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Abstract: The detection of low, slow and small (LSS) targets, such as small drones, is a developing
area of research in radar, wherein the presence of ground clutter can be quite challenging. LSS targets,
because of their unusual flying mode, can be easily shadowed by ground clutter, leading to poor
radar detection performance. In this study, we investigated the feasibility and performance of a
ground clutter mitigation method combining slow-time multiple-input multiple-output (st-MIMO)
waveforms and independent component analysis (ICA) in a ground-based MIMO radar focusing
on LSS target detection. The modeling of ground clutter under the framework of st-MIMO was first
defined. Combining the spatial and temporal steering vector of st-MIMO, a universal signal model
including the target, ground clutter, and noise was established. The compliance of the signal model
for conducting ICA to separate the target was analyzed. Based on this, a st-MIMO-ICA processing
scheme was proposed to mitigate ground clutter. The effectiveness of the proposed method was
verified with simulation and experimental data collected from an S-band st-MIMO radar system with
a desirable target output signal-to-clutter-plus-noise ratio (SCNR). This work can shed light on the
use of ground clutter mitigation techniques for MIMO radar to tackle LSS targets.

Keywords: ground clutter mitigation; independent component analysis; slow-time MIMO radar

1. Introduction

Small drone detection using radar has attracted enormous attention in recent years [1–3].
With the rapid growth of the consumer drone market, unmanned aerial vehicles (UAVs)
have become a significant threat to civil aviation, anti-terrorism, and private security.
As a powerful sensor that can operate regardless the time and weather, radar plays an
important role in tackling these low, slow and small (LSS) targets. Many systems [4–13]
and techniques [14–19] focusing on LSS target detection in the field of radar have been
researched and developed.

The early LSS target surveillance radar systems were modified from the maritime radar
systems such as the MerlinTM Radar System from DeTect Inc. [20] and the initial product
of Robin Radar Systems Inc. [21]. They consist of two maritime radar antennas that rotate
along the azimuth and elevation to achieve quasi-3D detection. With the development of
phased array radar, more LSS target detection systems have turned to utilize antenna array
and digital beamforming technology to obtain better target detection performance [4,5].
In recent years, some relatively new radar concepts, such as multiple-input multiple-
output (MIMO) radar [6–8], multistatic radar [9,10], and ubiquitous radar (which is also
named holographic or staring radar) [11–13], have also been introduced to the field of LSS
target detection.

There are two main challenges in detecting LSS targets. The first challenge is the
poor target signal-to-clutter-plus-noise ratio (SCNR). Due to the low flying altitude of the
small drones, the radar beam must have a rather small grazing angle. This significantly
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raises the ground clutter energy in the received signal. Considering the small radar cross-
section (RCS) of LSS targets, the target SCNR is significantly reduced. Secondly, the slow
flying, or hovering, velocity of the target renders the detection of LSS in slow-moving
ground clutter via conventional techniques such as moving target indication (MTI) or
moving target detector (MTD) ineffective. This is because ground clutter mainly consists of
buildings, trees, cars, etc. The velocity spectrum spread of this clutter ranges from zero to
tens of meters per second, which overshadows the speed of LSS targets. Thus, it is worth
investigating clutter mitigation methods for LSS target detection.

Independent component analysis (ICA) [22–24] has aroused worldwide research
interest in the field of signal processing since the 1990s. It has extensive applications in many
fields such as communication, radar, image processing, acoustic processing, biomedical
signal processing, and even financial data analysis [25]. Based on a MIMO system, the
purpose of ICA is to simultaneously separate independent non-Gaussian components from
observed multi-channel signals. This process can be used to help solve the ground clutter
mitigation problem.

MIMO radar, as a typical multi-channel system, utilizes omnidirectional antennas and
an orthogonal waveform in the transmitting stage, and then it forms a synthesized MIMO
beam in the receiving stage. MIMO radar leverages waveform diversity to further increase
the scale of the virtual array and spatial diversity [25–27]. A slow-time MIMO (st-MIMO)
waveform [28–30] expands a conventional radar waveform by phase-coding the pulses
of different channels to achieve orthogonal transmission and MIMO demodulation after
pulse-Doppler (PD) processing. Although the unambiguous Doppler speed is divided by
the number of Doppler sub-bands [31], st-MIMO is still feasible for slow-moving target
detection with acceptable orthogonality and bandwidth efficiency.

Over the last few years, various techniques have been developed to tackle LSS targets
from the radar detection stage to the parameter estimation stage and the target classification
stage. Regarding methods used to enhance LSS target detection performance at the range-
Doppler (r-D) level, one study [14] used the stationary point concentration technique
to reduce the noise floor caused by transmitter leakage and increase the signal-to-noise
ratio (SNR) of a UAV. Another study [15] adopted an iterative adaptive approach to
enhance the Doppler resolution in an r-D map, which led to improved target detectability.
For the parameter estimation stage, the authors of [16] proposed a long-time coherent
integration method for maneuvering LSS targets to improve target estimation accuracy.
Regarding the target classification stage, many works [2,17,18] focused on the micro-
Doppler signature (m-DS) of UAVs. The numbers of m-DSs have been thoroughly analyzed
among different types of UAVs and utilized to conduct target classification via multiple
classifiers or neural networks.

There have been many studies in the field of clutter mitigation involving the afore-
mentioned st-MIMO or ICA methods separately. Nevertheless, the combination of these
two techniques while focusing on ground clutter mitigation in detecting LSS targets has
been limited. For clutter mitigation involving st-MIMO, the authors of [28] developed
spatial-time adaptive processing (STAP) in st-MIMO radar to mitigate multipath clutter.
The spatial-time structure of st-MIMO was established, and a data covariance model,
including target, direct path clutter, multipath clutter, jamming, and white noise, was
defined. In [32], the beamspace st-MIMO, which can form virtual transmit nulls in direc-
tions that would result in multipath clutter returns in the main lobe of a radar system,
was investigated. In [33], ground clutter was removed via principal components analysis
(PCA) to enhance micro-Doppler feature extraction. For clutter mitigation involving the
ICA or BSS methods, many works have focused on the multi-mode clutter suppression of
over-the-horizon (OTH) radar. In [34,35], the spread-Doppler clutter caused by multi-mode
propagation in OTH radar was suppressed via the second-order blind identification (SOBI)
method. In addition, some works applied the BSS method in the field of main lobe jamming
suppression [36].
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In this study, we investigated the feasibility and performance of a ground clutter
mitigation method combining the st-MIMO and ICA techniques in a ground-based MIMO
radar focusing on LSS target detection. The main contributions of this work are as follows.
Firstly, we propose a way to modulate ground clutter under the framework of st-MIMO.
The ground clutter covariance was derived based on a Gaussian-shaped power spectrum.
Combining the spatial and temporal steering vector of st-MIMO, a universal signal mod-
elling including the target, ground clutter, and noise is provided. Secondly, we propose
a st-MIMO-ICA processing scheme to separate the target signal from the received data
including ground clutter plus noise. Mathematical proof that the signal model fits the
framework of the ICA problem is provided. The multi-targets can be simultaneously
separated via the proposed method. Finally, we validated our proposed st-MIMO-ICA
method and evaluated its performance with both simulations and experiments using an
S-band st-MIMO radar system developed in our previous work [6]. Comparisons with the
PCA and adaptive techniques were performed, and the st-MIMO-ICA method showed the
highest target output SCNR of the tested approaches.

The remainder of this paper is organized as follows. Section 2 describes the sig-
nal modeling of the st-MIMO radar and the ground clutter modulation in st-MIMO.
Section 3 describes the signal modeling for conducting ICA and proposes the st-MIMO-ICA
method. Section 4 presents the simulation and experimental results for the performance
of the st-MIMO-ICA method. Finally, Section 5 concludes the paper and outlines possible
future work.

2. Signal Modeling of St-MIMO Radar

In this section, the signal modeling of st-MIMO is described. Furthermore, the modu-
lation of ground clutter under the framework of st-MIMO is derived.

2.1. St-MIMO Waveform Modeling and Processing

Consider a co-located 1D linear antenna array with M transmitting elements and N
receiving elements that are omnidirectional. The element distance to the reference antenna
of the mth, m = 0, · · · , M− 1 element in the transmitting array is dm. Likewise, the element
distance to the reference antenna of the nth, n = 0, · · · , N− 1 element in the receiving array
is dn. Note that this definition of the array is general regardless of whether the array is
uniform or not. Figure 1 shows the geometry of the signal modeling setup. The operating
frequency is f0 and the operating wavelength is λ0. There are K pulses in one coherent
processing interval (CPI) and the pulse repetition frequency (PRF) fr = 1/Tr, where Tr
refers to pulse repetition interval (PRI).
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The slow-time MIMO approach split the whole Doppler PRF into M orthogonal
Doppler sub-bands with a bandwidth of ∆ fsub = fr/M via slow-time phase coding. Here,
we set the number of the Doppler sub-bands as the same as the number of transmitting
antennas to simplify the modeling. Furthermore, the Doppler sub-bands can be redundant,
leading to some empty Doppler sub-bands that can be utilized to enlarge the velocity
measurement range. The baseband pulse waveform up(t) of each transmitting element
is an identical linear frequency modulated (LFM) signal but with varying starting phases
ϕ(m, k), which is a function of the transmitting element index m and the pulse index
(slow-time) k. Let ρt represent the constant transmit amplitude in each antenna without
beamforming transmission. Then, the transmitting waveform of the mth element is:

sm(t) = ρt

K−1

∑
k=0

up(t− kTr)ej2π( f0t+ϕ(m,k)) (1)

Herein, let ϕ(m, k) have a linear form:

ϕ(m, k) = αmkTr (2)

In this way, the Doppler domain is divided into M identical sub-bands. The instanta-
neous Doppler frequency f m

d of the mth transmitting antenna is the derivative of the slow
time variable kTr:

f m
d =

∂ϕ(m, k)
∂kTr

= αm (3)

Let the Doppler frequency of each transmitting antenna be evenly distributed in the
Doppler domain and consider that the sign of the Doppler, αm, has the form of:

αm =
m
M
· fr (4)

One of the advantages of the slow-time MIMO approach is the good hardware com-
patibility to traditional phased array radar systems. Orthogonal transmission is realized in
the Doppler domain via time-varying starting phases, while the carrier frequency remains
f0 for each channel. This makes it easy to implement to existing array radar systems. Note
that the time-varying starting phases between antennas also presumably steer the beam
as a function of the slow-time pulse k, which means that the main lobe direction of the
transmitted beampattern sweeps the angle domain with a period of M pulses [30]. The
ratio fr/∆ fsub, i.e., the number of the Doppler sub-bands, can be modified to adjust the
sweep rate of the main lobe.

Next, consider a far-field moving target with target speed vt and corresponding
Doppler shift ft= 2vt/λ0. The target is located at an angle φt related to the array boresight.
The amplitude of the echo is ρr. Thus, the backscattered signal of the nth receiving element
via the mth transmitting element is shown in (5).

smn(t) = ρr

K−1

∑
k=0

up(t− τmn − kTr)ej2π( f0+ ft)(t−τmn)ej2παmkTr (5)

The round-trip delay τmn in (5) takes the form of (6), which consists of the time delay
from the mth transmitting element TXm to the target and the time delay from the target to
the nth receiving element TXn [37]:

τmn = τtm + τrn

=
(

Rt
c −

dm sin φt
c

)
+
(

Rt
c −

dn sin φt
c

)
= 2Rt

c −
dm sin φt

c − dn sin φt
c

(6)
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where Rt is the target range based on the first element of the array. Under the conditions of
a narrow band and slow target velocity, the following assumptions can be made:

τmn ≈ τc =
2Rt

c
(7)

and ej2π ftτmn ≈ 1.
Then, smn(t) can be approximated as:

smn(t) ≈ ρr

K−1

∑
k=0

up(t− τc − kTr)ej2π( f0+ ft)te−j2π f0τmn ej2παmkTr (8)

The output of the nth receiving element is the sum of the M transmit waveforms and
can be expressed as:

sn(t) =
M−1
∑

m=0
smn(t)

= ρr
M−1
∑

m=0

K−1
∑

k=0
up(t− τc − kTr)ej2π f0tej2π ftte−j2π f0τmn ej2παmkTr

(9)

After down-converting by multiplying the echo with e−j2π f0t, the baseband receiving
signal can be expressed as:

s′n(t) = sn(t) · e−j2π f0t

= ρr
M−1
∑

m=0

K−1
∑

k=0
up(t− τc − kTr) ej2π ftte−j2π f0

2Rt
c ej2π dm

λ0
sin φt ej2π dn

λ0
sin φt ej2παmkTr

(10)

Next, conduct matched filtering on s′n(t) using a baseband matched filter h(t) = u∗p(−t),
where the superscript * represents the conjugate operation. The output signal after matched
filtering can be derived as:

Xn(t) =
∫ ∞

∞ s′n(x)h(t− x)dx

= ρre−j2π f0
2Rt

c ej2π dn
λ0

sin φt
M−1
∑

m=0

K−1
∑

k=0
ej2π dm

λ0
sin φt ej2παmkTr · · ·∫ ∞

∞ up(x− τc − kTr)ej2π ftxu∗p(−(t− x))dx

(11)

After conducting variable substitution and assuming ej2π ftτc ≈ 1, (11) can be derived as:

Xn(t) ≈ ρre−j2π f0
2Rt

c ej2π dn
λ0

sin φt
M−1
∑

m=0

K−1
∑

k=0
ej2π dm

λ0
sin φt ej2παmkTr · · ·∫ ∞

∞ up(β)ej2π ft βej2π ftkTr u∗p(β + τc + kTr − t)dβ

= ρre−j2π f0
2Rt

c ej2π dn
λ0

sin φt
M−1
∑

m=0

K−1
∑

k=0
ej2π dm

λ0
sin φt · · ·

ej2π(αm+ ft)kTr χ(t− τc − kTr, ft)

(12)

where
χ(τ, ft) =

∫ ∞

∞
up(β)u∗p(β− τ)ej2π ft βdβ (13)

is the ambiguity function of up(t) with the time lag being τ and the Doppler frequency
being ft.

Next, we focus on the fast time of tk = τc + kTr in each pulse, which corresponds to the
time lag of the target. Then, the ambiguity function in (12) is χ(0, ft). Assume χ(0, ft) ≈ 1;
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because of the high Doppler tolerance of the LFM signal, the response of each tk in (12) can
be expressed as:

Xnk = Xn(tk)

= ξte
j2π dn

λ0
sin φt

M−1
∑

m′=0
ej2π dm′

λ0
sin φt ej2π(αm′+ ft)kTr (14)

where ξt = ρre−j2π f0
2Rt

c .
In order to separate the response of the mth transmitting element and achieve MIMO

demodulation, we first shift the central Doppler frequency of the mth Doppler sub-band to
zero-Doppler by multiplying e−j2παmkTr to (14) which yields:

Xnk,m = Xnk · e
−j2παmkTr

= ξte
j2π dn

λ0
sin φt ej2π ftkTr ej2π dm

λ0
sin φt

+ξte
j2π dn

λ0
sin φt ej2π ftkTr

M−1
∑

m=0,m′6=m
ej2π dm′

λ0
sin φt ej2π(αm′−αm)kTr

(15)

For certain n and m, Xnk,m is only related to the slow-time index k. Next, conduct a
discrete Fourier transform (DFT) of Xnk,m to obtain the Doppler spectrum, which yields:

Xn,k′,m =
K−1

∑
k=0

Xnk,me−j 2πk
K k′ (16)

where k′ represents the index in the Doppler domain. Then, apply a low-pass Doppler filter
to remove all the other M− 1 Doppler sub-bands in Xnk,m, i.e., the second term in (15) [38].
Thus, the low-pass Doppler filter HLP has a pass-band from − fr/2M to fr/2M. Conduct
an inverse discrete Fourier transform (IDFT) to obtain the temporal output after Doppler
filtering, which yields:

X′n,k,m =
K−1
∑

k′=0
Xn,k′,m HLP(k′)ej 2πk′

K k

≈ ξte
j2π dn

λ0
sin φt ej2π ftkTr ej2π dm

λ0
sin φt

(17)

Note that X′n,k,m can be expressed as the Kronecker product of separable vectors:

Xt(φt, ft) = ar(φt)⊗ b( ft)⊗ at(φt) (18)

where ar(φt) and at(φt) are the receiving and transmitting spatial steering vectors, respec-
tively, of the target as the function of φt and b( ft) is the temporal steering vector of the
target as the function of ft:

ar(φt) =

[
1, ej 2π

λ0
d1 sin φt , · · · , ej 2π

λ0
dn sin φt , · · · , ej 2π

λ0
dN−1 sin φt

]T
(19)

b( ft) =
[
1, ej2π ftTr , · · · , ej2π ftkTr , · · · , ej2π ft(K−1)Tr

]T
(20)

at(φt) =

[
1, ej 2π

λ0
d1 sin φt , · · · , ej 2π

λ0
dm sin φt , · · · , ej 2π

λ0
dM−1 sin φt

]T
(21)

Because the Doppler bandwidth of b( ft) is narrowed to fr/M after the low-pass
filtering rather than the entire fr, M-times decimation can be conducted on b( ft) to reduce
the dimension of the vector, which yields:

bdeci( ft) =
[
1, ej2π·M· ftTr , · · · , ej2π·(K/M−1)M· ftTr

]T
(22)
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At this point, all the responses of the M transmitting elements are extracted from the
N receiving elements. The final data cube of the target signal for one snapshot has the
dimensions of N × (K/M)×M and can be expressed as:

ζs = ar(φt)⊗ bdeci( ft)⊗ at(φt) (23)

Furthermore, the radar return from a target-plus-clutter-plus-noise environment for one
snapshot can then be expressed as:

ζx = ζs + ζc + ζn (24)

where ζc and ζn are the clutter vector and noise vector with dimensions of N× (K/M)×M,
respectively.

2.2. Ground Clutter Modeling under St-MIMO Framework

In this section, the modeling of the clutter matrix ζc based on the Doppler distributed
clutter (DDC) model [39] is introduced. The fundamental principle of DDC modelling is to
first decide the power spectrum Sddc( f ) of the ground clutter. Then, the autocorrelation
rddc(τ) and the covariance matrix Rddc of the clutter can be derived using an inverse Fourier
transform (IFT).

The power spectrum Sddc( f ) of the ground clutter caused by the internal motion of
the clutter itself is commonly assumed to be Gaussian-shaped [19] with the form of:

Sddc( f ) =
Pc√
2πσ2

c
exp

[
− ( f − fd)

2

2σ2
c

]
(25)

where Pc is the power of the clutter, σc is the standard deviation, and fd is the central
frequency of the clutter spectrum. We chose fd = 0 for the ground clutter, and the 3 dB
velocity spectrum width σv has the following relationship with the standard deviation σc:

σc =
2σv
λ0

(26)

By conducting an IFT of Equation (25), the autocorrelation function rddc(τ) of the
clutter can be derived as:

rddc(τ) = Pc exp(j2π fdτ) exp
(
−2π2σ2

c τ2
)

(27)

Accordingly, the covariance matrix of the clutter can be represented as:

Rddc(k, l) = P2
c ej2π fdTr(k−l)e−2π2σ2

c Tr
2(k−l)2

k = 1, · · · , K/M, l = 1, · · · , K/M
(28)

The temporal sequence of the clutter xc can be generated using the following equation:

xc = R
1
2
ddcxn (29)

where xn is the K/M white Gaussian noise vector with a variance of 1.
For the ground clutter at the target’s range bin, assume that there are NC clutter

directions of arrival (DOA) in the received data. Then, the clutter snapshot ζc can be
expressed as:

ζc =
NC

∑
i=1

ar(φci)⊗ xci ⊗ at(φci) (30)
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where i = 1, · · · , NC represents the ith clutter patch with the DOA of φci and xci represents
the temporal vector of the ith clutter patch. At this point, ground clutter modeling in
st-MIMO is achieved.

3. St-MIMO-ICA Processing

In this section, the proposed st-MIMO-ICA processing method is illustrated. Firstly,
the feasibility of using the ICA method to mitigate ground clutter with a st-MIMO system
is demonstrated. Then, the proposed st-MIMO-ICA processing method is illustrated based
on a complex fixed-point algorithm.

3.1. Signal Modeling under ICA Compliance

The previous sections illustrated the signal and clutter model under the st-MIMO
framework. Now, rewrite the sequence of the terms in (23) as:

ζs = bdeci( ft)⊗ a(φt) (31)

where a(φt) = ar(φt)⊗ at(φt) is the N ×M two-way spatial vector of the st-MIMO wave-
form. From this point, the virtual array of the MIMO radar is established to achieve
narrower beamwidth and realize more degrees of freedom along the spatial dimension
compared with a conventional phased array radar. Generally, in multiple target situations,
Equation (31) can be expressed as:

ζs =
NT

∑
j=1

bdeci
(

ftj
)
⊗ a
(
φtj
)

(32)

where j = 1, · · · , NT represents the jth target with an associated Doppler frequency of ftj
and target DOAs of φtj.

Regarding ground clutter, the same reasoning can be used and the clutter snapshot ζc
can be expressed as:

ζc =
NC

∑
i=1

xci ⊗ a(φci) (33)

Further exploiting the structures of Equations (32) and (33) leads to a universal signal
model, including the target and clutter in a matrix form:

X = ASDop (34)

In Equation (34), the columns of matrix A represent the spatial vector of the target
together with the clutter:

A =
[
at1, at2, · · · atNT , ac1, ac2, · · · acNC

]
(35)

and the rows of matrix SDop represent the frequency vectors in the Doppler domain of the
target and the clutter:

SDop =
[
dH

t1, · · · , dH
tj , · · ·dH

tNT
, dH

c1, · · · , dH
ci , · · ·dH

cNC

]T
(36)

where dtj and dci are the DFT of the temporal vectors bdeci
(

ftj
)

and xci, respectively.
Equation (34) shows that the signal model of the st-MIMO waveform in a ground

clutter environment enables the use of the ICA method to extract targets from clutter, that
is: (1) multi-channel observations of the mixed signal are obtained, (2) sources are linearly
mixed and statistically independent from each other, and (3) sources have non-Gaussian
distributions [40]. By exploiting the structure of Equation (34), the received signal X can be
regarded as multi-channel inputs for ICA. Meanwhile, the number of the input channels
is enlarged from N to M × N via st-MIMO demodulation. The spatial matrix A can be
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regarded as the mixing matrix that linearly combines all the sources in the frequency matrix
SDop, of which the vectors are non-Gaussian in the Doppler domain. Thus, using the ICA
method for ground clutter mitigation with a st-MIMO system is feasible.

3.2. St-MIMO-ICA Processing

ICA can be illustrated in a general framework that consists two major parts, the
separation criteria and the optimization method [22]. In the application of array radar
signal processing, a number of ICA methods have been proposed based on variable cri-
teria such as maximum likelihood (ML), information-maximization (Infomax), and the
maximization of non-Gaussianity (MN). In the branch of MN, kurtosis and negentropy are
two commonly used criteria used in some popular ICA methods such as JADE [24] and
FastICA [40], respectively.

The famous FastICA method utilizes negentropy as the cost function and the fixed-
point algorithm for optimization. Furthermore, the FastICA method has been derived from
complex domains. However, the complex FastICA (c-FastICA) method does not perform
well with noncircular sources [41]. In this study, we adopted the noncircular FastICA
(nc-FastICA) method to separate the target signal from clutter and noise. By adding second-
order information in a fixed-point update, the nc-FastICA method can provide an improved
separation performance with noncircular sources.

Based on (34), the linear signal mixture model of the MIMO array with Q = M× N
sensors (channels) and Ns = NT + NC sources can be expressed as:

ζx = ζs + ζc + ζn

= ASDop + ζn
(37)

where ζx can be considered to be the observation matrix, which contains the aforementioned
signal matrix ASDop and the Gaussian white noise with zero-mean ζn. Then, the nc-FastICA
method can be conducted via the following steps.

1. Whitening:
The covariance matrix of the observed signal can be expressed as:

RY = E
{
ζxζx

H
}

(38)

By applying eigenvalue decomposition to the covariance matrix, one can obtain:

RY = UΛUH (39)

Then, the whitening matrix can be denoted as:

V = Λ−
1
2 UH (40)

and the whitened matrix Z = Vζx can be achieved.
2. Formulating the optimization problem

A cost function based on maximizing the negentropy can be express as:

J(w) = E
{

G
(∣∣∣wHZ

∣∣∣2)} (41)

where G : R→ R is a smooth even function and w ∈ CQ is the Q×Q weight matrix
used to de-mix the observed signal and obtain the estimated source matrix e = wHZ.
Then, the optimization problem is formulated as:

wopt = arg max
‖w‖2=1

E
{

G
(∣∣∣wHZ

∣∣∣2)} (42)
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Here, we chose G(u) = u2/2 as the function motivated by kurtosis.
3. Fixed-point updating process

The fixed-point algorithm is utilized to update the weight matrix w in each iteration
and can be expressed as:

wn+1 = −E
{

g
(
|e|2
)

e∗Z
}
+ E

{
g′
(
|e|2
)
|e|2 + g

(
|e|2
)}

wn

+E
{

eeT}E
{

g′
(
|e|2
)

e∗2
}

w∗n
(43)

where g(u) = dG(u)/du and g′(u) = dg(u)/du. The third term of Equation (43)
includes the second-order information in terms of the pseudo-covariance matrix E

{
eeT},

which is non-zero if the sources are noncircular. This modification ensures that the
nc-FastICA method has an improved separation performance with noncircular sources.

4. Obtain the weight matrix and estimated source matrix
The estimation of the observation matrix ζx can be expressed as:

e = wHZ = wHVζx (44)

where e =
[
e1, e2, . . . , eQ

]
is the estimated source matrix with Q source vectors and

w =
[
w1, w2, . . . , wQ

]T is the weight matrix with Q corresponding weight vectors.
It is worth noting that the number of sources separated by the ICA method is no
more than the channel number Q. When the number of sources in the mixed signal
is less than the number of the channels, those redundant channels will contain noise
signals [22]. In this case, the PCA method can be utilized to decrease the dimensions
of the data for the following ICA processing. However, this part is beyond the scope
of this paper.

4. Experimental Results

For this section, simulation and field experiment were conducted based on the MIMO
radar system developed by the Beijing Institute of Technology (BIT) [6,7], which is shown
in Figure 2. The ground-based radar operates at the S-band and has a co-located MIMO
architecture. The antenna array is organized along the elevation axis with six elements
transmitting st-MIMO waveforms. Each antenna has a wide beam of 90◦ in elevation, where
the MIMO is formed, and a narrow beam of 3◦ in azimuth. For the azimuth, mechanical
scanning is utilized to achieve full airspace coverage. The system is mainly focused on
LSS target detection and tracking, such as that of small drones or birds. The st-MIMO-
ICA method for ground clutter mitigation is first demonstrated with simulation results
using parameters corresponding to a real radar system. Then, the field experiment results
are presented.
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4.1. Simulation Results

The simulations were conducted in MATLAB. They were employed to verify the
performance of the proposed method. To reflect the performance of a real radar system
used in the field, consider a co-located MIMO antenna array with M = N = 6 linear
displaced elements along the elevation axis. Each element transmits a st-MIMO waveform.
The simulated radar parameters are shown in Table 1.

Table 1. Radar parameters.

Parameter Value

Operating frequency 3 GHz
Bandwidth 40 MHz

Pulse repetition interval 56 us
Number of pulses in one CPI 900
Number of Doppler sub-band 6

Maximum detect range 8.4 km
Velocity measurement range ±72 m/s

Furthermore, the antenna array was chosen to be a non-uniform sparse array to
make it cost-effective with a larger aperture and fewer elements. The element location
was optimized via a genetic algorithm (GA) to suppress the grating lobes of the antenna
beampattern caused by the sparse arrangement. A detailed illustration and analysis of this
non-uniform and sparse arrangement can be found in [6]. The array parameters are shown
in Table 2, and the beam pattern of the array after GA optimization is shown in Figure 3.

Table 2. Array parameters.

Parameter Value

Number of antenna 6
Number of channels 36

Array aperture 0.5 m
Virtual array aperture 1 m

Element position [0 0.1821 0.2681 0.3555 0.4206 0.5] m
Peak sidelobe level −20 dB

3 dB beamwidth 6.2◦
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The simulation experiment setup is shown in Figure 4. The radar was ground-based,
and the MIMO was achieved in elevation. The ground clutter came from the horizontal
direction and Target 1 to Target NT had the target DOA 1 to DOA NT . A typical LSS
target could be a small drone such as a DJI Phantom series drone. This type of target has a
relatively slow speed and low flying altitude, which means the radar detection performance
is affected by strong ground clutter. To simplify the simulation without losing generality,
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assume that there are three targets in the same range bin with different SNRs, speed, and
DOAs. Regarding the ground clutter, we used the clutter model in Section 1 with four
closely distributed DOAs to simulate a real ground environment containing trees and
buildings of different heights. We set proper target SNRs to keep the target SCNRs of all the
targets at −20 dB. Detailed parameters of the target and clutter setup are given in Table 3.
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Table 3. Target and clutter parameters.

Type Parameter Value

Target 1

Range 500 m
Speed 2 m/s

Elevation 4◦

SNR 40 dB
SCNR −20 dB

Target 2

Range 500 m
Speed −4 m/s

Elevation 20◦

SNR 30 dB
SCNR −20 dB

Target 3

Range 500 m
Speed 6 m/s

Elevation 10◦

SNR 20 dB
SCNR −20 dB

Ground clutter

Spectrum center 0 m/s
3 dB Spectrum width ±2 m/s

DOAs [0◦ 0.1◦ 0.2◦ 0.3◦]
CNR 60 dB

The results of signal modeling are shown in Figure 5. The range-velocity map of the
received signal in antenna 1 after pulse-compression and PD processing is displayed in
Figure 5a, from where the waveform diversity of st-MIMO has formed and the echoes
from the six transmitting antenna, TX1 to TX6, have been shifted into different Doppler
sub-bands. Moreover, the velocity spectrum at targets’ range bin is displayed in Figure 5b.
where the black boxes indicate six Doppler sub-bands, DS1 to DS6. Together with the
received signals in the other five antennas, all the Q = M× N = 36 transmitting-receiving
paths, named as Channel 1 to Channel 36, can be established. The velocity spectrum of
Channel 1 after MIMO demodulation is displayed in blue line in Figure 5c, and the red
line represent the targets plus noise in order to indicate the targets information clearly. The
CNR is 60 dB after pulse-compression and PD processing, and different target SNRs are set
to keep the target SCNR as −20 dB.

The st-MIMO-ICA output of the mixed signal is shown in Figure 6. Some represen-
tative results among all the 36 output channels are displayed. Excluding the uncertainty
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of the sequence of the output signals [22], the three targets are separated from the mixed
targets plus clutter and noise signal and located in Channel 32, 33, and 35 respectively.
Channel 34 contains the combination of the ground clutter. Because the clutter DOAs
are closely distributed, the method fails to separate those clutter components. Lastly, the
remaining channels are noise signals. Figure 7 shows the detailed information of the three
separated targets after st-MIMO-ICA processing. All the three targets are precisely sep-
arated with correct velocity and desirable output SCNR of 29.8 dB, 23.4 dB, and 33.2 dB,
respectively. We compare the results of st-MIMO-ICA with two other approaches which
are also frequently utilized to mitigate the ground clutter, that is PCA and adaptive digital
beamforming (ADBF). Among the ADBF approaches, the sample matrix inversion (SMI)
technique is chosen. The results of these two approaches are also displayed in Figure 7, and
it can be seen that the ICA method enjoys the highest target output SCNR. The exact target
SCNR values of the three approaches are listed in Table 4.
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the six transmitting antenna (Tx1–Tx6) can be seen; (c) velocity spectrum of Channel 1 after MIMO
demodulation, where three targets can be seen in the red line of targets plus noise.

Blind beamforming could be achieved using the weight matrix generated by the st-
MIMO-ICA method. Figure 8 displays the beampatterns corresponding to the three targets,
with w32, w33, and w35 as the weight vectors. All the beampatterns could form a deep
null in the clutter DOA, which effectively mitigated the strong ground clutter. Meanwhile,
when the target DOA was close to the clutter DOA, the blind beamforming also suffered
from distortion in the main beam and the loss of the target SCNR, which is shown in
Figure 8a. Figure 8 also displays the equivalent beampatterns of PCA that were generated
from the eigenvectors corresponding to the three targets and the adaptive beampatterns
of SMI with the pre-known steering vectors pointing at the three targets. The st-MIMO-
ICA method showed the deepest null level at the clutter’s DOA compared with the other
two approaches, which illustrates the outplayed performance of the proposed method in
ground clutter mitigation. The detailed null levels of the three approaches are also listed in
Table 4.

To investigate the performance boundary of the proposed st-MIMO-ICA method, a
simulation of the output target SCNR under each target DOA was conducted, which is
shown in Figure 9. We still focused on the three aforementioned targets: Target 1, Target 2,
and Target 3. We let the DOA of the targets change from−10◦ to 10◦ while other parameters
remained the same. To simplify the simulation, we also let the clutter DOA be 0◦. The
number of Monte Carlo simulations was chosen to be 100 for each target DOA. The output
target SCNR well-corresponded to the input target SNR plus the coherent processing gain
of the MIMO array, which was 15.5 dB (Q = 36). However, when the target’s DOA was
close to the clutter’s DOA, the output target SCNR was decreased due to the increase in the
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cross-correlation of the two components in the spatial domain. The black dashed line in the
zoomed-out figure of Figure 9 indicates the sufficient detection threshold of 13 dB, and the
corresponding target DOA was 0.4◦, which was 6.5% of the MIMO beamwidth.
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Table 4. Comparison of simulation results.

Results (dB) Target 1 Target 2 Target 3

PCA
SCNR 2.78 5.68 15.17

Null level −28.10 −34.82 −53.20

SMI
SCNR 11.79 13.24 23.82

Null level −34.27 −44.87 −59.90

ICA
SCNR 29.77 23.42 33.20

Null level −52.97 −49.97 −75.46
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Remote Sens. 2022, 14, x FOR PEER REVIEW 17 of 22 
 

 

 
Figure 9. The output target SCNR as a function of DOA with Target 1, Target 2, and Target 3; the 
black dashed line indicates the normal detection threshold of 13 dB. 

4.2. Field Experimental Results 
Field experiments were conducted in a complex urban environment to verify the per-

formance of the proposed method. The radar system is deployed in an industrial city in 
southeast China where factory buildings, trees, moving cars constitute the sources of the 
ground clutter. The satellite image of the radar location and surroundings courtesy of 
Google Maps is shown in Figure 10a, and the radar field of view is shown in Figure 10b. 
The parameters of the radar system were given in Table 1 and Table 2. The target infor-
mation is listed in Table 5. A small drone of DJI Phantom IV is used as a real flying target 
in this section. The diagonal size of the small drone is 350mm and can be treated as a point 
target compared to the range resolution of the radar system. There are two range bins 
chosen as the field experiment location, which are 3041 m and 5585 m. The small drone 
has a flying altitude of 200 m at both locations, resulting in different target elevations of 
3.8° and 2°, respectively. 

  
(a) (b) 

Figure 10. Field experiment scene: (a) the satellite image of the radar location and surroundings 
(courtesy of Google Maps); (b) the actual view from the radar. 

Table 5. Target parameters in field test. 

Type Parameter Value 

Target 4 

Range 3041 m 
Speed 2 m/s 
Height 200 m 

Elevation 3.8° 

Target 5 

Range 5585 m 
Speed 4 m/s 
Height 200 m 

Elevation 2° 

Figure 9. The output target SCNR as a function of DOA with Target 1, Target 2, and Target 3; the
black dashed line indicates the normal detection threshold of 13 dB.

4.2. Field Experimental Results

Field experiments were conducted in a complex urban environment to verify the
performance of the proposed method. The radar system is deployed in an industrial city
in southeast China where factory buildings, trees, moving cars constitute the sources of
the ground clutter. The satellite image of the radar location and surroundings courtesy of
Google Maps is shown in Figure 10a, and the radar field of view is shown in Figure 10b.
The parameters of the radar system were given in Tables 1 and 2. The target information
is listed in Table 5. A small drone of DJI Phantom IV is used as a real flying target in this
section. The diagonal size of the small drone is 350mm and can be treated as a point target
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compared to the range resolution of the radar system. There are two range bins chosen
as the field experiment location, which are 3041 m and 5585 m. The small drone has a
flying altitude of 200 m at both locations, resulting in different target elevations of 3.8◦ and
2◦, respectively.
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Figure 10. Field experiment scene: (a) the satellite image of the radar location and surroundings
(courtesy of Google Maps); (b) the actual view from the radar.

Table 5. Target parameters in field test.

Type Parameter Value

Target 4

Range 3041 m
Speed 2 m/s
Height 200 m

Elevation 3.8◦

Target 5

Range 5585 m
Speed 4 m/s
Height 200 m

Elevation 2◦

In the first experiment of 3041 m, the small drone has the speed of 2 m/s. The
range-velocity map in Channel 1 after pulse-compression and PD processing is shown in
Figure 11, where the data label indicates the target location, speed, and amplitude. The
target is submerged in the spectrum of strong ground clutter and cannot be detected. The
result of the st-MIMO-ICA processing of Target 4 is shown in Figure 12. The velocity
spectrum at Target 4’s range bin before st-MIMO-ICA processing is shown in Figure 12a.
The black dashed line indicates the target location in the mixed signal. The target is
shadowed by strong ground clutter and cannot be detected via conventional method such
as CFAR. The velocity spectrum after st-MIMO-ICA processing is shown in Figure 12b,
where the target can be effectively extracted from the strong ground clutter with the highest
output target SCNR of 33.9 dB. The other two approaches, PCA and SMI, are also conducted
as a comparison with output target SCNR of 14.5 dB and 17.8dB, respectively. The output
of the PCA approach also has a false alarm located at −1 m/s.

In the second experiment of 5585 m, the small drone has the speed of 4 m/s and can
be seen in the range-velocity map together with some competing ground clutters which
belong to the buildings and moving cars. The range-velocity map in Channel 1 after pulse-
compression and PD processing is shown in Figure 13, where the data label indicates the
target location, speed, and amplitude. The result of the st-MIMO-ICA processing of Target
5 is shown in Figure 14. The velocity spectrum at Target 5’s range bin before st-MIMO-ICA
processing is shown in Figure 14a. The target had a SCNR of -10dB compared to the ground
clutter located at 0 m/s and -6.5 m/s. The velocity spectrum after st-MIMO-ICA processing
is shown in Figure 14b, where the target can be effectively extracted from the competing
clutters with output target SCNR of 37.8 dB, and the other two remarkable ground clutters
have been successfully suppressed. The results of PCA and SMI are also displayed with
output target SCNR of 26.6 dB and 15.1dB, respectively. The output of the PCA approach
also has a false alarm in the clutter location of −6.5 m/s.
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5. Discussion

A ground clutter mitigation method for slow-time MIMO radar using independent
component analysis was researched in this study. Firstly, a ground clutter model under a
st-MIMO scheme was provided. The clutter covariance was derived based on a Gaussian-
shaped power spectrum, and a universal signal modelling including the target, ground
clutter, and noise was provided. Secondly, the compliance for conducting ICA was dis-
cussed, and the st-MIMO-ICA processing scheme was proposed. Lastly, the performance
of the proposed method was verified with simulation and field experiments via an S-band
MIMO radar system.

The simulation results indicated the feasibility of the proposed st-MIMO-ICA method,
as the st-MIMO-ICA output showed the highest target SCNR compared with two other
conventional clutter mitigation approaches of PCA and SMI. The three test targets with
an input SCNR of −20 dB were precisely separated with the correct velocity and desirable
output SCNRs of 29.8 dB, 23.4 dB, and 33.2 dB. The st-MIMO-ICA method also showed
the deepest null level at the clutter’s DOA compared with the other two approaches. The
performance boundary of the method as validated with a separable DOA difference of 6.5%
of the MIMO beamwidth. The field experimental results further proved the effectiveness of
the proposed method in LSS target detection with strong ground clutter compared with
conventional methods.

It is worth noting that the PCA approach only utilizes the eigenvectors of the signal
covariance matrix after conducting eigenvalue decomposition. As is noted in Section 1,
PCA is often utilized as a preliminary step of ICA to decrease the dimensions of the data.
Regarding the SMI technique, we chose to use target-plus-clutter-plus-noise signals in this
study as the training data to calculate the adaptive weight vector, which limited the perfor-
mance of the SMI technique. Generally, it is not feasible to obtain independent and identical
distributed clutter samples in real scenes. The ICA method, however, utilizes negentropy
as the cost function and the fixed-point algorithm for optimization to achieve better source
separation results, which corresponds to desirable ground clutter mitigation performance.

There is still work to be conducted. It is worth further investigating the character of
ground clutter, especially regarding the number of the sources of clutter. In this paper,
we assumed that the DOAs of ground clutter for a certain snapshot were limited even
though actual clutter characteristics are more complex. Another work will focus on the
adaption of the detection threshold to further improve the detection performance for LSS
targets [42,43].
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