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Abstract: With the rapid development of large urban agglomerations and the increasing complexity
of urban roads, the high-precision positioning of vehicles has become the cornerstone for the applica-
tion of vehicle core technologies such as automatic driving. The real-time positioning accuracy of
satellite navigation is easily affected by urban canyons, and its stability is poor; thus, how to use the
information of the internet of vehicles to achieve satellite navigation fusion has become a difficult
problem of multivehicle cooperative positioning. Aiming at this problem, this paper proposes a
multivehicle 3D cooperative positioning algorithm based on information geometric probability fusion
of GNSS/wireless station navigation (MVCP-GW), which creatively converts various navigation
source information into an information geometric probability model, unifies navigation information
time–frequency parameters, and reduces the impact of sudden error. Combined with the Kullback–
Leibler algorithm (KLA) fusion method, it breaks off the shackles of the probabilistic two-dimensional
model and achieves multivehicle three-dimensional cooperative positioning. Compared with the
existing cooperative positioning algorithms in the performance of accuracy stability, applicability,
obstruction scenarios, and physical verification, the simulation results and physical verification show
that the MVCP-GW algorithm can effectively improve real-time vehicle positioning and the stability
of vehicle positioning, as well as resist the impact of obstructed environments.

Keywords: cooperative positioning; multivehicle; information geometric probability; information fusion

1. Introduction

With the rapid development of smart city core businesses, such as autonomous driving
and intelligent transportation, the demand for real-time and high-precision positioning of
vehicles is increasing [1,2]. In related technologies, vehicle navigation systems generally
use the motion information of vehicles in two-dimensional plane to locate and navigate [3].
They focus on the motion information of vehicles in the horizontal direction, ignoring
the motion information in the vertical (height) direction, which leads to low positioning
accuracy of vehicles in some scenes. For example, when a vehicle is driving in an overpass
or viaduct area, the vehicle navigation system cannot tell whether it is above or below the
bridge; when the vehicle is in a multistory three-dimensional parking garage, the vehicle
navigation system cannot distinguish the parking lot where the vehicle is located.

To improve vehicle positioning accuracy, global navigation satellite systems (GNSSs),
inertial navigation systems (INSs), wireless station positioning systems, radio detection
and ranging (RADAR), light detection and ranging (LiDAR), and 5G mmWave are widely
used in vehicle positioning [4]. Although they can measure and solve the vehicle position
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through relevant algorithms to obtain accurate positioning information, they also have
the problems of sensor working characteristic deficiencies and environmental limitations.
GNSS can provide full coverage and all-weather positioning, but it leads to poor position-
ing accuracy and stability due to the urban canyon effect [5]. INS can provide continuous
attitude information, which is independent of environmental conditions and not easily
disturbed, but the inertial unit produces cumulative errors during use and cannot work
independently for a long time [6]. The positioning methods based on wireless networks
calculate the position through information such as the time of arrival or received signal
strength, and the result is susceptible to communication delay and multipath effects [7].
RADAR and LiDAR achieve relative positioning by measuring the position of surrounding
objects, but the former method has low accuracy, while the latter method is greatly affected
by the weather, and its performance drops significantly in cloud, rain, and fog environ-
ments [8,9]. Simultaneous localization and mapping (SLAM) technology based on visual
navigation and LiDAR is suitable for unknown environments. The map constructed by
SLAM contains rich driving assistance information, but it is difficult to save and update,
and the natural cumulative errors cannot be eliminated [10]. In recent years, with the rapid
development of 5G millimeter waves, vehicle positioning based on millimeter waves has
also become a hot issue in the field of navigation [11]. However, the high demand for
millimeter wave technology for antenna arrays and transmission power makes it difficult to
achieve popularization in the field of household cars [12]. Because of the inherent problems
of a single navigation source, vehicle real-time and high-precision positioning is impossible.
The fusion of different types of navigation sources has become the core problem in the field
of vehicle positioning [13].

In the current vehicle ranging and positioning information fusion, the perception of the
surrounding environment of the vehicle is mainly accomplished through various ranging,
direction-finding, and perception sensors. The existing fusion technology mainly fuses
navigation sources through a Kalman filter (KF) [14]. However, the scalability of KF is not
strong. When more than three sources are fused, the computational complexity increases
exponentially, and the real-time performance is affected [15]. In addition, KF cannot
adequately solve the problems of vehicle plug-and-play under the internet of vehicles.
Because of the rapid development of the internet of vehicles, the interactive information
between vehicles has increased, and the vehicle cooperative positioning technologies
represented by neural networks and factor graphs have also been applied to the field
of vehicle positioning [16,17]. The positioning accuracy of these methods is obviously
improved, but the computational complexity is too high, especially in the three-dimensional
positioning of vehicles, which cannot meet the real-time positioning requirements under the
condition of large-scale vehicle networking and high-speed vehicle movement. Therefore,
how to combine the relative distance between vehicles, satellite navigation, and wireless
station navigation to achieve three-dimensional cooperative positioning of multiple vehicles
is a difficult problem in the current development of intelligent vehicles.

To solve the problems of vehicle plug-and-play under the internet of vehicles, obstruc-
tion and interference of navigation systems, and the poor real-time positioning performance
caused by the high complexity of existing navigation source fusion technologies, this paper
proposes a fusion architecture based on information geometric probability and achieves
a large-scale vehicle three-dimensional cooperative positioning algorithm by combining
the distance measurement information of vehicles under the internet of vehicles. The main
innovations are as follows:

1. The first innovation is to introduce the idea of information geometry into multisource
fusion. Aiming at the inconsistency of the time and frequency of the output navigation
information, we convert the two types of navigation source information into an infor-
mation geometric probability model to unify the time and frequency of the navigation
information for large-scale vehicles under the internet of vehicles. The unification
of positioning information parameters can effectively reduce the complexity of the
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algorithm, enhance the scalability of the fusion algorithm, and successfully solve the
problem of vehicle plug-and-play under the internet of vehicles.

2. The second innovation is to introduce the idea of multisource fusion into cooperative
positioning, and transform cooperative positioning into multisource fusion in different
spatial distributions by taking nodes as sources. Aiming at the problem that the
information geometric probability model is two-dimensional and cannot be directly
fused and positioned in three-dimensional space, we propose a three-dimensional
KLA navigation information fusion method based on the ranging information of the
vehicle network. The method uses relative entropy theory to measure the difference
in the probability of navigation distribution information among multiple vehicles in
the vehicle network and rapidly fuses navigation information under the minimum
difference criterion. This method can ensure the real-time performance of multivehicle
positioning and effectively suppress the sudden error.

3. We construct a physical verification platform for multivehicle cooperative positioning
and verify the performance comparison between the MVCP-GW algorithm and the
current main algorithms through simulations of accuracy stability, applicability, and
obstruction scenarios. The results show that the MVCP-GW algorithm has high
accuracy, strong robustness, and a wide application range. When satellite navigation
or wireless navigation signals are lost or abruptly changed, the MVCP-GW algorithm
can adequately suppress the impact of errors. In addition, compared with other
distributed cooperative positioning algorithms, the MVCP-GW algorithm has the
fastest convergence speed of more than 40%.

The remaining paper is organized as follows: Section 2 reviews the related technologies
of cooperative positioning; Section 3 introduces the positioning scenario and system model;
Section 4 focuses on the multivehicle 3D cooperative positioning algorithm based on
information geometric probability; Section 5 shows the simulation results.

2. Related Work

With the rise in technologies such as the internet of things and intelligent transporta-
tion, continuous, accurate, and highly reliable positioning information is the basis for
autonomous path planning and motion control of intelligent vehicles, which have been
highly valued by many scholars.

Because of various limitations and defects, a single sensor cannot meet the high-
precision and strong robust positioning requirements of intelligent vehicles. Therefore,
multi-sensor information fusion technology has become a new research object. Among
them, the Kalman filter (KF) and its extension methods are the most widely used, such
as the extended Kalman filter (EKF), unscented Kalman filter, and cubature Kalman filter
(CKF). The study in [18] used the EKF to fuse GPS and IMU, which solves the prob-
lem of positioning distortion caused by GPS signal loss and improves the positioning
accuracy and reliability of the navigation system. The study in [19] investigated the po-
sitioning of low-speed unmanned vehicles in the area of GNSS signal suppression and
proposed a low-speed unmanned vehicle positioning algorithm based on the multistate
constrained Kalman filter (MSCKF) algorithm integrating low-cost binocular cameras and
IMU, which effectively solved the problem of vehicle positioning in the GNSS rejection
domain. The study in [20] comprehensively considered the advantages and disadvantages
of GPS, the strapdown inertial navigation system, and the odometer (OD) and proposed a
GPS/INS/OD navigation algorithm based on EKF. The experimental results show that OD
can correct the IMU error and improve the navigation performance, while the algorithm
can provide accurate positioning information in the absence of a GPS signal. The method
of multi-sensor fusion can effectively improve the problem of large error or low robustness
of a single sensor. However, the fusion method based on KF has weak scalability and
high algorithm complexity. In addition, in the case of long-term loss of GNSS signals and
difficulty in building high-precision maps due to similar features in long tunnels, there are
still many defects in single-vehicle positioning.
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Therefore, how to make full use of the rich ranging and direction-finding information
between vehicles to further improve the positioning accuracy and increase the robustness
of the system has gradually become a new research hotspot. The early centralized coopera-
tive positioning of vehicles was mainly used in wireless sensor networks, which mainly
achieved whole-network data fusion through one or more central nodes and transmitted
the positioning results to the node users of the whole network [21,22]. However, the above
methods are not suitable for the needs of multivehicle cooperative positioning under the
internet of vehicles; hence, the distributed cooperative positioning method has become
the main research direction of multivehicle positioning under the internet of vehicles. Ac-
cording to the rapid change in vehicle number and position in multivehicle cooperative
positioning, the authors of [23] proposed an algorithm for multivehicle cooperative posi-
tioning based on semi-defined programming, which can achieve target vehicle positioning
by collecting ranging information, and positioning information between surrounding ve-
hicles and target vehicles. The study in [24] proposed a second-order cone programming
(SOCP) model on the basis of [23], which achieved a rapid increase in positioning speed by
optimizing the structure. However, when any vehicle involved in cooperative positioning
has a sudden error, the accuracy of cooperative positioning of other surrounding vehicles
is greatly affected. To improve the accuracy of multivehicle cooperative positioning, the
authors of [25] proposed a vehicle cooperative positioning algorithm based on a factor
graph. This algorithm used the surrounding vehicles to evaluate the positioning accuracy
of target vehicles, established a confidence degree model, and achieved the positioning
solution under the whole-vehicle network through a factor graph network. The study
in [26] proposed a positioning technology for the Internet of Vehicles based on a neural
network, which used a neural network to construct the positioning information learning
model. These two algorithms could effectively improve the positioning accuracy, but they
had the problems of high algorithm complexity and long positioning time in the large-scale
internet of vehicles.

The existing distributed multivehicle positioning fusion technology cannot meet the
needs of real-time and fast positioning due to the rapidly changing characteristics of
vehicles, and the different time–space–frequency parameters, such as the navigation infor-
mation format and output frequency among vehicles, will affect the fusion efficiency. In
addition, when the local vehicle positioning information has a sudden error, the positioning
performance of the entire internet of vehicles will be reduced. To solve the above prob-
lems, this paper creatively converts navigation information into an information probability
model and uses the information geometry principle to rapidly fuse distributed vehicle
positioning. The concept of information geometry was first proposed for radar target
detection in 2013. The advantage of this method is to use multiple distributed detection
signals to fuse the detection probability of the target, which greatly improves the target
detection accuracy [27,28]. The study in [27] proposed a total Bregman divergence-based
matrix information geometry (TBD-MIG) detector and applied it to detect targets emerged
into nonhomogeneous clutter, which can achieve great performances due to their power of
discrimination and robustness to interferences. The study in [28] proposed a novel type
of learning discriminative matrix information geometry (MIG) detectors in the unsuper-
vised scenario through principal component analysis (PCA) theory, whose performance
improvements could be achieved compared with the conventional detectors and their state-
of-the-art counterparts within nonhomogeneous environments. Aiming at the problem that
information probability cannot be directly fused in multivehicle cooperative positioning,
this paper designs a KLA fusion architecture based on the ranging information between
multiple vehicles, which breaks off the shackles of information probability fusion, which is
difficult to calculate.
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3. System Model
3.1. Diagram of Multivehicle 3D Cooperative Positioning Scene

Because of the ubiquity of the urban canyon effect, electromagnetic multipath interfer-
ence and vehicle movement, a single vehicle achieves continuous positioning with difficulty.
Therefore, multivehicle cooperative positioning has become an important research direc-
tion. The multivehicle 3D cooperative positioning scene studied in this paper is shown in
Figure 1.
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Figure 1. Diagram of multivehicle 3D cooperative positioning scene.

In Figure 1, the red link indicates the communication link between the vehicle and
the base station, the yellow link indicates the distance measurement communication link
between the vehicles, and the dashed line between the satellite and the vehicle indicates
that the vehicle can be positioned through the navigation satellite. Some vehicles can be
positioned through the navigation satellite, some vehicles can be positioned through the
wireless station, and some vehicles can only be positioned through surrounding vehicles.

3.2. Fusion Architecture Based on Information Geometric Probability

The topology of the internet of vehicles will change over time, which can lead to
a single vehicle being unable to achieve long-term single navigation source positioning.
Therefore, the core difficulty is in achieving multitype ranging, positioning information in-
teraction, and fusion between multiple vehicles with the help of the information interaction
characteristics of the internet of vehicles.

In multivehicle cooperative positioning, the time–frequency information of the po-
sitioning information received by the distributed vehicles in the internet of vehicles is
completely different, and the plug-and-play characteristics of vehicles will make the time
and frequency very difficult to synchronize, which will reduce the precision of multivehicle
cooperative positioning; the spatial ranging error between vehicles will further increase the
positioning error. To achieve the rapid fusion of real-time multitype positioning informa-
tion among multiple vehicles, this paper proposes using the correlation between vehicle
positioning information probability and positioning accuracy to establish the geometric
probability model of satellite positioning and wireless station positioning, and to achieve
rapid positioning fusion between multiple vehicles combined with ranging information
between vehicles. The fusion architecture based on information geometric probability is
shown in Figure 2.
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First of all, we construct the statistical model functions of various navigation sources,
and then obtain the positioning results and positioning ambiguity of navigation sources
according to the actual measurement parameters. In this way, we can convert satellite
positioning information and wireless station positioning information into information
geometric probability model, which realizes the unification of heterogeneous navigation
sources. Assuming that the probability distribution of navigation information is Gaussian,
its positioning result can be represented by mean value µ, and its positioning ambiguity can
be represented by variance σ2, such that the navigation information will be transformed
into information geometric probability density function N

(
µ, σ2).

Then, the different navigation sources of the target vehicle are fused to improve the
positioning accuracy of single vehicle. Finally, according to the positioning results of the
cooperative vehicles and the abundant ranging and direction information in the internet
of vehicles, multivehicle cooperative positioning is carried out to improve the positioning
accuracy and stability of the whole-vehicle networking.

4. KLA Information Geometry Fusion Method
4.1. Three-Dimensional Geometric Probability Model of Positioning Information

In the internet of vehicles, because of the plug-and-play characteristics of vehicles, the
time and frequency parameters of the base station positioning signal of each vehicle are
difficult to synchronize, resulting in a significant decline in the positioning accuracy after
vehicle cooperative positioning. Therefore, this paper uses vehicle positioning information
and ranging information to construct the geometric probability model of positioning
information to unify the time and frequency parameters.

The position of the positioned vehicle is set as v = (x, y, z), the number of cooperative
vehicles is set as n (n ≥ 4), whose positions are Vi = {(Xi, Yi, Zi)|i = 1, 2, 3, · · · , n}, and
the ranging information between v and Vi is set as d = (d1, d2, · · · , dn). Then, we get the
following system of equations:

(X1 − x)2 + (Y1 − y)2 + (Z1 − z)2 = d1
2

(X2 − x)2 + (Y2 − y)2 + (Z2 − z)2 = d2
2

...
(Xn − x)2 + (Yn − y)2 + (Zn − z)2 = dn

2

. (1)
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To reduce the influence of the inherent ranging error of the vehicle, the two adjacent
equations can be subtracted to obtain Equation (2).

2(X2 − X1)x + 2(Y2 −Y1)y + 2(Z2 − Z1)z =
d1

2 − d2
2 −

(
X1

2 − X2
2)− (Y1

2 −Y2
2)− (Z1

2 − Z2
2)

2(X3 − X2)x + 2(Y3 −Y2)y + 2(Z3 − Z2)z =
d2

2 − d3
2 −

(
X2

2 − X3
2)− (Y2

2 −Y3
2)− (Z2

2 − Z3
2)

...
2(Xn − Xn−1)x + 2(Yn −Yn−1)y + 2(Zn − Zn−1)z =

dn−1
2 − dn

2 −
(
Xn−1

2 − Xn
2)− (Yn−1

2 −Yn
2)− (Zn−1

2 − Zn
2)

. (2)

The following can be defined:

A =


2(X2 − X1) 2(Y2 −Y1) 2(Z2 − Z1)
2(X3 − X2) 2(Y3 −Y2) 2(Z3 − Z2)

...
...

...
2(Xn − Xn−1) 2(Yn −Yn−1) 2(Zn − Zn−1)

, (3)

B = d2 − d̃
2
=


d1

2

d2
2

...
dn

2

−


X1
2 + Y1

2 + Z1
2

X2
2 + Y2

2 + Z2
2

...
Xn

2 + Yn
2 + Zn

2

, (4)

Q =



1 −1 0 0 · · · 0

0 1 −1
. . . . . .

...

0 0
. . . . . . 0 0

...
. . . . . . 1 −1 0

0 · · · 0 0 1 −1


. (5)

Then,
Av = QB. (6)

The following can also be defined:

P =
(

ATA
)−1

AT =


a1

1 a2
1 a3

1
a1

2 a2
2 a3

2
...

...
...

a1
n−1 a2

n−1 a3
n−1


T

, (7)

where the superscript indicates the column number.
The solution according to the least-squares method is

v̂ =
(

ATA
)−1

ATb = PQB. (8)

Because of the movement of the vehicle and the working range of the base station, the
ranging information between different base stations is set to be completely independent.
The covariance of the vehicle’s position result v̂ is

Dv̂ = PQDB(PQ)T = PQ
(

Dd2 + D
d̃

2

)
(PQ)T , (9)
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where

PQ =

a1
1 a1

2 − a1
1 a1

3 − a1
2 · · · −a1

n−1
a2

1 a2
2 − a2

1 a2
3 − a2

2 · · · −a2
n−1

a3
1 a3

2 − a3
1 a3

3 − a3
2 · · · −a3

n−1

, (10)

DB = diag(D1, D2, · · · , Dn), (11)

Di = Ddi
2 + DX̃i

2 + DỸi
2 + DZ̃i

2 + 2cov
(

X̃i
2, Ỹi

2
)
+ 2cov

(
X̃i

2, Z̃i
2
)
+ 2cov

(
Ỹi

2, Z̃i
2
)

,
(12)X̃i

Ỹi
Z̃i

 =

Xi − x
Yi − y
Zi − z

 = Vi − v. (13)

Therefore, Equation (9) can be described as

Dv̂ =

cov(H1, H1) cov(H1, H2) cov(H1, H3)
cov(H2, H1) cov(H2, H2) cov(H2, H3)
cov(H3, H1) cov(H3, H2) cov(H3, H3)

, (14)

where
cov
(

Hi, Hj
)
=
(
ai

1 − 0
)(

aj
1 − 0

)
D1 +

(
ai

2 − ai
1
)(

aj
2 − aj

1

)
D2 + · · ·

+
(
ai

n−1 − ai
n−2
)(

aj
n−1 − aj

n−2

)
Dn−1 +

(
0− ai

n−1
)(

0− aj
n−1

)
Dn

. (15)

Supposing that the normally random variable X satisfies X ∼ N
(
µ, σ2),

DX2 = 2σ4 + 4µ2σ2. (16)

Supposing that the normally random variables X and Y satisfy (X, Y) ∼
N
(
µ1, µ2, σ1

2, σ2
2, ρ
)
,

cov
(

X2, Y2
)
= 2ρ2σ1

2σ2
2 + 4ρµ1µ2σ1σ2. (17)

The initial value of the vehicle position can be obtained through the least-squares
method, as shown in Equation (8), and the covariance matrix of the vehicle position
information after error transfer can be obtained through Equations (9)–(17).

4.2. KLA Information Fusion Algorithm

For any vehicle in the vehicle network, the number of geometric density functions of
other vehicles and its own positioning information are set as N, and the geometric density
function of each positioning information is set as pi(·), with the corresponding weight πi.
Thus, the fusion position result p is

p = arg inf
N

∑
i=1

πiD
(

p|
∣∣∣pi
)

, (18)

where D
(

Pi‖Pj
)

denotes the Kullback–Leibler distance on the information geometry, and

D
(

Pi‖Pj
)
=
∫

Piln
(

Pi/Pj
)
. (19)

To reduce the effect of vehicles with large errors on other vehicles in the internet of
vehicles, this paper uses the inverse of the variance of the geometric density function of
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the positioning information to identify the weights in the fusion. The result of the fusion
probability density under the KLA algorithm can be expressed as

p(x) =
∏N

i=1
[
pi(x)

]πi∫
∏N

i=1
[
pi(x)

]πi
dx

. (20)

The probability density function of the n-dimensional normal distribution is

N(x|µ, Σ) =
1

(2π)n/2|Σ|1/2 exp
{
−1

2
(x− µ)TΣ−1(x− µ)

}
, (21)

where µ and Σ denote the mean and covariance matrices of the n-dimensional normal
distribution, respectively.

Supposing Pi(·) ∼ N(x|µi, Σi) and Pj(·) ∼ N
(
x
∣∣µj, Σj

)
, the KL distance between

n-dimensional normal distributions can be obtained as

D
(

Pi‖Pj
)
=

1
2

[(
µi − µj

)TΣ−1
j
(
µi − µj

)
+ tr

(
ΣiΣ−1

j

)
+ ln

∣∣Σj
∣∣

|Σi|
− n

]
. (22)

Supposing pi(·) ∼ N
(

x
∣∣∣µi, Σi

)
, p(·) ∼ N(x|µ, Σ ), and the probability density as

an n-dimensional normal distribution, the result of Equation (20) can be expressed as Σ−1
= ∑N

i=1 πi
(

Σi
)−1

Σ−1
µ = ∑N

i=1 πi
(

Σi
)−1

µi
. (23)

To achieve KLA information fusion, k is set at a discrete point in time, xk ∈ Rn is
the system state, and wk ∈ Rn is the process noise, where Rn represents the set of all
n-dimensional real vectors, and Rm×n represents the set of all m× n-dimensional matrices.
The positioning state equation of any vehicle is

xk+1 = Axk + wk, (24)

where A is the coefficient matrix of the state equation of the system.
The measurement equation of the received positioning information of surrounding

vehicles is
yi

k = Cixk + vi
k, (25)

where Ci is the measurement equation coefficient matrix of the i-th vehicle, vi
k ∈ Rn×y

represents zero-mean random white noise, and its probability density is pvi (·).
Next, pi

l(·) is defined as the positioning result of the i-th vehicle at the l-th iteration,
and the initial iteration value is pi

0(·) = pi(·). The initial state of the system x0 is unknown
but can be assigned according to a known probability distribution p0|−1(·). The process
disturbance and all measurement noise are set as a normal distribution. Then,

p0(x) = N
(

x; x̂0|−1, P0|−1

)
, (26)

pw(x) = N(w; 0, Q), (27)

pvi (x) = N
(

vi; 0, Ri
)

, i = 1, 2, · · · , N. (28)

At this point, the estimation of the geometric density function of the positioning
information of the i-th vehicle can be obtained recursively by Bayesian filtering. Then,

pi
0|−1(x) = p0|−1(x), (29)
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pi
k|k(x) =

pvi
[
yi

k − hi(x)
]
pi

k|k−1(x)∫
pvi
[
yi

k − hi(ξ)
]
pi

k|k−1(ξ)dξ
, (30)

pi
k+1|k(x) =

∫
pvi [x− f (ξ)]pi

k|k(ξ)dξ, (31)

where x̂0|−1 is the known vector, and P0|−1 is the known positive definite matrix.
The iterative estimation of Equations (30) and (31) can be expressed as

pi
k|k(x) = N

(
x; x̂i

k|k, Pi
k|k

)
, (32)

pi
k+1|k(x) = N

(
x; x̂i

k+1|k, Pi
k+1|k

)
. (33)

To improve the positioning speed and stability of multivehicle cooperation, the infor-
mation matrix is used to replace the mean vector and covariance matrix, which is expressed
as follows:

Ωi
k|k =

(
Pi

k|k

)−1
, (34)

Ωi
k+1|k =

(
Pi

k+1|k

)−1
. (35)

The information vector can be obtained as

qi
k|k = Ωi

k|kx̂i
k|k, (36)

qi
k+1|k = Ωi

k+1|kx̂i
k+1|k. (37)

Then, the update process can be expressed as

qi
k|k = qi

k|k−1 +
(

Ci
)T(

Ri
)−1

yi
k, (38)

Ωi
k|k = Ωi

k|k−1 +
(

Ci
)T(

Ri
)−1

Ci. (39)

The prediction process can be expressed as

qi
k+1|k = A−T

[
1−Ωi

k|k

(
Ωi

k|k + ATQ−1A
)−1

]
qi

k|k, (40)

Ωi
k+1|k = A−TΩi

k|kA−1 −A−TΩi
k|k

(
Ωi

k|k + ATQ−1A
)−1

Ωi
k|kA−1. (41)

Combined with the above equation, the below algorithm steps can be obtained.

(1) Step 1

Through the vehicle measurement results yi
k and the updated local information group(

qi
k|k−1, Ωi

k|k−1

)
, obtain the posterior information group

(
qi

k|k,0, Ωi
k|k,0

)
using Equations (38)

and (39).

(2) Step 2

Execute the l-th iteration based on the KLA algorithm,

Ωi
k|k,l+1 = ∑

j∈Ni

πi,jΩi
k|k,l , l = 0, 1, 2, · · · , L− 1, (42)

qi
k|k,l+1 = ∑

j∈Ni

πi,jqi
k|k,l , l = 0, 1, 2, · · · , L− 1, (43)

and obtain the fusion information group
(

qi
k|k, Ωi

k|k

)
,
(

qi
k|k,L, Ωi

k|k,L

)
.
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(3) Step 3

Calculate the posterior information group
(

qi
k+1|k, Ωi

k+1|k

)
using Equations (42)

and (43).
When the vehicle can obtain the initial positioning information through the wireless

station or navigation satellite, the iterative initial value of the information matrix and the
information vector is

Ωi
0|−1 =

(
Pi

0|−1

)−1
, (44)

qi
0|−1 =

(
Pi

0|−1

)−1
x̂i

0|−1. (45)

When the vehicle cannot be positioned because of occlusion, set the initial iterative
value of the vehicle’s information matrix and information vector as

Ωi
0|−1 = 0, (46)

qi
0|−1 = 0 (47)

The KLA fusion method has low computational complexity and can achieve vehicle
plug-and-play fusion under the internet of vehicles. In addition, it can reduce the influence
of sudden errors and effectively improve the accuracy and stability of multivehicle coop-
erative positioning by transforming the positioning information of each vehicle into the
geometric density function of positioning information.

5. Simulation Results and Analysis

This paper used MATLAB 2018a to simulate and compare the performance of the
MVCP-GW algorithm with the current mainstream multivehicle cooperative positioning
algorithms, such as the second-order cone programming (SOCP) algorithm [24], factor
graph cooperative positioning (FGCP) algorithm [25], and neural networks cooperative
positioning (NNCP) algorithm [26], from three aspects: accuracy stability, applicability, and
obstruction scenarios. Among them, the SOCP algorithm adopts the second-order cone
optimization method to process the information of cooperative vehicles, and its convergence
speed is fast, but its positioning accuracy is low, and its anti-interference ability is weak. The
FGCP algorithm adopts the factor graph theory, regards the vehicle as the node of the factor
graph, and completes the cooperative positioning through the confidence information
transmission. Its positioning accuracy and robustness are improved, but the algorithm
complexity is large, and the convergence speed is slow. The NNCP algorithm establishes
the connection between vehicles through deep neural network (DNN) and blockchain
technology, and designs the corresponding information selection, information sharing, and
punishment mechanisms. Its positioning accuracy is high, and its stability is good, but
there is also a problem of slow convergence time.

In this paper, all errors are finally reflected in the ranging error and positioning error;
hence, in order to unify the quantification, we use the ranging error and positioning error to
simulate the measurement. The mean square error (MSE) is used to evaluate the positioning
accuracy.

5.1. Simulation Analysis of Positioning Accuracy and Stability

In multivehicle cooperative positioning, the interactive ranging information between
vehicles is the core foundation of cooperative positioning, and the ranging accuracy directly
affects the accuracy of cooperative positioning. In this section, the effect of the ranging error
variance σ1 on the positioning accuracy is simulated. The range of σ1 is set as 0 ∼ 0.5 m,
the size of the simulation scene is set as 200 m× 200 m× 40 m, the number of vehicles is set
as n = 100, whose positions are randomly distributed in the simulation scene, the number
of base stations is set as N = 8, which are arranged at the top of the simulation scene, the
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variance of satellite navigation positioning error is set as σ2 = 1 m, and the number of
Monte Carlo simulations is set as 1000. The simulation results are shown in Figure 3.
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Figure 3. The relation diagram of positioning error MSE with the increase of ranging error variance σ1.

As seen from Figure 3, with the increase in σ1, the positioning accuracy of all algorithms
was significantly reduced, among which the performance of the MVCP-GW algorithm
was the best. When σ1 = 0.1 m, the positioning error was only 0.098 m. This result shows
that the MVCP-GW algorithm can make use of ranging information between vehicles to
realize cooperative positioning, and it can effectively suppress the influence of ranging
error. The NNCP algorithm took second place. Under the same variance condition, the
error was 0.126 m, indicating that the neural network can suppress the influence of ranging
error well. Because the FGCP algorithm introduces ranging errors in the confidence
calculation, its error was much higher than that of the NNCP algorithm when σ1 was large.
The performance of the SOCP algorithm had a large gap with the performance of other
algorithms, indicating that the information cooperative ability of SOCP is weak.

In multivehicle cooperative positioning, the network topology of base stations has a
great impact on the positioning results. To verify the stability of the MVCP-GW algorithm,
this section conducted a simulation experiment on the relationship between the positioning
error and the distribution of base stations. Thus, σ1 = 0.1 m was considered, and the other
simulation conditions were the same as above. First, this paper simulated the effect of
network topology on positioning error under the ideal condition of base station distribution,
in which base stations were distributed at the top of the simulation scene. The simulation
conditions are shown in Figure 4a, in which the red circle denotes the base station, the blue
square denotes the vehicle, the green asterisks connected to the blue square denote the
node movement direction, and the length of the line between the square and the asterisks
denotes the speed.

As seen in Figure 4b, the MVCP-GW algorithm had the best and most stable position-
ing effect under the ideal distribution of base stations, and the average positioning error
was approximately 0.1 m. The positioning accuracy of the NNCP algorithm was lower than
that of the MVCP-GW algorithm but higher than that of the FGCP and SOCP algorithms,
and the error fluctuation amplitude was also smaller. The FGCP and SOCP algorithms had
poor stability in this simulation experiment, and the FGCP algorithm outperformed the
SOCP algorithm.
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Figure 4. Simulation results of positioning error MSE under different distribution of base stations:
(a) schematic diagram of ideal distribution topology of base stations; (b) the relation diagram of
positioning error MSE with time under the ideal distribution of base stations; (c) schematic diagram
of random distribution topology of base stations; (d) the relation diagram of positioning error MSE
with time under the random distribution of base stations.

In fact, it is impossible to ensure that the base station distribution is always in an ideal
condition. Under the condition that other simulation conditions remain unchanged, this
paper conducted the simulation of a random situation in which the distribution of base
stations was random. The simulation scenarios are shown in Figure 4c.

Figure 4d shows that, under the random distribution of base stations, the positioning
accuracy of the MVCP-GW algorithm was still the best, and the positioning error still
fluctuated approximately 0.1 m, which is consistent with the ideal distribution. The
simulation results show that the MVCP-GW algorithm could eliminate the influence of
base station distribution through the cooperative information among vehicles, and it
could realize multivehicle cooperative positioning under various base station distribution
topologies, revealing strong applicability. The positioning accuracy of the NNCP algorithm
was also close to the ideal situation, and the positioning error and jitter of the FGCP and
SOCP algorithms increased significantly, indicating that these two algorithms were greatly
affected by the topology of the base station.

5.2. Simulation Analysis of Algorithm Applicability

In the real environment, the vehicle density directly affects the construction of the
network topology and the accuracy of cooperative positioning. In addition, the demand
for the plug-and-play characteristics of the internet of vehicles also necessitates good
applicability of the multivehicle cooperative positioning algorithm, which can enable
real-time high-precision positioning under different vehicle densities. In this section,
the relationship between the multivehicle cooperative positioning error and the vehicle
distribution density and the relationship between the multivehicle cooperative positioning
time and the vehicle distribution density were simulated. The number of vehicles was set as
n = 20 ∼ 200 with a random distribution of base stations, and σ1 = 0.1 m was considered;
other simulation conditions were consistent with Section 5.1.
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In this scenario, the average speed of the positioning vehicle was 15 m/s, and it trav-
eled in a random direction, which was used to simulate the actual positioning performance
under real road conditions. In Figure 5b, the time on the vertical axis is the total running
time tall of the algorithm, and tall/n is the average time of single-vehicle positioning. The
simulation results are shown in Figure 5.
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Figure 5. Simulation results of algorithm performance changing with vehicle distribution density:
(a) the relation diagram of positioning error MSE with the increase of the number of vehicles n;
(b) the relation diagram of positioning time tall with the increase of the number of vehicles n.

Figure 5a shows that, with increasing n, the errors of the four algorithms decreased
rapidly and then tended to be stable. This result indicates that the sparse distribution of
vehicles led to less cooperative information and low positioning accuracy; in contrast, if
the vehicles were densely distributed, the positioning accuracy was improved, but there
was a limit to the improvement. As seen in Figure 5b, the MVCP-GW algorithm had the
fastest positioning time under the random distribution of base stations, which indicates
that the MVCP-GW algorithm had lower computational complexity when compared with
the other three algorithms.

Under different vehicle distribution densities, the performance of the MVCP-GW
algorithm was always optimal, indicating that the MVCP-GW algorithm can adapt to the
network topology of different vehicle densities and effectively meet the needs of plug-and-
play characteristics under the internet of vehicles. These findings are due to the fact that
the heterogeneous navigation source information is converted into information geometric
probability, and then the navigation source is unified, which can effectively reduce the
complexity of the algorithm and improve the scalability of the algorithm.

5.3. Simulation Analysis of Positioning in Obstruction Scenarios

In a real road environment, because of the influence of the urban canyon effect and a
complex electromagnetic environment, the satellite navigation signal and the communica-
tion signal between vehicles is abnormal or even lost, and these sudden changes greatly
affect the positioning accuracy. This section simulates the influence of sudden error in
obstruction scenarios. The same simulation parameter settings were selected with a random
distribution of base stations, the maximum number of times was set as km = 50, and the
sampling interval was set as T = 0.1 s. At the 10th moment, 20% of the vehicles lost satellite
signals, and, at the 30th moment, 30% of the ranging information between vehicles changed
suddenly, where we randomly selected 30% of the vehicles and changed their ranging error
variance σ1 from 0.1 m to 0.3 m. The simulation results are shown in Figure 6.
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As seen from Figure 6, when satellite signal mutation occurred at the 10th moment,
the error increment of the MVCP-GW algorithm was the smallest, approximately 0.04 m,
and it could converge again after four moments. The other three algorithms needed
5 ∼ 8 moments, and the error increment was close to 0.06 m, 0.10 m, and 0.13 m for the
NNCP algorithm, FGCP algorithm, and SOCP algorithm, respectively. When intervehicle
ranging information mutation occurs at the 30th moment, the error increment and conver-
gence time of the four algorithms increased, but the MVCP-GW algorithm was still optimal
among the four algorithms.

The experimental results show that the MVCP-GW algorithm based on information
geometry can rapidly fuse multiple types of navigation source information through the
KLA method, effectively suppress the influence of sudden error on positioning results,
ad improve the stability of the whole cooperative network, which can meet the needs of
continuous, real-time, and high-precision positioning under the internet of vehicles.

5.4. Summary of Simulation Results

From the above experiments, we selected two groups of representative experimental
data, positioning error and positioning time in the non-mutation scene, and error fluctuation
and convergence time in the mutation scene, and we provide a comparison of algorithm
performance in Tables 1 and 2.

Table 1. Comparison of algorithm performance in non-mutation scene (ranging error variance
σ1 = 0.1 m, the number of vehicles n = 100).

Algorithm MSE (m2) Positioning Time (s)

MVCP-GW 0.098 0.58
SOCP 0.317 0.94
FGCP 0.215 1.84
NNCP 0.126 1.62

Table 2. Comparison of algorithm performance in mutation scene (20% of the vehicles lost satellite
signals).

Algorithm MSE Fluctuation (m2) Reconvergence Time (s)

MVCP-GW 0.04 0.4
SOCP 0.13 0.6
FGCP 0.10 0.8
NNCP 0.06 0.8
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Through the comparison of the above experimental data, we can see that in the same
environment, the MVCP-GW algorithm had the smallest positioning error, the highest
positioning accuracy, and the shortest positioning time, which shows that the algorithm
can meet the real-time and high-precision positioning requirements. In the face of abrupt
interference, it had the strongest anti-interference ability and the fastest convergence speed,
which shows that the algorithm can effectively reduce the influence of sudden error on
positioning results. In addition, the MVCP-GW algorithm has strong scalability and can
meet the positioning requirements of different vehicle densities under the internet of
vehicles. All these show the superiority of MVCP-GW algorithm.

6. Physical Verification Platform Testing

The MVCP-GW algorithm was tested using sensor nodes to construct a cooperative
positioning network. The DWM1000 module was adopted to construct the cooperative
node, and the distance between the cooperative nodes was measured by the UWB commu-
nication of DWM1000. The range of the DWM1000 module was 3 km, and the measurement
accuracy of the module was 0.1 m—roughly the size of a coin. The appearance is shown
in Figure 7. To realize the positioning of the cooperative nodes, the STM32 development
board designed by our team was utilized in the cooperative positioning system, as shown
in Figure 8.
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In order to verify the rationality and effectiveness of the proposed algorithm and
architecture, we built a physical verification platform and randomly set up 12 cooperative
nodes in the range of 6 m × 9 m × 3 m. The verification platform is shown in Figure 9.
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Figure 9. The verification platform.

The initial positioning error and ranging error depend on the node device. The
physical simulation results are shown in Figure 10.

Figure 10a shows the static positioning results of 12 nodes, in which node 1 and node
2 are mobile cars. As can be seen from Figure 10c, in the actual test environment, the
positioning accuracy of the MVCP-GW algorithm was still the highest, reaching 0.13 m
on average in this scenario. Figure 10b shows the dynamic positioning results of two cars,
in which the red line indicates the actual motion track, the blue line indicates the GNSS
positioning results, the green line indicates the wireless station positioning results, and
the yellow line indicates the MVCP-GW algorithm positioning results. It can be seen from
Figure 10b that the positioning result of the MVCP-GW algorithm was basically consistent
with the actual motion track. In Figure 10d, we compare the dynamic positioning error
of node 1 among the MVCP-GW algorithm, GNSS, and wireless station navigation. The
average positioning accuracy of the MVCP-GW algorithm was about 0.15 m, showing that
the MVCP-GW algorithm can integrate the advantages of the two navigation sources and
effectively improve the positioning accuracy.

From the analysis of Figure 10, it can be seen that the experimental results of the
physical verification platform are in good agreement with the simulation results, which
can effectively improve the positioning accuracy and stability. Furthermore, the algorithm
processing module was implemented by the STM32 development board and could realize
a real-time response, which proves that the MVCP-GW algorithm has low computational
complexity.

The navigation source sensor used in our physical verification platform is consistent
with the sensor used in the actual scene; thus, the test results of the physical verification
platform can be successfully replicated in the actual application. Through the physical
verification platform test results, we can see that the MVCP-GW algorithm can effectively
improve the positioning accuracy, can reduce the positioning time, and has strong anti-
interference ability. It can be widely used in actual positioning scenes such as large parking
lots, multistory high-speed viaducts, and urban lane-level positioning.
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7. Conclusions

Aiming at the problem that the multi-navigation source information has time–space–
frequency asynchrony and the existing fusion positioning algorithms are limited to two
dimensions and have poor real-time performance, this paper proposed a multivehicle
three-dimensional cooperative positioning algorithm based on information geometric prob-
ability. From the perspective of information geometry, this paper deduced the information
geometric probability model of wireless station positioning and satellite positioning by
using the correlation between the information probability of the vehicle navigation source
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and positioning accuracy, and then proposed the KLA information fusion algorithm based
on the geometric probability model, which solves the difficult problem of three-dimensional
cooperative positioning of multiple vehicles. By comparing the MVCP-GW algorithm with
the current main algorithms in four simulation tests of accuracy stability, applicability,
obstruction scenarios, and physical verification, the results showed that the MVCP-GW
algorithm is less affected by the ranging error, has good convergence and fast convergence
speed, can adapt to the network topology of different vehicle densities, and meets the
plug-and-play characteristics of the internet of vehicles. When some vehicle navigation
information is lost, it can also effectively and quickly suppress the impact of sudden error
on the whole network. As a supplement, when the number of vehicles in the internet of
vehicles is small or the ranging information between vehicles cannot interact, the accuracy
of the MVCP-GW algorithm is reduced. For this potential limitation, we are considering
adding other navigation sources, such as INS, into the fusion of multiple navigation sources,
which can effectively improve the problem of increase in positioning accuracy caused by
the inability of cooperative positioning, as well as further enhance the applicability of
this algorithm. Predictably, it has broad development prospects in automatic driving and
unmanned transportation in smart cities.
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