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Abstract: The hydrological drought in Northern Italy in 2022 was, in large part, the consequence
of a snow drought in the Italian Alps in the winter of 2021/22 and the resulting deficit of melt
water runoff. In this communication, we assessed the snow-cover dynamics in nine Alpine Italian
catchments using long time series of satellite-derived snow line elevation (SLE) measurements. We
compared the SLE of the hydrological year 2021/22 to the long-term dynamics of 1985–2021. In early
2022, the SLE was located several hundred meters above the expected median values in all of the
nine catchments. This resulted in deficits of snow-covered area of up to 83% in the Western Alps
(catchment of Sesia, March 2022) and up to 61% in the Eastern Alps (Brenta, March 2022) compared
to the long-term median. Although snow-cover data from optical satellite imagery do not contain
information about snow depth and water content, in a preliminary qualitative analysis, the derived
SLE dynamics show good agreement with the Standardized Snowpack Index (SSPI) which is based
on the snow water equivalent (SWE). While the exact relationships between SLE, SWE, and runoff
have to be explored further on the catchment basis, long-time series of SLE may have potential for
use in drought early warning systems.

Keywords: drought; snow; Alps; Italy; Landsat; Earth Observation; time series; climate change

1. Introduction

In the summer of 2022, Northern Italy was suffering an exceptional hydrological
drought that particularly affected the basin of Italy’s largest river, the Po. A discharge
deficit of 66% (264 m3/s instead of the expected 819 m3/s) has been reported at the station
in Piacenza for the month of March 2022, and even higher deficits of around 75% have
been observed in the Po’s Alpine tributaries Dora Baltea, Adda, and Ticino [1,2]. By
July 2022, official drought emergencies and water restrictions had been issued in five Italian
regions, affecting 42% of the Italian population [3]. The lack of available fresh water had
impacts on Italy’s agricultural sector, negatively affecting plant productivity and irrigation
potential. The Soil Moisture Index was below −2.0 in many areas, indicating extreme
drought. At the same time, salt water intrusion in the Po river delta was at an all-time
high [1,4–6]. Meanwhile, hydroelectric reservoirs in Northern Italy were 34.8% below the
8-year minimum energy potential experienced in 2021 [4]. This shortage of fresh water was
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the result of an exceptionally dry and mild winter 2021/22. Compared to the average of
1991–2020, the temperature was 2.1 ◦C higher, while at the same time, precipitation was 65%
lower. Between December 2021 and February 2022, only 25% of the expected precipitation
was recorded [1]. The situation was exacerbated by multiple heat waves at the end of May,
the middle of June, and July, due to the persistence of one of the most extreme geopotential
height anomalies over Europe since 1950 [4,7], which potentially further increased runoff
deficits through evaporation enhancement [8].

In the context of this drought, the seasonal Alpine snowpack of 2021/22 played a
crucial role [9]. Similar to many other mountainous regions in the world, the Alps serve as
water towers to Northern Italy [10], in which the snowpack is an important water buffer.
Fresh water is accumulated and stored in the winter months and gradually released in
spring and summer to meet the increased water demand in these seasons. The winter
precipitation deficit in combination with mild temperatures had led to a reduced snow
accumulation in the Southern Alps from which the western and northern tributaries of the
Po draw their water. The Snow Water Equivalent (SWE) in the Italian Alps was only at 40%
of the usual median conditions (2009–2021) at the end of February [1,9].

Snow drought is usually assessed by monitoring SWE, which measures the amount
of water released when a snow pack melts instantaneously [11,12]. However, SWE mea-
surements are either performed as in-situ measurements and thus lack spatial coverage or
are derived from space-borne passive microwave sensors at coarse spatial resolutions at
the kilometer scale which is unreliable over mountainous terrain [13]. Optical remote sens-
ing enables the spatially continuous observation of snow-cover dynamics across variable
scales [14]. Long time series of almost 40 years generated from multispectral high-resolution
Earth Observation (EO) missions such as Landsat enable the timely comparison of current
snow-cover dynamics, with long-term observations even in inaccessible mountain areas.
In comparison to other multispectral sensors, such as MODIS, VIIRS, or AVHRR, with
30–60 m, Landsat offers the spatial resolution of greater than 100 m required for snow
cover mapping in complex terrain as defined by the Global Climate Observing System
(GCOS) [15]. The snow line elevation (SLE), i.e., the elevation of the border between snow-
free and snow-covered elevation ranges in mountainous areas [16], enables the estimation
of snow-covered areas even under partially cloudy conditions. The SLE can be retrieved on
a catchment basis from snow-classifications in combination with a Digital Elevation Model
(DEM) [17,18] and, thus, might complement the challenging SWE retrieval in the context of
snow-drought monitoring.

The goal of this study was to assess the spatiotemporal dynamics of the SLE in the
context of the drought in Northern Italy in 2022. To do so, we derived the SLE for nine
Italian catchments located in the Alps (Figure 1) for the hydrological year 2021/22 (October
to September). We compared these observations to the SLE values retrieved from the
entire Landsat archive between 1985 and 2021. Based on the SLE and the topography,
we calculated the areas covered by snow in winter and spring 2021/22 and analyzed the
snow-cover deficit on a catchment basis. Finally, we discuss our findings in the context of
the current drought situation in Northern Italy, as well as the potential of SLE information
as a complementing data source to SWE for drought monitoring.
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the SLE retrieval were performed by using the Python 3.8 programming language [31], 
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Figure 1. Location and topography of the Alpine reaches of the nine Italian catchments analyzed in
this study.

2. Materials and Methods

To analyze recent and long-term snow-cover dynamics, we generated SLE time series
from multispectral Landsat data ranging from 1985 to August 2022 for each catchment,
as described in detail in Koehler et al. [17]. The SLE retrieval approach is based on an
algorithm developed by Hu et al. [18–20]. We acquired all available Landsat Collection-2,
Level-2, Tier 1 Surface Reflectance scenes by the sensors TM, ETM+, and OLI covering the
analyzed catchments [21–23]. Each scene was classified by applying the temperature and
shadow thresholding used in the Snow Product Intercomparison and Evaluation Exercise
(SnowPEx) [24] and utilizing the spectral bands and the normalized difference vegetation
index (NDVI), normalized difference snow index (NDSI), and normalized difference water
index (NDWI) [25–27]. In total, 6421 Landsat scenes were processed. From the land-cover
classes “snow” and “clear land”, the SLE was estimated by using the GLO-30 Copernicus
DEM [28] for each scene and catchment [16]. The SLE is defined as the elevation below
which there are as few “snow” pixels as possible and above which there are as few “clear
land” pixels as possible. To generate a regular time series, the retrieved SLE estimates were
filtered for reliability by rejecting observations that contained less than 20% of valid pixels
(snow and clear land), e.g., due to cloud cover. For each catchment ~890 SLE measurements
were generated of which ~83% met the quality standard. The remaining observations were
aggregated on a monthly basis, and the remaining data gaps were filled by using linear
interpolation, providing an estimation of the spatial average of the SLE in each catchment.
Of the 452 SLE observations of each monthly time series, 18% of the values are interpolated
on average, particularly before the year 2000. We created time series for the Alpine reaches
of the catchments of the Po tributaries Maira, Dora Baltea, Sesia, Ticino, Adda, Oglio, and
Mincio, as well as Adige and Brenta. The outlines of the catchments were derived from the
HydroBASINS dataset [29] and cropped to the extent of the Alpine region, as defined by the
Alpine Convention [30]. Data preprocessing and the SLE retrieval were performed by using
the Python 3.8 programming language [31], while time-series generation and analysis were
conducted in R [32]. For the following analysis, we compared the SLE of the hydrological
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year 2021/22 starting in October 2021 with the long-term observations covering 1985 to
September 2021. Furthermore, we calculated the fractional snow cover (FSC), i.e., the
percentage of area covered with snow of the total area of a catchment, using the derived
SLE and the DEM, in order to assess the spatial effects of the observed SLE dynamics.

3. Results

The SLE in Northern Italy exceeded the 75th percentile of the of the long-time observa-
tions (1985–2021) for most of the hydrological year 2021/22 (October 2021–August 2022,
Figure 2). Until December 2021, the SLE was well within the expected elevation range, and
in some cases (Dora, Sesia, Brenta), even below. However, starting with January 2022, it was
located several hundred meters above the expected median value in all of the catchments
(Table 1). This was especially pronounced in Northwestern Italy (Maira, Dora, Sesia, Ticino,
and Adda), where the SLE exceeded even the historical 75th percentile value for at least
three consecutive months. The highest deviation in spring was observed in Sesia in March,
where the SLE was located 802 m above the long-term median. In summer, the SLE was
even 1056 m above the median in Ticino (June), exceeding the historical maximum in
that month by 543 m (Supplementary Table S1). The SLE difference was less extreme in
Oglio, Mincio, Adige, and Brenta, where a snowfall event in February had shifted the SLE
downward. However, the SLE still exceeded the long-term mean throughout the first three
months of 2022. Further snowfall was observed in April, which briefly brought the SLE
close to the long-term median; however, it rapidly retreated to higher elevations above the
historical 75th percentiles in all catchments afterward.
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Table 1. Deviation of the SLE in early 2022 from the long-term (1985–2021) median in meters. See
Supplementary Table S1 for all months of the hydrological year 2021/22.

Catchment January 2022 February 2022 March 2022 April 2022

Maira +609 +690 +509 +186
Dora Baltea +616 +555 +489 +116

Sesia +703 +794 +802 +168
Ticino +515 +469 +625 +267
Adda +546 +395 +508 −62
Oglio +372 +35 +462 −42

Mincio +337 +96 +477 −71
Adige +393 +46 +475 −102
Brenta +199 +151 +357 +216

This SLE deviation from the long-term median results in a deficit of snow-cover area,
as illustrated for the example of Dora Baltea in March 2022 (Figure 3). Here, the snow-
covered area is visible in the underlying false-color satellite image from 26 March 2022.
In this case, the SLE is averaged over three satellite observations acquired in the same
month. Although over- and underestimations of the SLE occur locally, mainly due to
different aspects and slopes of the terrain, the approach models the actual snow-cover
outline quite accurately across the entire catchment. The lack of snow-cover area is clearly
visible between the lines of the 2022 SLE and the long-term median.
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Figure 3. Location of the SLE in March 2022 (2125 m.a.s.l.) compared to the SLE median
(1636 m.a.s.l., 1985–2021) in the catchment of Dora Baltea. Background: Landsat 8 false-color image
of 26 March 2022 (R, Band 5; G, Band 4; B, Band 3).
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To further assess the impact of the observed SLE dynamics on the area covered by
snow, the FSC was calculated for the months January to April, usually the season with
the highest rates of snow accumulation (Table 2). All catchments show a large FSC deficit
in 2022 compared to the expected median FSC (1985–2021). The deficit was larger in
the western catchments, Maira, Dora Baltea, Sesia, Ticino, and Adda, than in the eastern
catchments, where a snowfall event in February had reduced the SLE briefly to the expected
degree. The highest FSC deficit was observed in Sesia, where, from January to March, only
5–8% of the entire catchment was covered by snow. In the Western Alps, Dora Baltea was
least affected by the snow-cover deficit (28–31%), while in the Eastern Alps, it was Adige
(4–43%).

Table 2. Expected fractional snow cover (FSC, median 1985–2021), observed FSC (2022), and difference
between observation and expected values (bold) in each catchment.

Catchment

January February March 2022 April 2022

Exp.
FSC

FSC
2022 Difference Exp.

FSC
FSC
2022 Difference Exp.

FSC
FSC
2022 Difference Exp.

FSC
FSC
2022 Difference

Maira 48% 24% −50% 48% 21% −57% 37% 17% −54% 34% 26% −22%
Dora Baltea 79% 55% −31% 78% 56% −28% 72% 50% −31% 64% 58% −8%

Sesia 30% 8% −74% 32% 7% −79% 27% 5% −83% 19% 14% −28%
Ticino 43% 21% −50% 48% 28% −41% 47% 21% −56% 35% 24% −32%
Adda 49% 28% −43% 46% 30% −34% 45% 25% −44% 37% 39% +6%
Oglio 34% 20% −41% 33% 31% −4% 35% 17% −50% 25% 27% +6%

Mincio 29% 18% −39% 28% 25% −12% 28% 14% −51% 21% 23% +12%
Adige 59% 39% −33% 56% 54% −4% 54% 31% −43% 38% 43% +13%
Brenta 22% 13% −40% 25% 17% −30% 24% 9% −61% 16% 9% −45%

4. Discussion

The SLE is a convenient metric to model the spatiotemporal dynamics of snow cover.
It is derived from EO data and can be estimated even under partially cloudy conditions.
As a continuous numerical metric, it can be easily modeled in a time series, which facil-
itates the comparison of single observations to multi-decadal reference periods and the
detection of long-term trends. In combination with a DEM of the respective catchment,
the snow-covered area and, thus, the FSC can be estimated from the SLE. However, SLE
and the snow-covered area are not necessarily representative of the actual amount of water
stored in the snowpack since snow accumulation and depth cannot be quantified from
multispectral remote sensing data alone. For that, the SWE is the more relevant parameter
that can be derived from passive microwave sensors as used in the GlobSnow [13] and
EUMETSAT SWE-E [33] products, from in situ measurements, or from climate [34] and
hydrological models [35]. While the passive microwave data have severe limitations in
Alpine terrain due to their coarse spatial resolution, ground-based stations lack the spatially
continuous coverage of remote sensing data. Hydrological models, on the other hand,
strongly depend on the accuracy of the meteorological inputs [36]. Current research is
directed into innovative remote sensing SWE retrieval methods, using higher spatial reso-
lutions, e.g., using SAR backscatter [37] or time-lapse photography [38]. Despite promising
first results, the approaches are still experimental and therefore lack either temporal or
spatial coverage.

Nonetheless, in the case of Northern Italy in 2022, the SLE clearly exhibited the
patterns expected to precede a hydrological drought. Its dynamics in January, February,
and June 2022 reflected the reported mild temperatures and the lack of precipitation [1,4]. To
verify this observation, we compared the recent SLE dynamics with the monthly averaged
Standardized Snowpack Index (SSPI) between January 2020 and August 2022 in each
catchment. The SSPI is a dimensionless metric of the SWE standardized over a 40 year
reference period (1981–2020) [39]. Positive values indicate that more snow than usual
is present, while negative values represent a lack of snow compared to the reference
period. The SSPI data were provided by the Alpine Drought Observatory (ADO) dataset
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(https://ado.eurac.edu/ (accessed on 6 October 2022)). The SWE data used as input for the
calculation of the SSPI are derived by using a modified version of the deterministic snow
model SNOWGRID-CL [40] driven by downscaled ERA5 data (1979 to today) provided by
the Copernicus Climate Change Service. For each catchment, we used the spatial median
of the 30-day aggregated variant of the SSPI. Note that, as modelled values, these data
cannot be considered ground truth and are affected by the issues discussed above. In the
context of this discussion, however, the comparison of SLE dynamics with an established
and evaluated SWE dataset can give some indication toward a potential linkage between
snow cover and runoff.

The absolute SLE values were compared to the deviation of the SLE from the long-
term mean and the SSPI for the example of Adda (Figure 4) and the other catchments
(Supplementary Figures S1–S8). In general, the SSPI inversely mirrors the deviation of the
SLE from the mean. For example, the unusually low SLE in winter 2020/21 is accompanied
by positive SSPI values in the same months, while the long period of exceptionally high SLE
values in the first half of 2022 is reflected by a consistent spell of negative SSPI values. This
indicates that the SLE is, to a certain degree, representative of the amount of potential melt
water within a catchment despite offering no information about snow depth. However, the
exact statistical relationship between SLE, SWE, and actual runoff within a catchment has
yet to be explored further. For example, it may strongly depend on the unique topography
of the respective basin. In a topography with steep slopes, even high SLE fluctuations
may cause relatively small changes in snow-covered areas (and thus, potentially, SWE),
while the relation is much stronger in more even terrain. This effect can be observed by
comparing the catchments Maira and Dora Baltea. Both exhibited a similar SLE change
(Table 1), but the affected area and, thus, the SCF deficit were much greater in Maira, which
has a much lower elevation difference compared to Dora Baltea (Table 2).
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5. Conclusions

In the context of drought monitoring, long, continuous time series acquired by remote
sensing have great potential, especially in inaccessible regions where timely in situ data are
sparse and unevenly distributed. Multiple decades of continuous observations, as offered
by the Landsat mission, enable the comparison of the severity of recent dynamics, e.g., of the
SLE, to long-term observations. An unusually high SLE in the early season, such as in 2022,
acquired in a timely manner can then serve as an indicator for an upcoming drought in a
near-real-time drought early warning system and complement in situ or passive microwave-
based SWE approaches that offer a higher temporal resolution [12]. Furthermore, long
time series facilitate the detection of long-term trends and the modeling of future snow
conditions [17], which are important factors for estimating the frequency of future drought
events. Finally, these time series can contribute to the implementation of catchment-based
runoff or discharge models by integrating further explanatory variables, such as SWE or
precipitation. The majority of the Alps is already facing a retreat of the snow line to higher
elevations at rates of several meters per year [17], and runoff regimes in mountainous
catchments are projected to dramatically change in the future [41]. Particularly in regions in
which the freshwater supply is strongly dependent on snow melt, spatially and temporally
continuous remote sensing data on snow-cover dynamics can help adapt to and mitigate
the effects of climate change.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14236091/s1, Figure S1: Snow Line Elevation, SLE deviation from
the long-term median, and SSPI for Adige; Figure S2: Snow Line Elevation, SLE deviation from the
long-term median, and SSPI for Brenta; Figure S3: Snow Line Elevation, SLE deviation from the
long-term median, and SSPI for Dora Baltea; Figure S4: Snow Line Elevation, SLE deviation from
the long-term median, and SSPI for Maira; Figure S5: Snow Line Elevation, SLE deviation from the
long-term median, and SSPI for Mincio; Figure S6: Snow Line Elevation, SLE deviation from the
long-term median, and SSPI for the catchment Oglio; Figure S7: Snow Line Elevation, SLE deviation
from the long-term median, and SSPI for Sesia; Figure S8: Snow Line Elevation, SLE deviation from
the long-term median, and SSPI for Ticino; Table S1: Deviation of the SLE in the hydrological year
2021/22 from the long-term (1985–2021) median in Meters.
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