 0 0 

3 

 

(62) 9 36 6 6 5 9 

 

(5) 1 2 2 0 0 

4 

 

(12) 5 3 4 0 0 10 

 

(4) 3 1 0 0 0 
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5 

 

(9) 3 3 3 0 0 11 
 

(4) 3 1 0 0 0 

6 

 

(9) 4 3 2 0 0 12 

 

(4) 2 1 1 0 0 

Note: very small (VS), large (L), regional (R), provincial (P), national (N). 

3.4. RS Data Used in Wetland Studies 

3.4.1. Data Type 

The use of satellite RS in environmental research studies has been widely adopted as 

a rapid scientific tool for monitoring and investigative purposes [7,21,64,65], as shown in 

Figure 11. It offers a powerful alternative over-ground survey, providing a synoptic view, 

multispectral data, multitemporal coverage, and cost-effectiveness [36,66]. With these im-

provements and advances in quality, volume, and diversity, spectral imagery is being 

used to study wetlands more effectively and with a wider variety of applications. These 

advances support increases in the quality, volume, and diversity of applications of spec-

tral imagery in the study of wetlands, in particular, accurate assessment of their status 

and measuring the pattern of the changes, as well as the success of restoration efforts. 

Meanwhile, wetland studies conducted by optical and synthetic aperture radar (SAR) im-

agery have by far the largest shares. 

 

Figure 11. Distribution of employed data types and their combinations with the largest shares for 

multispectral and hyperspectral (46%), SAR (20%), and LiDAR/DEM (10%) data types. 

A variety of applications have been proposed and studied for RS optical sensors, 

from small target evaluation to global issue resolution. In the wetland field of studies, in 

addition to providing information on vegetation cover and community type, optical sen-

sors are capable of identifying and differentiating wetlands and vegetation zones, as well 

as mapping wetlands on a large scale, among other applications [67]. Over the last two 

decades, improvement of satellite spatial resolution and reduced costs of multi- and hy-

perspectral sensors have increased the scope for applying spectral imaging to advance 

wetland study. Multispectral satellite imagery can be acquired at resolutions < 5 m, ena-

bling examination of wetland systems at much finer scales and supporting longitudinal 

analyses of change over extended periods. However, due to their inability to penetrate 

clouds and atmospheric haze or a dense vegetated canopy, optical sensors are limited to 

daytime clear-sky image acquisition [24]. Even though optical satellite imagery 
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successfully detects and monitors wetlands, the presence of cloud cover limits their use-

fulness, especially in coastal areas [14,68,69]. 

Unlike optical sensors, as an active RS system, SAR is not affected by atmospheric 

conditions, can detect sub-canopy soil and vegetation structural features, and does not 

rely on external sources of radiation (i.e., sunlight) for its operation. It has the ability to 

overcome the above limitations (unaffected by weather conditions) and can operate in all-

weather and daylight-independent conditions [36,70,71], so it is well suited for wetland 

monitoring. SAR has proven to be a preferred alternative or supplemental source to opti-

cal images for wetland mapping, especially in coastal wetlands and intertidal zones 

[69,72,73]. However, several factors affect SAR data and its components, such as the effects 

of surface moisture content and roughness and instrument viewing direction, and inci-

dence angle [74]. As a result, the collected backscattering SAR signals influenced by veg-

etation and soil properties carry information related to wetlands and soil’s geometric 

structure and dielectric properties[73]. This makes SAR data essential to distinguish cer-

tain land cover classes such as “built-up” and “bare soil”, or classes with different levels 

of moisture and inundation such as “heterogeneous wetland sites” and “intermittent wa-

ter bodies”. 

Considering the advantages of optical and SAR data, the combination of optical and 

SAR imagery can offer the greatest potential for supporting wetland mapping and moni-

toring tasks, as described in [21]. It is critical, therefore, to explore the extent to which 

optical and SAR RS data may supplement the LULC studies, particularly in wetland re-

gions. Our findings showed that multispectral and hyperspectral optical imagery and 

SAR data present the greatest portion of wetland studies. Regarding the data type usage, 

as shown in Figure 11, 247 studies employed multispectral and hyperspectral optical im-

ages, followed by SAR images (n = 116), LiDAR/DEM data (n = 65), and UAV/Aerial im-

agery (n = 39). Moreover, the integration of optical and SAR imagery includes 32 studies, 

followed by the integration of optical and LiDAR/DEM with 22 studies. 

3.4.2. Single-Source Versus Multi-Source Data 

Although individual RS data have proven successful in monitoring wetland areas, 

data fusion techniques employing multi-source satellite data sets can improve the deter-

mination of wetland hydrological, vegetation, and topographic characteristics, which are 

important indicators of wetland characteristics and offer the potential for improved wet-

land classification accuracy [21,75–77]. For example, optical images can reflect the rich 

spectral information of objects, and SAR is capable of providing valuable geophysical pa-

rameters. The combination of polarimetric and optical data to classify wetlands fully ex-

ploits the spectral and backscattering characteristics of the habitat. In addition, it reduces 

radar speckle noise and enhances the separation between wetland objects, making it a 

helpful monitoring strategy. Many experts and geoscientists have recently utilized multi-

source RS imagery to monitor wetlands with varying results [11]. Many works have at-

tempted to employ multisource imagery to monitor wetlands considering data fusion and 

feature fusion techniques to use the complementary merit of different types of RS data. 

For instance, in a newly published paper, Jafarzadeh et al. [21] established a two-stream 

DL framework based on a graph convolutional network and convolutional neural net-

work for wetland classification using Sentinel-1 and Sentinel-2 images. Based on their ab-

lation analysis, the accuracy of classification reached its highest when two kinds of data 

sets were combined. By combining LiDAR and SAR data, Millard et al. [78] observed im-

proved wetland extent mapping and classification accuracy of wetland types compared 

to individual data source analysis. The significant advancements and improvements in 

spaceborne RS in parallel with the rise of the trend toward open-source data sharing have 

led to opportunities for combining multiple data types in monitoring and fully under-

standing the unique characteristics of wetland environments. 

Using multi-source satellite images helps in understanding, modeling, and project-

ing land change effectively by providing timely and spatially distributed information. In 
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particular, moderate-resolution multispectral sensors (e.g., Landsat, SPOT, and ASTER) 

have been successfully used to study flooding and affected land cover, detect wetlands in 

heterogeneous landscapes, and monitor invasive plants. More recent studies reported 

high accuracies in obtaining wetland characteristics when fusing the datasets from Senti-

nel-1 and Sentinel-2 sensors [21,50,73,77]. This meta-analysis reveals that about 55% of 

studies benefited from multi-source or multi-sensor RS data combination, while the re-

maining utilized only a single-source or single sensor imagery (see Figure 12). 

 

Figure 12. Frequency of single- and multi-source RS data usage in wetland studies. 

3.4.3. Sensor Type 

Based on our search query in WoS, we can indicate an increase in the use of RS meth-

ods in wetland research during the last decade, which is likely a result of the greater avail-

ability of new RS data sets (e.g., Sentinel 1 and 2; Landsat 8) paired with the rapid devel-

opment of ML approaches. As shown earlier, a variety of RS data have been applied to 

evaluate wetlands, including very high-resolution (VHR) satellite imagery, Landsat, and 

synthetic aperture radar (SAR). 

The most broadly used wetland RS data source is Landsat multispectral imagery that, 

as of Landsat 8, is 30 m in spatial resolution for most spectral channels, with a repeat cycle 

of 16 days, including 11 bands, which is publicly accessible at no cost [12]. Scholars in a 

wide range of studies have achieved accurate wetland identification results through the 

incorporation of the Landsat dataset, specifically from the Landsat 8 Operational Land 

Imagery (OLI) satellite (e.g., [79,80]). The limitations of approaches using data at this spa-

tial resolution, such as the inability to exactly identify wetland locations, are in turn bal-

anced by the possibility of such data to rule out large-scale regions as not being likely to 

include wetlands. Landsat-5, which holds the Guinness World Record for the longest on-

orbit time (from 1984 to 2012), was also widely applied to historical wetland mapping 

[7,10,45,81,82]. Because they provide more spatial and structural characteristics than spec-

tral information, the high-resolution images obtained from the RapidEye, Quickbird, 

WorldView-2, and SPOT 5 satellites also have become one of the main sources for re-

sources and environmental management and application [20,83–87]. The utilization of op-

tical and SAR data for wetland studies is growing. As shown in Tables 5 and 6, various 

satellite data with different resolutions are used in different studies. Among optical sen-

sors, the Landsat Archive (including Landsat 4, 5, 7, and 8) has the greatest share by far 

(with n = 201 studies), followed by Sentinel-2 and RapidEye with a share of n = 54 and n = 

14 studies, respectively. In SAR equipped satellites, Sentinel-1 (n = 45), RADARSAT-2 (n 

= 31), and ALOS PALSAR (n = 25) are the mostly used SAR data sets. 
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Along with varieties of RS data that have been engaged in wetland studies, employ-

ing the new generation of RS data provides promise for resolving the remaining chal-

lenges in this field. Meanwhile, it is recommended to utilize the RADARSAT Constella-

tion Mission (RCM) and the upcoming NASA-ISRO SAR Mission (NISAR) in future wet-

land studies by establishing new methodologies. 

Table 5. List of the commonly used optical satellites in wetland studies ranked by the number of 

times they have been utilized in the papers. 

Satellite Life Span #Channels Range 

Image Type 
Spatial 

Resolution 

Repeat 

Cycle 

(days) 

#Studies Ref. 
Pan MSI HSI 

Landsat-8 2013-now 12 

B1–9 (0.43–1.38) 

B10–11 (10.6–

12.51) 

   15, 30, 100 m 16 74 
[7,10,42,81,8

8–91] 

Landsat-5 1984–2013 8 

B1–5 (0.45–1.75) 

B6 (10.40–12.50) 

B7 (2.08–2.35) 

   30, 120 m 16 62 
[7,10,42,45,8

1,82,92,93] 

Sentinel-2 2015-now 12 0.443–2.190    10, 20, 60 m 5 54 
[21,55,89,91,

94–99] 

Landsat-7 1999-now 8 

B1–5 (0.45–1.75) 

B6 (10.40–12.50) 

B7 (2.08–2.35) 

   15, 30, 60 m 16 50 
[7,10,42,81,1

00] 

Landsat-4 1982–2001 7 

B1–5 (0.45–1.75) 

B6 (10.40–12.50) 

B7 (2.08–2.35) 

   30, 120 m 16 15 
[10,42,101–

103] 

RapidEye 2008-now 4 0.44–0.85    5 m 1–5.5 14 [104–106] 

MODIS 
1999/2002-

now 
36 

B1–19 (0.405–

2.155) 

B 20–36 (3.66–

14.28) 

   250,500, 1000 m 1–2 12 [107–111] 

WorldView-2 2009-now 8 0.45–0.80    0.52, 2.4 m 1.1 12 [2,86,112] 

Quickbird 2001-now 5 0.45–0.9    0.61, 2.4 m 1–3.5 8 
[83–

85,113,114] 

Gaofen-1 2013-now 5 0.45–0.89    2, 8 m 4 8 [115–117] 

ASTER 1999-now 14 

B1–3B (0.52–0.86) 

B4–B9 (1.6–2.43) 

B10–B14 (8.12–

11.65) 

   15, 30, 90 m 4–16 7 [91,118,119] 

SPOT-5 2002 4 0.5–1.75    2.5, 5, 10 m 2–3 5 [83,87] 

Gaofen-5 2018-now 330 0.39–2.51    30 m 2 5 [95,120] 

Pléiade 2011 4 0.43–0.95    0.5, 2 m 26 3 [121] 

Gaofen-2 2014-now 5 0.45–0.89    0.8, 3.2 m 4 3 [5] 
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Table 6. List of the commonly used SAR satellites wetland studies, ranked by the number of times 

they have been utilized in the papers. 

Satellite Life Span Polarization 
Wavelength 

(cm)/Band 

Repeat Cycle 

(days) 
#Studies Ref. 

Sentinel-1A, 

Sentinel-1B 

2014-Present 

2016-Present 
Single/Dual 5.54/C-band 6 45 [21,82,89,96,97,115,122] 

RADARSAT-2 2007–Present Single/Dual/Quad 5.55/C-band 24 31 
[41,45,78,82,106,123,12

4] 

ALOS PALSAR 2006–2011 Quad 23.6/L-band 46 25 [110,124–129] 

TerraSAR-X 2007–Present Quad 3.11/X-band 11 9 [41,124,130] 

ENVISAT ASAR 2002–2012 Dual 5.63/C-band 35 6 [110,131] 

Gaofen-3 2016–Present Single/Dual/Quad 5.4/C-band 29 3 [69] 

Huan Jing-1C  2012–Present Single-VV 3.13/S-band 31 2 [132] 

ERS-1 1991–2000 Single-VV 5.66/C-band 35, 3, 168 2 [126] 

ERS-2 1995–2011 Single-VV 5.66/C-band 35 2 [126] 

3.4.4. Data Type Resolution 

The RS data types employed in wetland studies can be classified into three categories 

based on their spatial resolution: high-resolution (5 m), medium-resolution (5 to 30 m), 

and coarse-resolution (>30 m). Figure 13 illustrates how frequently each of these data 

types is used in review papers. Medium-resolution images hold the largest share (with 

66%) by far out of all data types. This is followed by high-resolution images, which take 

up 30% of the share, and coarse-resolution images, which take up 4%. 

 

Figure 13. Frequency of high-resolution, medium-resolution, and coarse-resolution images used in 

wetland studies. 

3.4.5. Single Date versus Multi-Date 

Multi-date and time series RS data has been widely conducted with many sensors to 

monitor the status of wetlands and detect land cover changes globally [6,7,109,133]. There 

are a number of satellite missions, both optical and SAR systems, which provide long 

time-series and ongoing multi-temporal imageries with global coverage for LULC map-

ping, wetland monitoring, and CD efforts [7,40]. Our systematic review provides insights 

into the available data types for investigating wetland covers in a multi-date manner. For 

example, of the optical sensors, Landsat archive, MODIS, and Sentinel-2, and among SAR 

missions, Sentinel-1 and RADARSAT-2 are suitable for large spatial and long time-series 

wetland studies. In some cases, such as the MODIS sensor, which provides a historical 

observation of the earth’s surface, the coarse resolution of such imagery cannot precisely 
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identify the details of the wetlands and smaller wetland sites. Looking at Figure 14, about 

two-thirds of the studies have applied multi-date RS data for wetland studies. 

 

Figure 14. Frequency of single- and multi-date RS data usage in wetland studies. 

3.5. Methodology Analysis 

3.5.1. ML Classifier Categories 

In the aftermath of its introduction, land cover mapping algorithms have been re-

fined and upgraded many times [134]. For instance, when it comes to water extraction, 

the procedure can be done considering three stages: visual interpretation, semi-automatic 

interpretation, and automatic interpretation [135]. In recent years, ML has emerged as the 

most common wetland extraction method for automatic interpretation, and supervised 

and unsupervised ML techniques for RS image classification have progressed greatly. The 

challenges and difficulty of discrimination among classes, however, continue to affect the 

accuracy of surface mapping and data extraction. Therefore, classification is still a difficult 

task due to confusion with different cover classes. 

Various classification techniques have been used to deal with land cover classifica-

tion and improve classification accuracy. At present, the use of shallow ML algorithms, 

such as support vector machine (SVM), backpropagation (BP) neural networks, decision 

tree (DT), random forest (RF), extreme gradient boosting (XGBoost), and K-Nearest 

Neighbors (KNN), have been widely applied to RS data in extracting wetland information 

and improving the accuracy of wetland classification and CD. These approaches are able 

to handle complex nonlinear relationships without taking into account the statistical as-

sumptions. However, as a diverse type of land cover, wetlands involve a variety of spatial, 

temporal, and spectral characteristics, and no single algorithm has proven to meet all the 

needs of wetland monitoring and be optimal across all use cases [76]. The shallow ML 

algorithms work well in extracting information from wetland areas; however, they require 

a lot of prior knowledge to be trained and high learning costs to migrate models. 

Since its inception, DL, a subfield of ML, is emerging as a powerful tool to address 

problems by learning from data. DL is a milestone data representation learning technol-

ogy that has taken the world by storm due to its success. As a way to automate predictive 

analytics, DL allows trainable models composed of sequence of processing layers and 

nonlinear mappings to learn representations of data with multiple levels of abstraction 

[136]. A DL network has a strong function expression ability, can learn more complex 

training samples, and has good robustness for the classification of complex features such 

as wetland landscapes in RS images [21,77,137]. CNN is a breakthrough technique in DL, 

and it is a kind of feed-forward neural network, which has good performance in image 

processing and data mining. The artificial neurons in CNN models can respond to a part 

of the surrounding units in the coverage area. By the inclusion of several building blocks, 

such as convolutional layers and pooling layers in its structure, a CNN framework is ca-

pable of better extracting medium and high-level abstractions from the original images. 

Some scholars have applied it in wetland classification studies and have reported higher 

overall accuracy values than those obtained using shallow ML [21,77,96,138]. 
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ML algorithms’ robustness and generalization capability have made them the major 

classification methods. Various ML and classification techniques have been used success-

fully and widely in wetland studies. Considering the structure of different methodologies 

employed during the last three decades, the classification algorithms were grouped into 

eight major categories in this paper: (1) ensemble learning; (2) decision tree; (3) Kernel-

based; (4) distance-based; (5) DL-based; (6) ANN; (7) instance-based; (8) Bayesian (see Fig-

ure 15a and 16). While there is an overlap between the ANN and DL categories, the former 

includes shallow, two- or three-layer networks, whereas the latter includes more complex 

and deeper networks. As illustrated in Figure 15b, the most common form of ML, deep or 

not, is supervised learning. 

 
(a) 

 
(b) 

Figure 15. (a) Frequency of ML algorithms in wetland studies with (b) percentage of supervised and 

unsupervised approaches. 

According to Figure 16, among these algorithms, CNN as a DL model, and RF as a 

ML model have drawn attention to wetland mapping. As far as the accuracy of algorithms 

is concerned, DL models are usually the best to use. However, recent studies on challeng-

ing classification tasks using multi-source and multi-temporal RS data have pointed to the 

superiority of the RF approach. RF, as a tree-based ensemble method, has shown superior 

performance among other ML techniques and has become an often-used method in wet-

land identification and mapping. RF has several advantages, such as the ability to handle 

high-dimensional data while being less affected by noise, incorporating continuous and 

categorical data, and measuring descriptive variable importance [139]. Although many 

studies indicate that RF produces higher classification accuracy than traditional tech-

niques, it is not usually the most accurate ML method (the reader is referred to [21] and 

Section 3.7. in this paper). The ensemble methods combine several base estimators’ pre-

dictions, improving a single estimator’s performance and accuracy [139]. In a recent study, 

a new ensemble-based model, called the multi-grained cascade forest (gcForest), was pro-

posed by Zhou [140]. In this approach, several base estimators are stacked to form a layer-

by-layer model. As the name implies, a multi-grained scanning technique is used to con-

struct this estimator, and a cascade forest is included to enhance the depth and diversity 
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of the traditional forest model. Shallow structure models combine spectral, structural, and 

semantic features for the classification of remotely sensed imagery [141]. However, the 

hetero-spectrum phenomenon in high-resolution RS image classification is very obvious. 

Therefore, in complex structures, such as heterogeneous wetlands, shallow structure 

models may be negatively affected by computing power and unable to learn the sample 

information adequately. 

The selection of ML algorithms in RS applications such as wetland studies is sub-

jected to several influential factors, such as sensor type and its spatial and spectral resolu-

tion, training sample size, and the complexity of the classification problem, etc. For in-

stance, the RF model could be considered to be the most efficient if useful features can be 

derived from the RS imagery and fed to it. In the case that extracted features are not ben-

eficial in classification, DL models could be the best selection as they have the ability to 

retrieve complex patterns and informative features from the satellite image data. For ex-

ample, CNN has shown performance improvements over SVM and RF [21,142]. However, 

the main problem with DL approaches is the lack of interpretability due to their hidden 

layers, “black box” nature [143]. Additionally, the efficiency of DL models strongly de-

pends on the availability of a high number of training samples, i.e., ground truth data [21]. 

Moreover, DL models require specialized knowledge, are expensive to implement com-

putationally, and require dedicated hardware to operate. 

 

Figure 16. Number of studies employed different ML models in wetland studies. 

Overall, the direct comparisons of different kinds of methodologies might not be fair 

since the experiment settings, and the hyperparameter tuning process for different ML 

and DL models are not the same (e.g., the input features used for RF and other DL meth-

ods are different). With the advent of big data and the continuous addition of satellite-

based data, we cannot rely on only one specific methodology for all RS applications. There 

is a need to develop ensemble and hybrid approaches to tackle this voluminous data com-

ing from a variety of sources. As such, giving merit to a single approach is difficult, as 

past comparison-based studies and some review papers provide readers with often con-

tradictory conclusions based on processing workload, input datasets, and the evaluated 

performance metrics, which is somewhat confusing. 
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3.5.2. Google Earth Engine (GEE) 

For the mapping and monitoring of wetlands over broad spatial scales and for long 

periods of time, long-term earth observation data archives, such as those provided by the 

optical Landsat repository (1984 onwards), are crucial resources. Mapping wetlands on a 

long-time scale along with high spatial resolution requires collecting and storing large 

datasets and often involves complicated processing and manipulation. It is infeasible or 

time-consuming to use conventional image processing software, such as ENVI and ER-

DAS; thus, an effective platform is required. For such a system to be established, strong 

computing power and high capacity of data storage is needed, and these can be limiting 

factors for many decisionmakers around the world, especially in resource-poor regions. 

With GEE, users can freely access cloud-based computing resources and parallel pro-

cessing for analysis on a global scale [7]. To provide benefits to the broader community, 

GEE offers an online integrated development environment using Earth Engine JavaScript, 

designed to ease geospatial data analysis and preparation complexities, without the need 

of heavy data downloading and data-intensive processing. It hosts petabyte-scale RS data, 

including the NASA’s Landsat and ESA’s Sentinel archives, crucially corrected to surface 

reflectance, providing a unique opportunity for developing and disseminating worldwide 

environmental monitoring systems. In addition to the data provision, GEE is equipped 

with many ML tools, such as RF Classification. Studies using GEE as an RS data provider 

with ML techniques have become more numerous since its advent in 2015. Such studies 

account for 11% of included studies (n = 40 of 344) in the current systematic review. More 

details of these publications have been presented in Figure 17 and Table 7. 

  
(a) (b) 

Figure 17. (a) Frequency of each type of wetland study using GEE. (b) Frequency of GEE-based 

wetland studies per year.+. 

Table 7. List of included papers in the meta-analysis that applied GEE in wetland studies sorted by 

publication date. 

# Ref. Application Type 
Publication 

Date 
# Ref. Application Type 

Publication 

Date 

1 [144] Change Detection May, 2016 21 [145] Classification Aug, 2020 

2 [146] Wetland Inundation Analysis Dec, 2016 22 [147] Classification Sep, 2020 

3 [148] Classification Dec, 2017 23 [7] Change Detection Nov, 2020 

4 [22] Classification Dec, 2017 24 [149] Wetland Extent Extraction Dec, 2020 

5 [150] Carbon Content and Biomass May, 2018 25 [151] Wetland Vegetation Mapping Feb, 2021 

6 [46] Classification Jan, 2019 26 [152] Classification Jun, 2021 

7 [153] Classification Apr, 2019 27 [154] Change Detection Jun, 2021 

8 [24] Classification Jun, 2019 28 [127] Classification Aug, 2021 

9 [19] Wetland Inundation Analysis Jul, 2019 29 [155] Change Detection Sep, 2021 

10 [156] Classification Oct, 2019 30 [157] Classification and Change Detection Oct, 2021 

11 [158] Change Detection Oct, 2019 31 [159] Wetland Vegetation Mapping Oct, 2021 

12 [160] Classification Jan, 2020 32 [161] Change Detection Nov, 2021 
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13 [96] Classification Jan, 2020 33 [162] Classification Nov, 2021 

14 [163] Inundation analysis and Biomass Feb, 2020 34 [134] Classification Dec, 2021 

15 [164] Classification Mar, 2020 35 [97] Wetland Extent Extraction Jan, 2022 

16 [51] Wetland vegetation mapping Apr, 2020 36 [94] Classification Jan, 2022 

17 [165] Classification Apr, 2020 37 [166] Classification Feb, 2022 

18 [99] Classification May, 2020 38 [167] Wetland Inundation Analysis May, 2022 

19 [168] Water Cover Detection May, 2020 39 [169] Classification May, 2022 

20 [170] Classification May, 2020 40 [171] Change Detection Jun, 2022 

3.6. Feature Selection and Derivation 

The features used in wetlands research from optical data are mostly spectral reflec-

tance characteristics, such as the normal difference vegetation index (NDVI), normal dif-

ference water index (NDWI), and soil-adjusted vegetation index (SAVI), etc. These feature 

indices have been widely used in monitoring and mapping wetlands [7,46,76,99]. When 

identifying wetlands, relations to neighbor objects may be useful features because of the 

spatial relationship of objects in distribution. These features aid the identification of wet-

lands and improve the accuracy of classification. For instance, texture consists of visual 

patterns or spatial patterns of pixels that may have statistical properties, structural prop-

erties, or both [172]. The texture of imagery has been extensively investigated and studied 

as a supplement to spectral data for the analysis of wetland zones, and has proven effec-

tive [172,173]. There are many ways to describe texture. The gray-level covariance co-oc-

currence matrix (GLCM) has proven effective for the identification of wetlands [174]. 

In the current meta-analysis, different feature sets employed in wetland studies are 

grouped as follows: (1) original spectral bands or backscattering coefficients; (2) spectral 

indices; (3) image texture components derived from the GLCM; (4) SAR polarimetric fea-

tures (5) geometric features; and (6) topographic variables derived from digital terrain 

models (see Figure 18 and Table 8). 

Rather than relying solely on a single feature category, the majority of wetland stud-

ies combine several features from multiple categories. Spectral indices and SAR polari-

metric decompositions, followed by textural, topographical, and geometric features, are 

frequently used to determine the contribution of each feature category. According to sev-

eral studies involving the feature selection process, the spectral and polarimetric features 

that are simple and easy to extract have been shown to be more powerful than other types 

of features in wetland studies and in discriminating class types. 

 

Figure 18. Percentage of studies that use each type of feature category. Note that as almost all studies 

have used either optical or SAR imagery features, the category of imagery features was excluded 

here.
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Table 8. Common features extracted from Optical and SAR imagery in wetland studies. 

Category Imagery Indicator/Band Ref. 

Imagery Features 
Optical 

blue band, red band, green band, the red-edge band, near-infrared, 

shortwave-infrared 
- 

SAR Backscatter Coefficient (HH, HV, VH, VV) - 

Spectral Indices 

(vegetation/water/soil indices) 

Optical Normalized Difference Vegetation Index (NDVI) [155,156,169,175–180] 

Optical Normalized Difference Water Index (NDWI) [155,156,169,175–177,180,181] 

Optical Enhanced Vegetation Index (EVI) [169,175] 

Optical Simple Ratio (SR) [169] 

Optical Modified Normalized Difference Water Index (MNDWI) [177] 

Optical Soil-Adjusted Vegetation Index (SAVI) [175,176,181] 

Optical Modified Soil-Adjusted Vegetation Index-2 (MSAVI2) [175] 

Optical Modified Normalized Difference Water Index (MNDWI) [175] 

Optical Tasseled-Cap Transformation Brightness (TCB) [175,182] 

Optical TC-Greenness (TCG) [175,182] 

Optical TC-Wetness (TCW) [175,182] 

Optical Green Chlorophyll Index (Clgreen) [177] 

Textural Metrics (GLCM) 

Optical and SAR Mean [169,176,178] 

Optical and SAR Variance [169,176] 

Optical and SAR Homogeneity [169,176–178,181,183] 

Optical and SAR Contrast [169,176,178,181,183] 

Optical and SAR Entropy [169,176,178,181,183] 

Optical and SAR Angular Second Moment [169,176,183] 

Optical and SAR Correlation [177,178,181,183] 

Optical and SAR Standard Deviation [177,178] 

Optical and SAR Dissimilarity [177,183] 

SAR Polarimetric Features 

SAR Pauli [125,184,185] 

SAR Cloude–Pottier [3,41,45,69,73,125,184,185] 

SAR Freeman–Durden [3,41,45,72,185,186] 

SAR Yamaguchi [69,125,184–186] 

SAR Neumann [69,125,185] 
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SAR Touzi [41,125,185,186] 

SAR H/A/Alpha [125,184,185] 

SAR Single-Bounce Eigenvalue Relative Difference [69,185] 

SAR Double-Bounce Eigenvalue Relative Difference [69,185] 

SAR Shannon Entropy [69,73,130,187] 

SAR The Total Power (Span) [21,69,99,160] 

SAR Ratio [21,99,130,160] 

SAR Radar Vegetation Index [69] 

Geometric/Contextual Features 

Optical and SAR Area [176,178,178] 

Optical and SAR Shape Index [176,176,183] 

Optical and SAR Border Index [176,183] 

Optical and SAR Number of Pixels [176] 

Optical and SAR Perimeter [176,183] 

Topographic Features 

LiDAR/DEM Elevation data [175] 

LiDAR/DEM SLOP [175] 

LiDAR/DEM Topographic Wetness Index [175] 

LiDAR/DEM Terrain Surface Texture [175] 
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3.7. Accuracy Assessment 

Here, the reported overall accuracies were assessed and compared to comprehen-

sively investigate the RS-based wetland studies. Figure 19a shows the histogram of the 

overall accuracies reported in wetland classification studies. Note that the papers (n = 67 

out of 344) that did not report the overall accuracy of their classification methods have not 

been counted in this chart. According to Figure 19b, about 69% of the studies have an 

overall accuracy of greater than 85%. Additionally, studies of very small-scale areas 

yielded the highest overall accuracy, followed by investigations involving local and pro-

vincial study areas. The studies on a national scale, however, were found to have the low-

est median overall accuracy. In Figure 19c, the overall accuracies based on the input data 

have been presented. Accordingly, the integration of optical and SAR datasets presents 

high classification accuracies in the case of wetland studies. Figure 19d depicts the re-

ported overall accuracies from the methodological viewpoint. As can be seen, DL, ANN, 

and ensemble learning algorithms yielded the best classification results in the reviewed 

literature. Supervised and object-based methodologies reported high median overall ac-

curacies compared to unsupervised and pixel-based techniques, respectively (see Figure 

19e,f). Finally, Figure 19g represents the median overall accuracy reported in reviewed 

papers using high, medium, and coarse spatial resolution imagery. A median overall ac-

curacy of more than 84% was achieved for all spatial resolution imagery. Studies using 

medium-resolution datasets achieved the highest median overall accuracies in wetland 

mapping, followed closely by those using high-resolution data. 

 

 
(a) (b) 
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Figure 19. (a) The histogram of the overall accuracies reported in wetland classification papers. Box-

and-whisker plots displaying the overall accuracies reported in RS-based wetland classification 

studies according to the (b) study extent, (c) utilized data type, (d) type of employed ML algorithm, 

(e) supervised or unsupervised models, (f) pixel-based or object-based methods, and (g) selected 

image resolution. 

3.8. Preprocessing and Processing Tools 

Dealing with various RS datasets requires sufficient toolboxes and software. Several 

commercial and free open-source tools exist for RS image preprocessing and processing. 

Although great advances have been reached regarding toolbox development, a public re-

lease of processing software can further facilitate and promote experimentations. Figure 

20 represents the most frequently employed tools and software for data preprocessing 

and processing in wetland studies (according to the reviewed literature). As shown, 

ArcGIS, ENVI, and Python programming packages (such as Scikit-learn, Keras, Tensor-

flow, PyTorch, Matplotlib, and Numpy) are the most popular and widely used tools for 

RS data processing when it comes to the study of wetland areas. 
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Figure 20. The main tools used for data preprocessing and processing in wetland studies. The larger 

the text, the more frequently the tool used in papers. 

4. Future Perspective 

As a part of the systematic review of the literature, this study also proposes the fol-

lowing three general suggestions for future research in order to shed light on issues iden-

tified during the review process (Figure 21). Considering the ever-increasing stresses 

upon and loss of wetland areas, implementing the following suggestions in the future 

seems both appropriate and necessary, and has a high potential to make a difference to 

practitioners and policymakers. 

 

Figure 21. General overview of key recommendations for future studies to combat the challenges of 

wetland monitoring. 

(1) Wetland sustainability policy: wetlands are at risk, and those around agricultural 

land or near urban areas have suffered huge losses with extended cultivation and 

urbanization. This indicates that upgrades and reinforcements of existing legislation, 
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policies, programs, and strategic ecosystem plans are seriously required to protect 

and preserve wetlands habitat. Land use decisions are mostly influenced by agricul-

tural policies and urban planners. On the one hand, agricultural policies try to act as 

an economic stimulus (economic gain trumps) for crop production and cultivation 

expansion, which constitutes an encroachment on wetland areas. On the other hand, 

with the expansion of urbanization around wetlands, many people now live in and 

around wetlands and rely on their resources for their livelihoods. Moreover, wet-

lands near urban centers are under increasing developmental pressure for residential 

purposes. Accordingly, educating the community about the importance and benefits 

of wetlands and encouraging volunteer monitoring programs are perhaps the best 

ways to protect them. Indeed, developing community advocacy that is persistent, 

watchful, and active to empower communities to be more active stewards of wet-

lands would be wise to preserve wetlands. Doing so could minimize the adverse/neg-

ative effects of agricultural activities and urban expansion on neighboring and adja-

cent wetlands. As a consequence, decisions by local communities are critical to the 

successful sustainable management of wetlands. 

(2) The use of state-of-the-art DL models combined with GEE has the potential to make 

substantial progress toward wetland status monitoring, which has remained undoc-

umented in the literature. Utilizing such a system would allow a large area of wet-

lands, whether globally or nationally, to be studied for automatic and efficient mon-

itoring, thereby minimizing human involvement in data processing and enhancing 

the accuracy of monitoring results. Therefore, intelligent monitoring and assessment 

of wetland status are essential for wetland management and strategy formulation. 

(3) Based on Figure 19c, SAR images show high potential for wetland monitoring. The 

recent deployment of SAR systems in RS, such as in the RADARSAT Constellation 

Mission (RCM), has resulted in a number of new applications [188]. This mission is a 

continuation of RADARSAT-1 and RADARSAT-2 and is conducted by the Canadian 

Space Agency (CSA) under the RADARSAT project. It offers a variety of imaging 

modes from 100 m low resolution to high 3 m resolution [188,189]. As noted before, 

the primary advantage of SAR is that it provides repeatable data acquisition while 

being relatively unaffected by atmospheric effects, making it a reliable data acquisi-

tion technology. In the ongoing efforts to inventory wetlands and monitor their 

changes, RCM is expected to provide an essential source of C-band SAR data. Alt-

hough the RCM is a Canadian commercial mission, given the high number of papers 

affiliated with Canadian researchers, it is somewhat strange that the RCM compact 

polarimetry data have not yet attracted the interest of wetland researchers. This is 

partly due to the lack of a suitable standard coverage, but one has been added by the 

CSA to improve the availability of suitable data. This study highly recommends the 

employment of promising new technologies and data for future wetland inventory 

and monitoring, including the upcoming NISAR mission. 

5. Conclusions 

In this study, the trend of worldwide RS-based wetland monitoring studies was es-

tablished, exploring 344 papers published in the last three decades. Over fifteen sub-fields 

were summarized and highlighted, including ML approaches and their accuracies in wet-

land studies, RS data types and their corresponding accuracies, journals/conferences/pub-

lishers, authors affiliations, publications per year, the geographical distribution of case 

studies and the corresponding study extent, and paper citations. Through this, a compre-

hensive meta-analysis was used to discuss the utilization of RS and ML tools in these sub-

fields. Consequently, this paper addresses the role of RS and ML tools in supporting 

global wetland monitoring. Research opportunities and directions for further supporting 

wetlands studies were also presented in the paper. In summary, the general findings of 

this review paper concerning both technological and substantive viewpoints are as fol-

lows: 
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• A total of 88 journals have published the papers summarized in the present meta-

analysis (with a share of 89%). The papers from the IGARSS conference, as well as a 

few from other international conference proceedings, were also included. About 67% 

of these publications were published between 2018 and 2022. 

• More than half (51%) of the reviewed publications investigated wetlands from the 

perspective of classifying wetland zones, while 14% analyzed the changes within the 

wetlands. Wetland vegetation mapping and wetland extent recognition are in third 

and fourth places, with a share of 12% and 7% among all reviewed papers. 

• Over 70% of the research studies have been conducted in China, the USA, and Can-

ada, illustrating the need for wider international efforts to be undertaken in other 

countries in order to have consistent monitoring of wetlands across the globe. Over 

the past few years, the number of wetland studies has increased. In light of the in-

crease in quality RS data availability, the launch of new RS platforms, as well as in-

creased computing capabilities, and the growing interest in wetlands as part of cli-

mate change research, it is likely that this trend will continue. 

• Slightly more than three-quarters of the studies have been conducted at areas with 

very small and local scales, whereas a few national-scale research papers have been 

published. More large-scale (e.g., continental-scale) studies are likely to be conducted 

as the number of satellites continues to increase and data become more widely avail-

able. The very recent ability of GEE to apply DL models has also opened up new 

possibilities for large-scale wetland classification research. 

• The largest number of studies have been conducted on optical sensors using the 

Landsat archive (with 201 studies) and Sentinel-2 (with 54 studies), while SAR-based 

studies mostly employed data from Sentinel-1 (with 45 studies) and RADARSAT-2 

(with 31 studies) missions. This is likely partially due to the relatively long history of 

these datasets and low/no cost availability. 

• Reviewed studies indicated that optical images had most often been used in the wet-

land monitoring tasks with 247 studies, followed by SAR datasets with 116 studies. 

A fusion of data types, including optical and SAR data, increases overall accuracy 

compared to each data type separately. 

• A review of the published literature from the methodological viewpoint found that 

152 studies adopted ensemble learning methods, 70 employed DT-based methods, 

and 68 utilized kernel-based methods. Further, among different classification ap-

proaches, CNN as a DL model, as well as RF as a ML model are the most successful 

classifiers for wetland mapping. 

• As expected, spatial resolution was highly correlated with the overall accuracy of the 

wetland classification. This shows that wetland mapping may be improved by 

high/medium resolution RS imagery, at least until some minimum resolution thresh-

old is reached. 

• In comparison to pixel-based and unsupervised methods, object-based and super-

vised methods were mostly preferred for mapping and delineating wetlands owing 

to their simplicity and higher accuracy. On a national or continental scale, however, 

employing object-based analysis can be challenging. 
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Abbreviations 

RS Remote sensing 

ML Machine learning 

DL Deep learning 

CNN Convolutional neural network 

CD Change detection 

RF Random forest 

DT Decision tree 

SVM Support vector machine 

GEE Google Earth Engine 

CSA Canadian Space Agency 

RCM RADARSAT Constellation Mission 

LULC Land use and land cover 
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