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Abstract: It is difficult to determine the accurate pose of non-cooperative space targets in on-orbit
servicing (OOS). The visual camera is easily affected by the extreme light environment in space, and
the scanning lidar will have motion distortion when the target moves at high speed. Therefore, we
proposed a non-cooperative target pose-estimation system combining a registration and a mapping
algorithm using a TOF camera. We first introduce the projection model of the TOF camera and
proposed a new calibration method. Then, we introduce the three modules of the proposed method:
the TOF data preprocessing module, the registration module and the model mapping module. We
assembled the experimental platform to conduct semi-physical experiments; the results showed that
the proposed method has the smallest translation error 8 mm and Euler angle error 1◦ compared
with other classical methods. The total time consumption is about 100 ms, and the pose tracking
frequency can reach 10 Hz. We can conclude that the proposed pose-estimation scheme can achieve
the high-precision pose estimation of non-cooperative targets and meet the requirements necessary
for aerospace applications.

Keywords: non-cooperative target; pose estimation; salient points; global model; cumulative error

1. Introduction

In recent years, active debris removal (ADR) [1,2] and on-orbit servicing (OOS) [3–6]
(lifetime extension [7] and faulty satellite repairs [8]) trials have been carried out many
times. The targets in these tasks include many non-cooperative [9] aims, such as space
debris [10] and dysfunctional satellites; however, the pose information of the targets cannot
be provided because there are no cooperative marks [11]. Therefore, the pose estimation of
non-cooperative targets plays an increasingly important role in these missions.

In order to obtain the pose when approaching a target, various electro-optical sensors,
such as visual cameras [12], infrared cameras [13], LiDAR [14,15] and time-of-flight (TOF)
cameras [16,17] are options. In space, sunlight changes greatly and target surfaces are
always covered with special material without texture; thus, visual cameras cannot work
well in these conditions, but active sensors [18] are robust in these conditions. Compared
with LiDAR, TOF cameras have attracted widespread attention due to the advantages of
compact structure and low power consumption [19] in the field of the pose estimation of
non-cooperative targets. Moreover, the area array detectors of TOF cameras provide the
range image [20] and 3D point cloud of the target surface in one frame without motion-
induced distortion instead of scanning. Taking into account the above factors, a TOF camera
was used to estimate the pose of the target in this study.

Pose estimation using 3D point cloud data obtained with a TOF camera mainly in-
cludes two steps: pose initialization and pose tracking. Pose initialization is generally
performed by matching with a known target model, but in practical applications, the model
point cloud of the target cannot be obtained in advance, and a simplified model of the
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target may need to be reconstructed online. Opromolla et al., designed a 3D template
matching method [21], and proposed the model-based pose-estimation method [22]. Pose
tracking follows the continuous pose of the target, and includes the 3D point cloud feature
matching method, 3D point cloud direct registration method, and deep neural network
automatic coding method. For feature matching method, Martinez et al. [23] proposed
a pose-estimation method based on TOF cameras, using some typical components (e.g.,
cylinders and planar structures) on the target to sense the evolution of the target’s pose
between frames. However, the verification experiment uses simulation data, which cannot
simulate the noise generated by detecting real targets. Sun et al. [24] proposed a method
based on feature information fusion and they locate satellites by detecting elliptical con-
tours. However, the time consumption and detection accuracy of ellipse detection are
unsatisfactory. Zhang et al. [25] realized that the star-arrow docking ring is a ubiquitous
structure on space vehicles and converted the point cloud into a grayscale image and
then estimated the relative pose by detecting the contour feature of the docking ring.
Zhao et al. [26] proposed a LiDAR-based pose tracking method by fusing depth maps
and point clouds. The position error is less than 1 cm. However, it obtains the relative
pose by aligning the simplified sparse point cloud with the known target model point
cloud. For 3D point cloud direct registration method, Wang et al. [27] used the ICP method
to perform point cloud registration between every two frames, which were acquired by
the TOF camera and filtered by the corresponding point median filtering approach, and
the proposed approach may not be applicable to the tumbling targets and targets with
high rotational speeds. Kang et al. [28] proposed a point cloud registration method using
covariance matrix transform and designed a non-cooperative spacecraft pose-estimation
scheme without feature extraction, but the time consumption is relatively high. For the deep
neural network method, Liu et al. [29] proposed a Position Awareness Network (PANet)
for spacecraft pose estimation, but the amount of calculation of extracting the key points
and constructing local structural descriptors is too large, so this solution is not suitable for
use in navigation systems that need to output poses in real time.

In this paper, a pose-estimation method using a TOF camera for non-cooperative
targets in close-proximity operations is proposed. The proposed method does not depend
on the model [21,22] or typical components [23–26] and significantly outperforms the
workflow of other classical registration algorithms (ICP [30], GICP [31], NDT [32]). A new
edge-preserving filtering algorithm with adaptive window and an improved ICP algorithm
using different error metric are proposed, which ensure the robustness of frame-to-frame
registration. Furthermore, keyframes are created to update the global model to reduce
the cumulative error, the method not only avoids the linear growth of points in the global
model, but also reduces both time and memory consumption.

The remainder of this paper is organized as follows. Section 2 describes in detail
the pipeline of the proposed pose-estimation method. Specifically, it introduces the pre-
processing module, frame-to-frame module, and model-to-frame module. In Section 3,
the ground semi-physical experimental platform was built, and the performance of the
proposed pose-estimation method are evaluated through the results of the semi-physical
experiments. Finally, the conclusions are drawn in Section 4.

2. Architecture of the Proposed Method

In this section, the pipeline of the non-cooperative target pose-estimation system
combining a registration and a mapping algorithm is introduced. As shown in Figure 1,
the system can be divided into three modules: the TOF data preprocessing module, the
registration frame-to-frame module, and the model mapping module.
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Figure 1. The pipeline of the proposed non-cooperative target pose-estimation system.

2.1. TOF Camera Projection Model

The raw data obtained by the TOF camera include range image and near-infrared
intensity values; the data are stored by image index. Therefore, we need to calibrate the
camera and calculate the imaging center (cx, cy) and focal length ( fx, fy). These parameters
represent the image projection model expressed by Equations (1) and (2), which is used to
convert the coordinates between the range image and 3D point cloud.
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where (u, v) is the image coordinate, d is the range value and I is the intensity value.
(Xc, Yc, Zc) and (Xw, Yw, Zw) correspond to the camera coordinate system and the global
coordinate system, respectively. t represents the translation vector and R ∈ SO(3) is the
rotation matrix which can be expressed by Equation (3), which is an intrinsic rotation whose
Euler angles are α, β, and γ, about axes Z, Y, and X, respectively.

R = RZ(α)RY(β)RX(γ) =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 (3)

The Euler angles can be computed by Equation (4),
γ = arctan(r32, r33)

β = arctan
(
−r31√
1−r2

31

)
α = arctan(r21, r11)

(4)

In this study, a special material was used for the origin calibration plate. The circle
and the background plate had characteristics of light absorption and diffuse reflection,
respectively. As shown in Figure 2, we could easily calibrate the camera by detecting a
circle from the near-infrared intensity image.
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Figure 2. Schematic diagram of the TOF camera calibration. (a) Near-infrared intensity image; (b) dot
detection result.

The intrinsic parameters of the TOF camera are shown in Table 1.

Table 1. Intrinsic parameters of the TOF camera.

Parameter Value

( fx, fy) (525.89, 525.89)
(cx, cy) (319.10, 232.67)

2.2. TOF Data Preprocessing Module
2.2.1. Noise Reduction

Raw data obtained with TOF cameras are usually noisy. In order to reduce the effect
of noise, we need to remove the outliers and use smoothing for the remaining data, which
can improve the accuracy of subsequent pose estimations for non-cooperative targets.

Noise is greatest at the junction of the foreground and background of an object, at
pixels called flying pixels. As shown in Figure 3, the main reason for flying pixels [33] is
that each pixel in the TOF sensor has a certain physical size. When measuring the edge of
an object, a single pixel will receive the light reflected from the foreground and background
at the same time, and the energy generated by the two will be superimposed together; thus,
the raw data obtained by the sensor contain multiple distance information.

Figure 3. Schematic of flying pixels.

In this study, we located these pixels and then marked these pixels as invalid values
instead of deleting them directly. In the subsequent smoothing process, we took advantage
of the organized nature [34] of the TOF camera point cloud data; thus, we could find the
nearest neighbors in the image space index instead of using the kd tree, which is much
faster. The criteria to distinguish flying pixels can be expressed by Equation (5), where
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d(u, v) represents the depth value of the point (u, v) in the image space index, dx(±1)
and dy(±1) represent the points at distance 1 in the same row or column as d(u, v), NaN
represents an invalid value, Tf is a threshold related to precise of range image, and “||”
represent “logical-OR”.

d(u, v) =

 NaN i f

{
d(u, v)− dx(±1) > Tf

∣∣∣∣∣∣
d(u, v)− dy(±1) > Tf

d(u, v) otherwise
(5)

Another noise reduction method using intensity information was also used in this
paper. This method sets a minimum threshold for the intensity information of each point.
If the intensity value of the point is lower than the threshold, it will be deleted because the
low SNR (signal-to-noise ratio).

2.2.2. Edge Preserving Filter

In the smoothing process of TOF data, we need to avoid smoothing the target edge;
therefore, we propose an edge-preserving filtering algorithm which uses an adaptive
smoothing window to reduce the window size near the edge, so that it will not smooth
foreground and background data.

We first simply detected the possible edges of the range image using Equation (6),
where Tp is a threshold which defines the sensitivity of range value fluctuations on a
plane [35].

e(u, v) =

1 i f
{
|dx(+1)− dx(−1)| > Tp

∣∣∣∣∣∣dy(+1)− dy(−1)
∣∣ > Tp

0 otherwise
(6)

Subsequently, a binary image is created; then, the distance transformation [36] function
is utilized to calculate γ(u, v) as the distance from the point (u, v) to the nearest edge of the
binary image. The smoothing window size of point (u, v) can be computed as

R(u, v) = min(
w− 1

2
,

γ(u, v)√
2

), (7)

where the function min() returns the minimum of the input parameters and w is a common
window size widely used in image processing such as 5, 7, 9, etc.

In addition, the raw data acquired with a TOF camera contain intensity values [37],
which can be used to indicate the accuracy of distance measurements; thus, we regard the
intensity values as weights in the smoothing process. An adaptive (2R + 1)× (2R + 1)
spatial filter can be implemented, such as Equation (8), where the weights are multiplied
with intensity at the point (u, v): R is R(u, v).

Dq =
1

Wq
∑

p∈Rq

Gp ◦ Dp ◦ Ip =
1

∑
p∈Rq

Gp ◦ Ip
∑

p∈Rq

Gp ◦ Dp ◦ Ip (8)

where Dq is the output of the filter at the point of q(u, v), p ∈ Rq is the point p within

distance R from q(u, v), Gp = 1
2πσ2 e−

|p−q|2

2σ2 is a Gaussian kernel function, Dp is the real
depth of p, Ip is the intensity value of p, Wq = ∑

p∈R
Gp Ip is the sum of the weights in

the filtering window, which is used for the normalization of the weights, and ◦ is the
Hadamard product.

In this paper, the edge-preserving filtering method is compared with other advanced
algorithms. The comparison method is to filter 100 images to obtain the average time. This
comparison test was implemented on a PC (I7-7700 at 2.8 GHz, 8 GB RAM) with Visual
Studio 2019. The programming language was C++. We use different methods to process
the same data, and the time consumption is only for the data used in this article.
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The comparison results are as Table 2

Table 2. Average processing time of different filtering algorithms.

Method Our Method Bilateral
Filter

Fast Bilateral
Filter

Guided
Filter

Fast Guided
Filter

Time Consumption
(ms) 17 865 102 317 79

In terms of accuracy, the above several edge-preserving filtering methods have basi-
cally the same impact on the final pose-estimation results, and the errors between them are
within 0.1%.

2.2.3. Salient Point Selection

The resolution of the TOF camera in this study was 640 × 480, i.e., each frame of raw
data obtained by TOF camera contained 307,200 points. Aligning such a large number
of points between every two frames is very time consuming. Therefore, several criteria
were adopted to select salient points from the raw data. As shown in Figure 4, these
salient points were located at the connection between the foreground and the background
of the object and could be divided into three categories: corner points, edge points, and
background points.

Figure 4. Distribution of salient points.

Compared with corner points and edge points (which always exist in different frames),
background points may be blocked by the object foreground during motion. These back-
ground points can introduce errors in the point cloud alignment; therefore, they must be
distinguished and removed. The criteria to detect corner points and edge points can be
expressed by Equations (9) and (10), respectively, where ∃ denotes “exist”, dx(r) and dy(r)
represent the points at distance r in the same row or column as d(u, v), and r depends on the
number of salient points to extract. Ts is the threshold to distinguish object foreground and
background, “&&” is the “logical-AND” operator, and “ˆ” is the “logical-XOR” operator.

∃dx(±r)− d(u, v) > Ts && ∃dy(±r)− d(u, v) > Ts (9)

∃dx(±r)− d(u, v) > Ts ˆ ∃dy(±r)− d(u, v) > Ts (10)

The criteria to distinguish corner points and edge points can be summarized as there
always being points with greater depth values in both the x and y directions of corner
points. In contrast, points with greater depth values only exist in the x or y directions.

2.3. Registration Module by Frame-to-Frame

In space, both non-cooperative target and service spacecraft fly in the orbit at high
speed. In order to simplify the calculation, this study assumed that the serving spacecraft
was stationary, considered the TOF camera coordinate system as the global coordinate
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system, and only needed to estimate the relative pose of the non-cooperative target in the
TOF camera coordinate system. The rigid motion of the non-cooperative target between
two adjacent frames can be described by a transformation matrix T = [R|t] ∈ SE(3) , where
R ∈ SO(3) is the rotation matrix and t represents the translation vector.

Suppose that Pi and Pj represent the processed 3D point cloud data of the non-
cooperative target at frame i and frame j, respectively, and the relative rigid motion of
the target between frame i and j can be computed as Pj = Tj,iPi. The relative pose of
non-cooperative target at frame j in the TOF camera coordinate system can be expressed by

Tj = Tj,iTi,i−1Ti−1,i−2 · · · T2,1T1 (11)

Equation (11) describes such a transformation from the global frame to the camera
frame, where Tj,i ∈ SE(3) represents the transformation matrix of the target model pose
from frame i to frame j.

Inspired by the work of Chen [38], we improved the ICP algorithm to derive the
transformation matrix T by picking salient points, rejecting incorrectly matched point pairs,
use different error metric functions for different pairs and weighting the matched point
pairs with intensity values.

For corner points, we use the Euclidean distance between point-to-point as error
metric; for edge points, we minimize distance from point-to-line. As shown in Figure 5,
the blue point pi = (xi, yi, zi)

T represents a point in the source point cloud, the yellow
point represent the five points closest to pi in the target point cloud, linei represents the
main direction of these five points calculated by the eigenvector corresponding to the

largest eigenvalue of covariance matrix C = 1
N

N
∑

i=1
·(pi − p)T(pi − p), and disti represents

the distance from pi to disti shortest distance.

Figure 5. Error metric for edge points.

The improved registration algorithm can be summarized into the following seven steps:

1. Selecting the source points pi ∈ PS from the source point cloud;
2. Matching the corresponding points set qi ∈ PT or line in the target point cloud, for which

the minimized Euclidean metric ‖pi − qi‖2 or ‖disti‖2, ‖‖2 is the two-norm operator;
3. Rejecting the “corner-edge” point pairs by types of salient points;

4. Weighting the correspondence as ω(i) =
√

IS
i · IT

i · e
−
|IS

i −IT
i |

2

2σ2 , where IS
i and IT

i represent
the intensity value of the i-th point in the source and target point cloud, respectively;

5. Estimating the increment transformation ∆T from the corresponding point set which

minimizes the error metric ∆T = argmin
∆T

1
n

n
∑

i=1
ω(i)

∥∥Pi
t − ∆T · Pi

s
∥∥

2, where n is the

number of corresponding point pairs;
6. Updating the transformation matrix T = ∆T · T;
7. If the error

∥∥Pi
t − ∆T · Pi

s
∥∥

2 is less than a given threshold or greater than the preset
maximum number of iterations, the iterative calculation is stopped. Otherwise, repeat
from step 2 until achieving convergence conditions.

2.4. Model Mapping Module by Model-to-Frame
2.4.1. Keyframe Selection

However, pose estimation of non-cooperative target cannot be obtained only by point
cloud registration between adjacent frames. Errors will occur in each registration process;
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therefore, it is necessary to eliminate accumulated errors. Our solution combines the
frame-to-frame registration and a model-to-frame mapping algorithm.

As shown in Figure 6, when the target moves for a few frames, we create a keyframe
and align it with the augmented global model, and then update the model with the
keyframe. Using a global model helps to reduce the accumulated errors in the pose estima-
tion. Notably, the ordinary frames only participate in the frame-to-frame registration and
do not participate in the global model updating, which reduces the amount of calculation
of the pose-estimation system.

Figure 6. Generation of keyframes and updating the global model.

The selection criteria for keyframes are as follows

1. 20 frames have passed from the previous key frame;
2. The Euclidean distance between the current frame position and the previous key

frame position is greater than a certain threshold T1;
3. The difference of Euler angles between current frame and the previous key frame is

greater than a certain threshold T2.

Considering the data quality, three consecutive frames of data will be used for median
filtering to ensure data accuracy when selecting key frames, so as to avoid the reduction of
model accuracy caused by the error of single frame data.

2.4.2. Model Updating

In addition, a novel method to sparsify the point cloud of model was proposed, which
avoids the linear growth of points in the global model, reduces both time and memory
consumption. The proposed method aims to update the points of the global model point
cloud PG with the points of the keyframe point cloud PK, under conditions of a known
transformation matrix Tk.

To determine the corresponding set of the two-point cloud, we use the image pro-
jection approach described in Section 2.1. instead of the improved registration algorithm
mentioned above. We assume that they are from the same part of the non-cooperative
target, and we merge the two points with their own intensity value as follows

PG
u,v =

 IG
u,vPG

u,v+Ik
u,vPk

u,v
IG
u,v+Ik

u,v
i f
∥∥∥PG

u,v − Pk
u,v

∥∥∥
2
> Tk

Pk
u,v otherwise

(12)

IG
u,v = IG

u,v + Ik
u,v (13)

where
∥∥∥PG

u,v − Pk
u,v

∥∥∥
2

represents the Euclidean distance between the corresponding point
pairs in the global model and keyframes. When the Euclidean distance of the corresponding
point pair is less than the preset threshold Tk, we consider it to be a measurement error;
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thus, we merge the two points. When the Euclidean distance of the corresponding point
pair is greater than T, we consider that the position of the point has changed greatly and
update the point PG

u,v in the global model with the point Pk
u,v in the keyframe.

3. Semi-Physical Experiment and Analysis

In order to verify the performance of the proposed pose-estimation system for the
non-cooperative target, ground semi-physical experiments were carried out.

3.1. Experimental Environment Setup

As shown in Figure 7a, a 1:1 satellite model was regarded as a non-cooperative target,
and the motion of the non-cooperative target was simulated using the motion of the
manipulator on the ABB (Asea Brown Boveri) robot arm.

Figure 7. Experimental environment setup. (a) Non-cooperative satellite model; (b) TOF camera
installed on the service spacecraft.

The TOF camera was fixed on a Y-plate connected at the end of the robot arm to
simulate the service spacecraft, as presented in Figure 7b, with the camera specifications
shown in Table 3.

Table 3. Specifications of the TOF camera.

Parameter Value

Resolution 640 × 480 px, 0.3 MP
Pixel Size 10.0 µm (H) × 10.0 µm (V)

Illumination 4 × VCSEL laser diodes, Class1, @ 850 nm
Lens Field of View 69◦ × 51◦ (nominal)

To verify the robustness of the proposed algorithm, we used the robot and satellite
model to simulate the rotation and translation of the non-cooperative target in the labora-
tory, using the TOF camera to collect data, and comparing our method with other classic
methods (ICP, GICP, and NDT).

In the experiment, we rotated the satellite model 720◦ around the flange of the robot
arm to simulate the spin of the target in space and moved the TOF camera 1000 mm along
Z axis of the camera coordinate system to simulate the approaching process.

All the mentioned algorithms were implemented on a PC (I7-7700 at 2.8 GHz, 8 GB
RAM) with Visual Studio 2019. The programming language was C++ and the Point Cloud
Library (PCL) is used.

3.2. Results of Semi-Physical Experiments

In this paper, we estimated the pose of the non-cooperative target in laboratory, but the
background point cloud is also obtained by TOF camera. If no preprocessing is performed,
it will become estimating the pose of dynamic target in a static environment, and the
pose-estimation scheme will not be applicable and does not conform to the real situation of
the space environment.
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Figure 8a–c represent the raw data collected by the camera at different frames, and
Figure 8d represents the raw data containing the target and the background at a certain
moment. Figure 8e,f represent the process of noise reduction and salient point selection
mentioned in Section 2.2. The input point cloud of all methods is presented in Figure 8e,
which ensure that the comparisons are fair.

Figure 8. Input data processing. (a) Frame i; (b) Frame j; (c) Frame k; (d) Raw data; (e) Noise
reduction; (f) Salient point detection.

We calculated the relative pose of the target using Equation (9). The three-axis trans-
lations were denoted by the three components of translation vector t, and the three-axis
rotation Euler angles needed to be decomposed by rotation matrix R via Equation (4).

In this study, it was assumed that the rotation angles α, β, and γ around axis ZYX were
denoted as roll, pitch, and yaw, respectively. In the experiments, we separately calculated
the results of five methods (our method, m_icp (ICP modified in Section 2.3), original ICP,
GICP, and NDT). The original ICP, GICP, and NDT inputs are all raw point clouds instead
of filtered point clouds. The effectiveness and accuracy of our method could be determined
by comparing these pose-estimation results with the ground truth.

In the rotation experiment, we fixed the TOF camera and rotated the target model 720◦

clockwise around the manipulator flange. Suppose the initial position of the target model is
set to (0, 0, 0) mm, and the initial Euler angle is (0, 0, 0)◦. However, because the installation
positions of the target model and the TOF camera were not precisely adjusted, the Z axis
of the camera was not parallel to the flange axis of the manipulator; therefore, the Euler
angles of the other two axes were estimated to be non-zero in the rotation experiment.

Figure 9 presents our method estimation results and errors for the XYZ three-axis
translation and Euler angles RPY during model motion. After 720◦ rotation of the target,
the translation error of the three-axis XYZ was within 2 mm, and the Euler angle roll, pitch,
and yaw errors of the three-axis YZX were within 0.5◦.

As shown in Figure 10, compared with other methods, the cumulative error of the
results calculated by our method was the smallest. Among them, m_icp achieved smaller
error than ICP, GICP, and NDT by picking salient points, rejecting incorrectly matched point
pairs, and weighting the matched point pairs with intensity values. Only the frame-to-frame
registration was performed, and the accumulated error was not eliminated; therefore, the
XYZ axis translation error reached (20, 22, 5) mm after the 720◦ rotation, and the ZYX axis
Euler angle RPY error reached (3, 2, 10)◦. After introducing the key frame, the cumulative
error is eliminated, the position error is less than 2 mm, and the angle error is less than 0.5◦.
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Figure 9. Pose-estimation results of our method for the rotation experiment. (a) Translation of the
XYZ axis; (b) Euler angle RPY of the YZX axis; (c) Position errors of the XYZ axis; (d) Euler angles
error of the YZX axis.

Figure 10. Cont.



Remote Sens. 2022, 14, 6100 12 of 16

Figure 10. Comparison of pose-estimation results for the rotation experiment. (a) X-axis translation;
(b) Y-axis translation; (c) Z-axis translation; (d) X-axis Euler angle; (e) Y-axis Euler angle; (f) X-axis
Euler angle.

In the approaching experiment, we keep the satellite model in the same motion as the
previous rotation experiment and move the camera 1000 mm in the positive direction of
the Z axis. We supposed that the initial position of the target model was set to (0, 0, 0) mm
and the initial Euler angle was (0, 0, 0)◦.

Figure 11 shows the method estimation results and errors of the three-axis translation
and Euler angles of the target model during the TOF camera movement. The translation
errors of the XYZ axes were within 8 mm, and the Euler angle yaw, pitch, and roll errors of
the XYZ axes were within 1◦.

Figure 11. Pose-estimation results of our method for the translation experiment. (a) Translation of
the XYZ axis; (b) Euler angle RPY of the YZX axis; (c) Position errors of the XYZ axis; (d) Euler angles
error of the YZX axis.
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As shown in Figure 12, our method had the smallest error among all indicators, as
compared with other methods. There was almost no error in the Z-axis position results as
estimated by various methods; the X-axis and Y-axis translation error was up to 5 mm.

Figure 12. Comparison of pose-estimation results for the translation experiment. (a) X-axis translation;
(b) Y-axis translation; (c) Z-axis translation; (d) X-axis Euler angle; (e) Y-axis Euler angle; (f) X-axis
Euler angle.

The pose-estimation results of the rotation and translation experiments show that
the pose-estimation accuracy of the proposed method is significantly better than other
classical methods. Moreover, the accumulated errors of translation experiment are larger
than single rotation experiment. In other words, when the target spins, the estimation
result has almost no drift. When the camera approaches the target along the guide rail,
the target becomes larger in the camera’s field of view, and the scale changes, resulting
in a cumulative error. The proposed pose-estimation scheme can still achieve the high-
precision (8 mm, 1◦) pose estimation of non-cooperative targets and meet the requirements
for aerospace applications. For the methods of other researchers [23–32], the prevailing
positional accuracy is better than 10 mm and the angular accuracy is 2◦. The reason for the
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greater accuracy improvement in this paper is that the geometric features of the target are
extracted, and different error metrics are used for different features. The most important
thing is that the key frame is used to reconstruct the target model.

In addition, as shown in Table 4, we also compared the amount of computation, and
counted the time consumption as a representation of the amount of computation. It is
worth noting that although preprocessing in the table belongs to our method, the data
preprocessing part is included in each method to ensure that the data used by different
methods are consistent.

Table 4. Comparison of amount of computation for different methods.

Time
Consumption (ms)

Method
Our Method

ICP GICP NDT
Preprocessing Salient Point

Selection
Modified

ICP
Mean 20 36 49 946 788 1145

Std. Dev 3 4 6 87 64 95

As shown in Table 4, the total time consumed by our method is about 100 ms, and
the tracking frequency can reach 10 Hz. By picking salient points and improving the error
metric, we reduce the amount of computation to less than a tenth of the original.

4. Conclusions

In this paper, we have proposed a relative pose-estimation technique using a TOF
camera for non-cooperative spacecraft in close-proximity operations. The proposed method
significantly outperforms the workflow of other classical registration algorithms by picking
salient points, using different error metrics for different points, rejecting incorrectly matched
point pairs, and weighting the matched point pairs with intensity values, which ensures
the accuracy of inter-frame alignment. In addition, three criteria are selected to create
keyframes, and a novel method to sparsify the point cloud of model was proposed, which
avoids the linear growth of points in the global model, reduces time consumption.

Then, we assembled the experimental platform to conduct semi-physical experiments.
The results show that the modified ICP method has the smallest translation error and
Euler angles error as compared with other classical methods (ICP, GICP, and NDT), and
after introducing keyframes and global model, we eliminated the accumulated error. The
cumulative error of translation was within 8 mm, and the cumulative error of the Euler
angle was within 1 degree. The total time consumption is about 100 ms, and the pose
tracking frequency can reach 10 Hz.

In future studies, we will conduct more experiments to verify the performance of our
method. At the same time, we also hope to introduce a visible light camera for some cases
where the target surface is relatively flat and cannot detect salient points, so as to improve
the robustness of pose estimation.
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