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Abstract: In recent years, radar emitter signal identification has been greatly developed via the
utilization of deep learning and has achieved significant improvements in identification accuracy.
However, with the continuous emergence of complex regime radars and the increasing complexity
of the electromagnetic environment, some new kinds of radar emitter signals collected are not in
sufficient quantities to satisfy the demand of deep learning. As a result, in this paper, we adopted the
prototypical network (PN) belonging to metric-based meta-learning to realize few-shot radar emitter
signal recognition with the aim of meeting the needs of modern electronic warfare. Additionally,
considering the problems that may arise in the field of few-shot radar emitter signal recognition,
such as discriminative location bias caused by a small number of base classes or the large difference
between base classes and novel classes, we proposed an attention-balanced strategy to improve meta-
learning. Specifically, each channel in the feature map is forced to make the same contribution in the
distinguishment of different classes. In addition, for PN, taking into account that the feature vectors
of each support sample in the class are different, we set a network to exploit the relation between
each support sample in the same classes, and weighted each feature vector of the support samples
according to the relation. Large quantities of experiments indicate that our algorithm possesses more
advantages than other algorithms.

Keywords: radar emitter signal classification; few-shot recognition; meta-learning

1. Introduction

Radar emitter signal recognition plays an important role in electronic intelligence
systems and electronic support measure systems. It is mainly achieved with deep learning
at present and achieves great performance. For instance, L. Yang proposed an improved
multi-channel one-dimensional (1D) convolutional neural network (CNN) in [1] which
effectively solved the problems of fusion feature extraction, unbalance, and insufficient
fusion, realizing a higher recognition rate of radar emitter signals. In [2], Y. Pu utilized the
two-dimensional time–frequency diagram of the main ridge polar coordinate domain of the
ambiguity function as the input of a convolution neural network to realize the recognition
of different radar signals and achieved a good recognition effect under a low signal–noise
ratio (SNR). A method based on a deep residual shrinkage network (DRSN) is proposed by
Zhang in [3], which greatly improved the ability to learn features from noisy signals. Within
the increasingly complex electromagnetic environment, it appears that high-quality signals
of some new classes can be hard to collect in large quantities where deep learning cannot
be directly applied, pushing few-shot recognition to begin to draw researchers’ attention
in the field of radar emitter signal recognition. In this background, with the capability of
learning to learn and strong generalization performance, meta-learning becomes the key to
achieving few-shot radar emitter signal recognition.

Meta-learning is a potent method to realize few-shot recognition by enabling networks
to obtain an ability that we call learning to learn—in other words, strong generalized
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networks. As a method closer to artificial intelligence, it shows a perfect performance in
the few-shot situation and has been widely considered in various fields, especially in the
field of figure recognition. Meta-learning can be roughly divided into two main categories:
metric-based meta-learning [4–12] and optimization-based meta-learning [13–16]. The
former focuses on exploiting a generalized feature extractor that can be applied to different
classification tasks and a good metric method to measure the relation between feature
vectors of different samples. The recent Bidirectional Matching Prototypical Network
(BMPN) [8] proposed by W. Fu contains an additional matching process to generate more
accurate prototypes with the help of query samples, which provides a novel direction for
calculating prototypes. As for the other category of meta-learning, Model Agonist Meta-
Learning (MAML) [13] is one of the representative achievements of optimization-based
methods, and focuses on good initialization parameters of networks. Furthermore, Z. Hu
proposed a generic meta-learning algorithm in reference [14] which divided the learning
process into skill cloning and skill transfer: two independent stages with a noise mechanism
in which way the phenomenon of overfitting can be alleviated.

Recently, meta-learning has gradually been applied to radar-related fields [17–24].
For instance, Y. Wang proposed a novel method based on deep metric ensemble learning
in [22] and C. Xie presented a method for few-shot unsupervised specific emitter iden-
tification based on a density peak clustering algorithm and meta-learning; both achieve
great accuracy. As a classical metric-based meta-learning method, PN has also achieved
encouraging success in few-shot learning. However, when applying the method to few-shot
radar emitter signal recognition, there are still some problems that need to be improved.
First, the discriminative location bias problem may appear more often in radar emitter
signal recognition compared with image recognition. As a consequence, the number of
radar emitter signal classes is usually not as many as figure classes, e.g., the 100 types
of classes in the field of image recognition, leading to the problem where generalization
networks are not strong enough to apply to the recognition of novel classes. Second, the
quality of the radar emitter signals we received varies due to the external environment or
interference, which means that the importance of each support sample to the class should
be different rather than calculating prototypes by the average operation, which may lead to
wrong results.

As a consequence, we proposed the attention-balanced prototypical network (ABPN).
Figure 1 shows the overview of our network. Specifically, for the first problem, we design
an attention-balanced loss composed of a distance standard deviation loss and a distance
average loss. It works by minimizing the distance standard deviation to push every position
in the channel of the feature map to make the same contribution to the distinguishment
of different classes and by maximizing the distance average to guarantee that the feature
vectors of different classes are distinctive. As described in Figure 1, in this way, we hope
that each location of the feature maps is given a corresponding concentration to avoid
overlooking some areas. Reference [11] also provided a method called the local-agnostic
training (LAT) strategy which focuses on the discriminative location bias; however, it is
worth noting that [11] primarily utilized the local level classification, while we generate a
loss function that mainly focuses on the distance standard deviation and distance average
between two feature maps of different classes. In other words, we pay more attention to
adjusting the contribution of each channel in feature maps through the result, which will
be described in detail in Section 3. For the second problem, we set a network to exploit
the relation between each support sample in the same classes and weighted their feature
vectors according to the relation. Extensive experiments prove that our method achieved
better performance than other approaches.
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Figure 1. Overview of Framework. 

This paper is organized as follows: Section 2 introduces the task settings in meta-
learning. Section 3 describes our method including attention-balanced loss and weighted 
prototypes in detail. Section 4 presents our experiments and results. Section 5 is a discus-
sion of the experiments. Section 6 provides a conclusion for this article. 
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lem is achieved by inputting the signals of the test set into the well-trained model directly. 
In order to examine the effect of models in experiments, we generated a test set that con-
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K samples for each class with available labels, and the query set contains M samples for 
each class. The objective of few-shot learning is to utilize multiple episodes to allow the 
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This paper is organized as follows: Section 2 introduces the task settings in meta-
learning. Section 3 describes our method including attention-balanced loss and weighted
prototypes in detail. Section 4 presents our experiments and results. Section 5 is a discussion
of the experiments. Section 6 provides a conclusion for this article.

2. Preliminaries

This section introduces the task-based episodic training process of few-shot radar
emitter signal recognition. Here, we divided the radar emitter signals owned into three
datasets {Dtrain, Dval , Dtest}, which contain categories {Ctrain, Cval , Ctest}, respectively. The
training and validation sets include classes with many radar emitter signals to simulate
the source data. During the training and validation stage, a large number of tasks that are
regarded as few-shot problems are randomly sampled in each epoch to train and validate
the model’s generalization. The test set contains the actual few-shot radar emitter signals
we want to identify, so in a real-world application, the few-shot recognition problem is
achieved by inputting the signals of the test set into the well-trained model directly. In
order to examine the effect of models in experiments, we generated a test set that consists of
classes with numbers of radar emitter signals and evaluated the performance by the average
of a certain number of tasks sampled in the test set. Notice that there is no intersection
between the categories of the three datasets. Additionally, each episode is composed of a
support set which represents the reference signals and a query set which represents the
signals to be recognized. Specifically, a support set and a query set are sampled randomly
from dataset D with the same N classes, where the support set contains K samples for
each class with available labels, and the query set contains M samples for each class. The
objective of few-shot learning is to utilize multiple episodes to allow the networks to
possess metaknowledge which can generalize well on Dtest. In this work, we set N = 3 and
M = 5.

The prototype concept of PN is shown in Figure 2. The network evaluates the Eu-
clidean distance between the feature vectors of each query sample and each prototype cn
which is calculated from feature vectors of support samples in the same class as follows:

cn =
1
K ∑

(xi ,yi)∈Sn

Flatten( fθ(xi)) (1)
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where cn is the prototype of class n, (xi, yi) ∈ Sn means the samples belong to class n in
this support set and yi is the label of the radar sample xi, fθ(xi) represents the feature map
of xi, and fθ(·) is the feature extractor network composed of four 1D CNN blocks.

dnq =
∥∥Flatten( fθ(xq))− cn

∥∥
2 (2)

where dnq is the Euclidean distance between cn, the prototype of class n, and the feature
vector fθ(xq) of the query sample xq.

After calculating the distance, the probability distribution of the query signal xj is
predicted by the softmax function as follows (Lossc is the loss of PN):

pθ(y = n|xj) =
exp(−dnj)

∑
n′

exp(−dn′ j)
(3)

Lossc = − log pθ(y = k
∣∣xj) (4)
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3. Method

In this section, we describe our method with attention-balanced strategy and weighted
prototype in order. As shown in Figure 1, the final loss function is composed of the original
category loss—which is calculated by the distance between feature vectors of prototypes
and query samples—and our attention-balanced loss, which is calculated by the distances
between support feature maps from different classes. Furter, we weighted the support
feature vectors in the same classes when K > 1 to reduce the deviation of prototypes.

The feature extractor is the same as the original PN with 1D CNN except the pool size is
4. Specifically, it contains four convolutional blocks and a flatten layer. Each convolutional
block is composed of a 1D convolutional layer whose settings are 64 filters and kernel size
3, a batch normalization layer, a relu activation layer, and a 1D maxpool layer with pool
size 4.

The relation net contains two convolutional blocks and two fully connected layers
with units [1,16]. The composition of convolutional blocks is the same as above and the
active function of each fully connected layer is relu and sigmoid, respectively. The input of
the relation net is the feature vectors of two samples concatenated in depth and the output
is a value with the meaning of the relationship.

3.1. Attention-Balanced Strategy

Meta-learning aims to apply generalized networks trained with the recognition of
based classes to novel classes. In the field of radar emitter signal recognition, it may be
difficult for the base classes to achieve comprehensive coverage to guarantee the general-
ization of the model obtained in the training stage as we mentioned in Section 1. This issue
contributes to the result that the networks’ discriminate location learned in the training
stage cannot be perfectly adaptive to the novel classes, even missing the critical location,
which is important to novel class recognition. This affects the prediction and the subsequent
analysis of the radar emitter systems.

To avoid this problem, we designed an attention-balanced loss composed of a distance
standard deviation loss and a distance average loss, whose purpose is to balance networks’
attention in the training stage. It works by minimizing the distance standard deviation to
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push every position in the channel of the feature map to make the same contribution to the
distinguishment of different classes and by maximizing the distance average to guarantee
that the feature vectors of different classes are distinctive. In this way, the networks are
supposed to pay attention not only to the location important to the base classes but also to
other locations which may be critical to novel classes. The detailed calculation is as follows:

dij =
∥∥ fθ(xi)− fθ(xj)

∥∥
2, dij ∈ RL×C (5)

meanLoss = mean(
M

∑
xj∈Qn

K,N

∑
xi∈Sq ,q 6=n

dij, axis = 0), meanLoss ∈ RC (6)

stdLoss = std(
M

∑
xj∈Qn

K,N

∑
xi∈Sq ,q 6=n

dij, axis = 0), stdLoss ∈ RC (7)

Lossab = log(stdLoss/N + 1) + e−meanLoss/N (8)

where dij is the distance between the feature map of sample xi and sample xj, xj ∈ Qn
means the samples belong to class n in this query set, xi ∈ Sq means the samples belong
to class q in this support set except class n, M is the number of samples in each class in a
query set, and Lossab is our attention-balanced loss.

The final loss, which is described as follows, is composed of the original class loss and
our attention-balanced loss. We set α as 1 and β as 0.5.

Loss = αLossc + βLossab (9)

3.2. Weighted Prototype

In [5], Snell defined a class’s prototype as the mean of its support feature vectors.
However, in the few-shot recognition problem, the number of samples given in each class
may be only 5 or even smaller. Under such a condition, one extreme sample can easily create
a bias on the prototype. Additionally, the quality of the radar emitter signals we received
varies due to the external environment or interference, which means the importance of each
support sample to the class should also be different. As shown in Figure 3, it can be seen
from (a) that the query sample belonging to class 2 will be mistakenly considered as one of
class 3; as a result of this, it is closer to c3 than c2 with the average prototype calculation.
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As a consequence, it is necessary to discriminate each sample’s importance of the
same class to each weighted sample, as in Figure 3b. To achieve this aim, we constructed a
relation net to calculate the relation between each support sample in the same class, that
is, we wanted the net to explore a way for measuring the closeness of the relationship
between two support samples in the same class. The input of the relation net is two support
samples’ feature vectors concatenated in the depth dimension. If two support samples
are closely related, it indicates that the similarity between the two samples is high. The
closer the relationship a support sample has with any other support sample in the same
class, the more important the sample is to the construction of the prototype. As a result, we
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utilized the importance of each support sample to calculate its weight value. The detailed
calculation is shown as follows:

rij = fφ(Flatten( fθ(xi)), Flatten( fθ(xj))) (10)

qi =
1

K− 1

K

∑
j 6=i

rij (11)

wi =
eqi

K
∑
k

eqk

(12)

where rij is the relation between the feature vector of sample xi and the feature vector
of sample xj, xi and xj are support samples belonging to the same class, fθ is the feature
extractor and fφ is the relation net, qi is the average of the relation between xi and other
support samples in the same class, which represents the importance of sample xi, and wi is
the weight value of sample xi.

To summarize, the pseudocode to the processing flow of ABPB is provided in Algorithm 1.

Algorithm 1: Episode-based training for ABPN

Input: the training set
Initialization: Randomly initialize model parameters θ, ϕ, and learning rate α

For i = 1: episode number
Vn Randomly sample N classes from the training dataset
S = {(xk, yk)}K

k=1 Randomly extract K samples from each of the N classes
Q = {(xm, ym)}M

m=1 Randomly extract J samples from Vn/S
While Loss > ε

Calculate weighted prototypes by Equations (10)–(12)
Classify signals in Q to the nearest prototypes by the distance calculated in Equation (2)
Calculate Loss by Equation (9)
Update θ, ϕ← θ, ϕ− α∇θ,ϕLoss

End while
Output: Model parameters θ, ϕ

4. Experiments

In this section, we validate our few-shot radar emitter recognition algorithm. As we
described in Section 2, first, a radar emitter signal dataset is generated and divided into a
training set, a validation set, and a test set. Then, our networks presented in the previous
section are trained with the utilization of the training set and validation set to obtain the
generalization. Finally, the performance of the well-trained network is evaluated on the test
set to examine the performance of few-shot radar emitter signal recognition. The results
indicate that our algorithm possesses more advantages than other algorithms.

4.1. Dataset

Fourteen types of radar emitter signals commonly used in radar systems [25,26] are
chosen in our experiments, including continuous wave (CW), linear frequency modulation
(LFM) signals, nonlinear frequency modulation (NLFM) signals, multiple linear frequency
modulation (MLFM) signals, double linear frequency modulation (DLFM) signals, even
quadratic frequency modulation (EQFM) signals, binary phase-shift keying (BPSK) signals,
binary frequency shift keying (BFSK) signals, quadrature phase-shift keying (QPSK) signals,
quadrature frequency shift keying (QFSK) signals, and mixed modulations BPSK–LFM,
BFSK–BPSK, BFSK–QPSK, and QFSK-BPSK. The specific parameters of the signals are
shown in Table 1.
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Table 1. Specific parameters of the 14 radar emitter signals.

Signal Type Carrier Frequency Parameter

Emitter 1 CW 200~250 MHz None

Emitter 2 LFM 200~250 MHz Frequency bandwidth: 30–32 MHz

Emitter 3 NLFM 200~250 MHz The frequency of the modulation signal
ranges from 10 to 11 MHz

Emitter 4 MLFM 100~120 MHz
140~160 MHz Frequency bandwidth: 30–32 MHz

Emitter 5 DLFM 200~250 MHz Frequency bandwidth: 30–32 MHz

Emitter 6 EQFM 200~250 MHz Frequency bandwidth: 30–32 MHz

Emitter 7 BPSK 200~250 MHz 13-bit Barker code

Emitter 8 BFSK 100~120 MHz
140~160 MHz 13-bit Barker code

Emitter 9 QPSK 200~250 MHz 16-bit Frank code

Emitter 10 QFSK

100~120 MHz
140~160 MHz
180~200 MHz
220~240 MHz

16-bit Frank code

Emitter 11 BPSK–LFM 200~250 MHz Frequency bandwidth: 30–32 MHz
13-bit Barker code

Emitter 12 BFSK–BPSK 100~120 MHz
140~160 MHz 13-bit Barker code

Emitter 13 BFSK–QPSK 100~120 MHz
140~160 MHz 16-bit Frank code

Emitter 14 QFSK–BPSK

100~120 MHz
140~160 MHz
180~200 MHz
220~240 MHz

16-bit Frank code
13-bit Barker code

Note 1: The pulse width for each signal ranges from 1 to 2 us; Note 2: The sampling frequency is 1 GHz.

Due to the fact that the frequency characteristics of radar signals are obvious enough
to distinguish most types of radar signals and are superior to the time–frequency spectrum
in terms of time consumption, we conducted experiments with the frequency signals. The
production of the dataset is described as follows:

(1) First, we generate 14 types of radar emitter signals with 200 samples under each
signal–noise ratio (SNR) value, which ranges from 0 dB to 9 dB with a step of 1 dB;

(2) Second, we perform 2000 points fast of Fourier transform (FFT), processing the signal
generated by (1). Furthermore, z-score normalization is adopted to further process
the data to facilitate network optimization and reduce training time;

(3) Third, we divide the generated dataset into three parts, including a training set, a
validation set, and a test set. With the consideration of one-time occasionality in
dataset division, three experiments are conducted to ensure the effectiveness of the
test. Different divisions of the dataset are shown in Table 2.
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Table 2. Different classifications of experiments.

Dataset 1 Dataset 2 Dataset 3

Training set
(5 types) CW, LFM, NLFM, MLFM, EQFM CW, BPSK, BFSK, QPSK,

BFSK–QPSK
BPSK, QPSK, QFSK,

BFSK–BPSK, QFSK–BPSK

Validation set
(4 types) BPSK, BFSK, QPSK, QFSK NLFM, MLFM, BPSK–LFM,

QFSK–BPSK
LFM, DLFM, EQFM,

BFSK–QPSK

Test set
(5 types)

DLFM, BPSK–LFM, BFSK–BPSK,
BFSK–QPSK, QFSK–BPSK

LFM, EQFM, DLFM, QFSK,
BFSK–BPSK

CW, NLFM, MLFM, BFSK,
BPSK–LFM

4.2. Results

In this section, we simulated the application of MAML on radar emitter signal recog-
nition [17] and three classical metric-based meta-learning methods including a matching
network (MN) [4], PN [5], and a relation network (RN) [6] as comparison methods. The
settings of [4–6] are the same as those in the references except for the CNN we used, which
is 1D, and the setting of [17] is identical to what is described in [17]. Additionally, three sets
of experiments are conducted with the datasets described in Section 4.1, and each set carries
out 3-way 5-shot and 3-way 1-shot experiments with five query samples per class. Our
model is described in Section 3 and the pool size is 4 under the consideration of the length
of radar emitter signals being larger and maxpool layers with large size can accelerate the
training process.

In the training stage, the optimizer used is an adaptive moment estimation (ADAM)
with a 0.0005 learning rate and the epoch is set as 100. We choose the well-trained model
with the criterion of the highest validation accuracy to test the effectiveness of the method
and regard the average of 20,000 tasks randomly sampled in the test set as the final test
accuracy. All experiments are implemented using the TensorFlow framework on NVIDIA
GPU RTX 3090 and i9-10980XE@3.00GHz processors. Table 3 shows the results of three sets
of experiments on few-shot identification.

Table 3. Classification accuracies on few-shot recognition with different methods.

Model 3-Way 1-Shot 3-Way 5-Shot

Experiment 1

MAML [17] 81.045% 92.233%
MN [4] 81.331% 81.842%
RN [6] 89.885% 92.652%
PN [5] 88.826% 94.232%
OURS 90.423% 94.053%

Experiment 2

MAML [17] 78.769% 92.581%
MN [4] 79.876% 79.825%
RN [6] 85.020% 87.111%
PN [5] 90.724% 95.727%
OURS 94.296% 96.230%

Experiment 3

MAML [17] 91.238% 97.528%
MN [4] 87.835% 88.005%
RN [6] 87.146% 85.682%
PN [5] 99.397% 99.919%
OURS 99.675% 99.923%

Note: The datasets used in Experiment 1, Experiment 2, and Experiment 3 are Dataset 1, Dataset 2, and Dataset 3,
respectively.

It is shown that with the application of an attention-balanced strategy and weighted
prototypes, our method obtains the best performance for few-shot recognition of radar
emitter signal identification in all experiments, regardless of whether the experiment per-
tained the 3-way 1-shot case or the 3-way 5-shot case. Furthermore, it can be noticed that
the performances of our method are significantly superior to PN, the basis of which we
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improved on, especially for the 3-way 1-shot case, and we received an average accuracy of
94.296% of ABPN in Experiment 2, which is nearly 4 percentage points higher than that of
PN. This mainly gives credit to the utilization of an attention-balanced strategy because
the operation of the weighted prototype is not performed in a 1-shot case. Considering the
reason the model achieves an apparent increase in the 1-shot case, which only utilizes the
attention-balanced strategy, compared with the 5-shot case, which utilizes both improve-
ments, we think it is because the model’s overfitting to base classes plays an important
effect on its performance in the application of PN for few-shot radar emitter recognition and
prototype bias affect little. Furthermore, due to the few samples having an adverse effect
on the construction of detailed descriptions for the classification task and the learning of
generalization, the 1-shot case may suffer a greater influence of the base classes’ overfitting
than the 5-shot case.

5. Discussion

In this section, we have conducted ablation experiments to show the optimization
enhancements of each proposed improvement to the model and fully illustrate the feasibility
of the algorithms. In addition, specific discussions are carried out to further demonstrate
the superiority of our modifications.

We compare PN combined with each of our proposed improvements and PN to see the
contribution each improvement makes to the increase in recognition accuracy. Furthermore,
PN with the LAT strategy [11] is also conducted as a comparison algorithm to verify the
performance of our attention-balanced strategy. Experiment parameters and the model
structure are identical, and the size of maxpool layers is 4. Table 4 shows the results of the
independent few-shot validation experiments for each innovation point.

Table 4. Ablation studies of improved and optimized on few-shot recognition.

Model 3-Way 1-Shot 3-Way 5-Shot

Experiment 1

PN [5] 88.245% 92.637%
LAT [11] 90.076% 93.738%

Attention-balanced 91.013% 94.186%
Weighted prototypes ——– 92.806%

Experiment 2

PN [5] 93.448% 96.909%
LAT [11] 92.122% 97.783%

Attention-balanced 94.877% 97.858%
Weighted prototypes ——– 96.725%

Experiment 3

PN [5] 99.724% 99.972%
LAT [11] 99.847% 99.830%

Attention-balanced 99.750% 99.949%
Weighted prototypes ——– 99.975%

As shown in the table, the proposed algorithms all achieve better performance in the
experiments. Specifically, the attention-balanced strategy improves recognition accuracies
by 0.026–2.768% and the weighted prototype contributes a 0.003–0.229% increase. It is
obvious that the attention-balanced strategy effectively improves the model’s performance.
As a result, the strategy enhances the model’s generalization so that the model is friendly
to novel class recognition rather than only concentrating on recognition that benefits base
classes only. As for the weighted prototype, it also realizes a partial boost in experiments,
while it is not as apparent as the attention-balanced strategy dose. We consider it possibly
due to the following reasons: the influence of the prototype bias problem is relatively
small compared with the generalization problem, and the samples we generated evade
extreme signals to a certain extent. In addition, it can be seen that our attention-balanced
strategy achieves 0.119–2.174% higher improvement than the LAT strategy [8]. As a result,
our loss function mainly focuses on adjusting the contribution of each channel in feature
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maps by reducing the distance deviation through the result rather than just improving the
recognition accuracy of feature descriptors such as LAT.

Furthermore, to clearly demonstrate the function of weighted prototypes, figures of
average prototypes and weighted prototypes are given in Figure 4. It is illustrated that
weighted prototypes are much closer to the area where samples are clustered and suffer
less from the extreme samples.
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6. Conclusions

In this paper, we proposed an ABPN for few-shot radar emitter signal recognition.
Aiming at the discriminative location bias problem, we presented an attention-balanced
strategy to enhance the model’s generalization. Aiming at the prototype bias problem, we
introduced a relation net and a method of weighted prototype calculation to guarantee the
prototypes’ rationality. The comparison results with other metric-based methods and the
application of MAML on radar emitter signal recognition show the superior performance
of ABPN. Further experiments and relevant discussion clearly illustrate the contribution of
each of our improvements and prove the effectiveness. We also realize the shortcomings
of our method in that there is no improvement on the feature extractor, which is too
simple to limit the model’s ability. In future work, we hope to construct a well-performing
multi-scale feature extractor to obtain more information on inputs, thereby increasing the
recognition rates.
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