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Abstract: The existing magnetic target localization methods are greatly affected by the geomagnetic
field and exist approximation errors. In this paper, a two-point magnetic gradient tensor localization
model is established by using the spatial relation between the magnetic target and the observation
points derived from magnetic gradient tensor and tensor invariants. Based on the model, the
equations relating to the position vector of magnetic target are constructed. Solving the equations, a
new magnetic target localization method using only a two-point magnetic gradient tensor and no
approximation errors is achieved. To accurately evaluate the localization accuracy of the method,
a circular trajectory that varies in all three directions is proposed. Simulation results show that the
proposed method is almost error-free in the absence of noise. After adding noise, the maximum
relative error percentage is reduced by 28.4% and 2.21% compared with the single-point method
and the other two-point method, respectively. Furthermore, the proposed method is not affected by
the variation in the distance between two observation points. At a detection distance of 20 m, the
maximum localization error is 1.86 m. In addition, the experiments also verify that the new method
can avoid the influence of the geomagnetic field and the variation in the distance, and achieve high
localization accuracy. The average relative error percentage in the y-direction is as low as 3.78%.

Keywords: magnetic anomaly detection; magnetic dipole; two-point localization; magnetic gradient
tensor; tensor invariants

1. Introduction

The magnetic field generated by a ferromagnetic target affects the distribution of the
surrounding geomagnetic field, resulting in magnetic anomalies. By measuring the mag-
netic anomaly signals and processing the data, the location information of the target can be
obtained [1]. The magnetic anomaly detection (MAD) technology has been widely used in
underwater target detection [2–4], unexploded ordnance (UXO) detection [5–7], mineral
exploration [8,9], biomagnetic signal detection [10,11], and many other fields due to its high
concealment, strong penetration, fast speed, and high precision. Magnetic gradient tensor
detection, compared with magnetic field scalar and vector detection, exhibits certain ad-
vantages, such as being less affected by the magnetization direction of the target, immunity
to the background field, and providing more abundant magnetic field information [12]. At
present, it has become a popular research topic in the field of magnetic anomaly detection.

Applying the magnetic gradient tensor to magnetic target localization was first pro-
posed by Wynn in the 1970s [13,14], showing the great potential of the magnetic gradient
tensor in high-precision localization. Since then, various localization methods based on the
magnetic gradient tensor have been studied in detail. The single-point magnetic gradient
tensor localization method was the first to receive attention. Wilson et al. [15] used the
eigenvalues and eigenvectors of the magnetic gradient tensor to achieve point-to-point
localization of the magnetic target. However, inherent four-fold ambiguity is present in the
obtained solutions, and some additional information, such as magnetic field vectors, needs
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to be added to eliminate the ‘ghost’ solutions. Taking the localization of the radio frequency
identification (RFID) tag as the background, Nara et al. [16] proposed to achieve the inver-
sion of the location of the magnetic target by measuring the magnetic gradient tensor and
the magnetic field vector at a single point, and gave the closed-form localization formula.
Due to its advantages of simplicity and ease of implementation, it has attracted extensive
attention [17,18], and is referred to herein as Nara’s single-point tensor (NSPT) method.
However, since the magnetic field vector generated by the magnetic target is difficult to
separate from the geomagnetic field, this method is governed by the geomagnetic field.
Weigert et al. [19,20] proposed a Scalar Triangulation and Ranging (STAR) method based
on tensor contraction, which has high real-time performance and can effectively avoid
the influence of the geomagnetic field. However, since the contours of tensor contraction
are approximated as a sphere, when the shape is actually an ellipsoid, this method has
an inherent approximation error called asphericity error [21]. To improve the localization
accuracy, several single-point higher-order magnetic gradient tensor localization methods
have been proposed [22–24]. However, since the high-order quantity is greatly affected by
the measurement noise of the instrument, these methods have high requirements regarding
the accuracy of the sensor. In addition, some typical optimization algorithms, such as the
differential evolution algorithm [25] and neural network algorithm [26], are also used to
solve the nonlinear inverse problem. However, due to their complexity and time consump-
tion, they are infeasible in real-time localization applications, and reliable initial parameters
are required.

The above methods show that the information contained in the magnetic gradient
tensor of only one observation point is not sufficient for high-precision localization. There-
fore, multi-point magnetic gradient tensor localization methods have appeared [27]. Based
on the eigenvalues and eigenvectors method, Liu et al. [28] supplemented the magnetic
gradient tensor of another point and designed a two-point tensor measurement array to
realize magnetic target localization. However, the solving process is complex, and prior
information is required to determine the scope of the solution. Most importantly, it has not
been experimentally verified. Liu [29] constructed an objective function based on magnetic
moment constraints to achieve magnetic target localization, and designed a two-point
tensor measurement system composed of two cross-tensor structures arranged vertically.
This method has the advantages of high environmental noise tolerance and low sensor
accuracy requirements, but it used the PSO algorithm to identify the parameters, resulting
in poor real-time performance. Furthermore, the optimization method and parameter
selection have a great impact on the localization accuracy, so the reliability of the algorithm
is low. Based on the NSPT method, Xu [30] proposed a linear localization method using
a two-point magnetic gradient tensor, and gave an analytical solution, denoted as Xu’s
two-point tensor (XTPT) method. The average relative error percentages of the XTPT
method in the three magnetic field directions are smaller than those of the single-point
magnetic gradient tensor localization method, with a maximum reduction of 18.66% in the
magnetic field x-direction. However, there is an approximate calculation in the inversion
process, the condition of which is that the relative position between the two observation
points tends to be infinitesimal; thus, the distance between the two observation points will
introduce approximation errors.

The tensor invariants derived from the magnetic gradient tensor do not vary with the
change in the coordinate system and exhibit great potential in reducing approximation
errors [31]. They have appeared in many inversion methods, including the aforementioned
eigenvalues and eigenvectors method, and the STAR method [32]. Following several years
of research, Beiki et al. provided a detailed introduction to tensor invariants in 2012 [33].
Based on the magnetic gradient tensor and its invariants, this paper establishes a spatial
relation localization model and proposes a new two-point tensor (NTPT) localization
method. Only the magnetic gradient tensor of two observation points needs to be measured
and no approximation error exists in the inversion process, thus solving the problems of
the traditional localization method, i.e., it cannot eliminate the influence of the geomagnetic
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field and easily introduces approximate errors. In addition, a new simulation model
is established to analyze the localization accuracy of the method. Both simulation and
experimental results show that the proposed NTPT method can effectively avoid the
influence of the geomagnetic field and the distance between the two observation points,
and further improves the localization accuracy.

2. Methods
2.1. Magnetic Gradient Tensor and Tensor Invariants

The ferromagnetic target can be equivalent to a magnetic dipole when the detection
distance between the target and the observation point is greater than 2.5 times the size of
the target [34]. According to the Biot–Savart Law, the magnetic field vector B = (Bx, By, Bz)
generated by the magnetic dipole at any observation point can be expressed as:

B =
µ0

4π

3(M·r)r−Mr2

r5 (1)

where r = (rx, ry.rz) is the relative position vector from the magnetic dipole to the obser-
vation point, r = |r|. M = (Mx, My, Mz) is the magnetic moment vector of the magnetic
dipole, and µ0 stands for the magnetic permeability of vacuum, µ0 = 4π× 10−7 T ·m/A.

The spatial rate of change of the three components of the magnetic field vector B in
three mutually orthogonal directions is called the magnetic gradient tensor [22], denoted
as G:

G =


∂Bx
∂x

∂Bx
∂y

∂Bx
∂z

∂By
∂x

∂By
∂y

∂By
∂z

∂Bz
∂x

∂Bz
∂y

∂Bz
∂z

 =

Bxx Bxy Bxz
Byx Byy Byz
Bzx Bzy Bzz

 (2)

According to Maxwell’s equations, the divergence and curl of the magnetic field vector
in the passive static magnetic field are both zero, that is, ∇·B = 0, ∇× B = 0, where ∇
is the mathematical symbol of the Hamiltonian. Combining the calculation rules of dot
product and cross product, we can derive:

Bxx + Byy + Bzz = 0
Bxy = Byx
Bxz = Bzx
Bzy = Byz

(3)

Substituting Equation (3) into Equation (2), we can find that magnetic gradient tensor
G is a symmetric real 3 × 3 matrix and traceless, there are three real eigenvalues, and
the unit eigenvectors corresponding to different eigenvalues are mutually orthogonal.
Clark [35] gave the expression of the three eigenvalues as follows:

λmax = 3µ0m
8πr4

(
− cos θ +

√
5(cos θ)2 + 4

)
λmed = 3µ0m

4πr4 cos θ

λmin = 3µ0m
8πr4

(
− cos θ −

√
5(cos θ)2 + 4

) (4)

where m = |M| is the magnitude of the magnetic moment vector of the magnetic dipole,
θ is the angle between the relative position vector r and the magnetic moment vector M,
and the three eigenvalues satisfy the relationship of λmin ≤ λmed ≤ λmax, |λmed| ≤ |λmax|,
|λmed| ≤ |λmin|. Eigenvalues are scalar invariants of the magnetic gradient tensor, and any
combination of eigenvalues is also scalar invariant [22]. In addition, the unit eigenvector
corresponding to the eigenvalue with the smallest absolute value is perpendicular to both
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the magnetic moment vector and the relative position vector, which is called geometric
invariant of the magnetic gradient tensor [33].

From (4) we can derive:

cos θ =
λmed√

−λmed
2 − λmaxλmin

(5)

Then, we define the normalized source strength (NSS), which is a combination of
eigenvalues [35]:

µ =
√
−λmed

2 − λmaxλmin =
3µ0m
4πr4 (6)

Evidently, the NSS is also a scalar invariant of the magnetic gradient tensor and has
the advantage of being completely isotropic around the magnetic dipole.

2.2. Localization Principle of the NTPT Method

The localization model of the NTPT method is shown in Figure 1. A Cartesian coordi-
nate system is established with an arbitrary point in space as the origin, s0 is the position
vector of the magnetic target whose magnetic moment is M, r1 is the relative position vector
between the observation point 1 and the magnetic target, and r2 is the relative position
vector between the observation point 2 and the magnetic target. The offset vector dr from
observation point 1 to observation point 2 can be described as:

dr = r2 − r1 (7)
Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 17 
 

 

 

Figure 1. Localization model of the NTPT method. 

Suppose that 1medv  and 2medv  are the unit eigenvectors corresponding to the ei-

genvalues with the smallest absolute values of the magnetic gradient tensors at observa-

tion point 1 and 2, respectively. According to the tensor geometric invariant, we know 

that 1medv  is the normal vector of the plane defined by M and 1
r , and 2medv  is the 

normal vector of the plane defined by M and 2
r . The cosine value of the angle α  be-

tween the two planes can be written as: 

= αcos 1med 2medv v  (8) 

According to Equation (5), the cosine values of the angles θ1  and θ2  between the 

magnetic moment vector M of the magnetic target and the relative position vectors 1
r  

and 2
r  can be obtained (   θ θ

1 2
0 , 180 ). Then, the cosine value of the angle φ  be-

tween 1
r  and 2

r  can be described by the following formula: 

φ θ θ θ θ α1 2 1 2cos = cos cos + sin sin cos  (9) 

As shown in Figure 2, μ
1
 and μ

2
 are the NSS at observation points 1 and 2, re-

spectively. Since the NSS information of the two observation points is generated by the 

same magnetic target, combined with the definition of NSS, it can be found that: 

 
 
 

μr

r μ

0.25

21

2 1

=    0r r1 2, , (10) 

where =r
1 1

r , =r
2 2

r  are the magnitude of relative position vectors 1
r , 2

r , respec-

tively. Then according to the Law of Cosines, we get: 

( ) ( ) ( ) −
2 2 2

1 2 1 2= + 2 cosdr r r r r φ  (11) 

Figure 1. Localization model of the NTPT method.

Suppose that v1med and v2med are the unit eigenvectors corresponding to the eigenval-
ues with the smallest absolute values of the magnetic gradient tensors at observation point
1 and 2, respectively. According to the tensor geometric invariant, we know that v1med is
the normal vector of the plane defined by M and r1, and v2med is the normal vector of the
plane defined by M and r2. The cosine value of the angle α between the two planes can be
written as:

cos α = ±v1med·v2med (8)

According to Equation (5), the cosine values of the angles θ1 and θ2 between the
magnetic moment vector M of the magnetic target and the relative position vectors r1 and
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r2 can be obtained (0 ≤ θ1, θ2 ≤ 180◦). Then, the cosine value of the angle ϕ between r1 and
r2 can be described by the following formula:

cos ϕ = cos θ1 cos θ2 + sin θ1 sin θ2 cos α (9)

As shown in Figure 2, µ1 and µ2 are the NSS at observation points 1 and 2, respectively.
Since the NSS information of the two observation points is generated by the same magnetic
target, combined with the definition of NSS, it can be found that:

r1

r2
=

(
µ2

µ1

)0.25
r1, r2 > 0 (10)

where r1 = |r1|, r2 = |r2| are the magnitude of relative position vectors r1, r2, respectively.
Then according to the Law of Cosines, we get:

(dr)2 = (r1)
2 + (r2)

2 − 2r1r2 cos ϕ (11)
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Substituting Equations (9) and (10) into Equation (11), r1 can be easily obtained by
solving the equation.

From the calculation formula of the included angle cosine of the vector, cos ϕ can also
be expressed as:

cos ϕ =
r1·r2

r1r2
=

r1·(r1 + dr)
r1r2

=
r1

2 + r1n1·dr
r1r2

(12)

where n1 is the unit direction vector of relative position vectors r1. According to the tensor
geometric invariant, r1·v1med = 0, r2·v2med = 0. Simplifying the equations, we can get:

n1·v1med = 0 (13)
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(
n1 +

dr
r1

)
·v2med = 0 (14)

Solving the linear system of equations consisting of Equations (12)–(14), the unit
direction vector n1 can be obtained. The position vector of magnetic target is given by:

s0 = s1 − r1 (15)

It is worth noting that the uncertainty of the sign in the Equation (8) will lead to non-
unique localization results. The following method is used to determine the unique value of
cos α: calculate the values of dr·v1med and dr·v2med, respectively; if the signs of the two cal-
culation results are the same, then cos α = v1med·v2med, otherwise cos α = −v1med·v2med.

In summary, the implementation steps of the NTPT method are: (1) Calculate the
cosine value of the angle between the relative position vectors r1 and r2 according to the
spatial relations derived from the magnetic gradient tensor and invariants. (2) Calculate the
ratio of the magnitudes of the relative position vectors r1 and r2. (3) Establish an equation
according to the Law of Cosines, and solve to obtain r1. (4) Establish a linear system of
equations related to n1 according to the spatial relations, and solve to obtain n1. During the
whole inversion process, only the magnetic gradient tensors of the two observation points
and the offset vector between the two observation points are used. There is no need to
measure the components of the magnetic field vector, so the proposed method is unaffected
by the geomagnetic field. Moreover, iterative computations and approximate calculations
are not used in the method, which greatly reduces the complexity of the method and does
not introduce approximation errors.

3. Simulations

In order to evaluate the localization ability of the proposed method, several sets of
simulation experiments were carried out. Any point in space is set as the origin, the
coordinates of the magnetic target are (−19, −30, −23) m, and the magnetic moment is
(389, 225, 779) A·m2. For the convenience of operation, the observation points in previous
simulations usually move along the circular trajectory parallel to the x–y-plane, ignoring
the influence of different z-coordinates, which may prevent the localization accuracy of the
proposed method from being accurately estimated. As shown in Figure 3, we choose the
circular trajectory with a 30◦ angle to the x–y plane, namely, the elevation of the normal
vector of the plane where the trajectory is located is 60◦, and the azimuth is 0◦. The radius
of the circular trajectory is 12 m. The magnitude of the relative position vector from the
magnetic target to the center of the circular trajectory is 16 m and the direction is parallel
to the normal vector of the trajectory. We define α as the rotation angle of the observation
point, which represents the angle between the projection of the x-axis on the plane where
the circular trajectory is located and the line connecting the observation point and the center
of the circular trajectory. Observation points at different positions correspond to different
rotation angles.

3.1. Without the Influence of the Noise

First, a simulation experiment without the influence of noise is carried out to verify
the proposed method. Assuming that the observation points move at equal intervals along
the circular trajectory, the rotation angle varies from 0 to 359◦, and the interval is 1◦. Any
adjacent points form a group to complete the two-point localization. The NSPT, XTPT, and
NTPT methods are used to conduct the simulation, and Figure 4 shows the relative error
percentages of the three methods in the x-, y-, and z-directions.
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It can be seen that all three localization methods can achieve good localization results in
x-, y-, and z-directions in the case of without adding noise, and the relative error percentages
of the XTPT method are slightly higher. The maximum error of the XTPT method is 1.44%
in the x-direction, while the maximum error of the proposed NTPT method is 3.38× 10−10%
in the z-direction, which can be considered almost error-free. The minimum error of the
NTPT method is 1.26 × 10−15% in the x-direction when the rotation angle is 191◦, and the
minimum errors of XTPT method and NSPT method are 2.45 × 10−3% and 1.18 × 10−14%,
respectively. Therefore, simulation results indicate that the proposed method is theoretically
feasible and almost error-free in all three directions without considering noise.

3.2. With the Influence of the Noise

In practical applications, the influence of noise is unavoidable, so it is necessary to
carry out simulation experiments with added noise to verify the robustness of the method.
Generally, the magnetic field generated by the magnetic target cannot exist alone, and will
be superimposed with the geomagnetic field. Therefore, the noise includes instrument
measurement noise and geomagnetic field measurement noise. White Gaussian noise with
a mean value of zero and a standard deviation of 0.01 nT/m was added as the instrument
measurement noise, and white Gaussian noise with a mean value of zero and a standard
deviation of 1 nT was added as the geomagnetic field measurement noise. Other simulation
conditions were consistent with those of the first simulation. The simulation results are
shown in Figure 5.
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Comparing Figures 4 and 5, it is clear that no matter which method is used, the relative
error percentages in the x-, y-, and z-directions increase after adding noise. However, the
growth rate of the single-point method is significantly higher than that of the two-point
method. The maximum error of the NSPT method is 31.18% when the rotation angle of
the observation point is 270◦ in the x-direction, which is 31.18% higher than that without
adding noise. By comparison, the maximum error of the NTPT and the XTPT are 2.78%
and 4.99%, respectively, which are increased by 2.78% and 3.55%, respectively, compared
with no noise. In addition, the maximum error of NTPT method is 28.4% and 2.21% lower
than that of the NSPT method and XTPT method, respectively. The average relative error
percentages of the three methods are shown in Table 1. The smaller the relative error
percentage, the higher the localization accuracy. Obviously, regardless of the direction,
the localization accuracy of the NTPT method is higher than that of the NSPT and XTPT
methods. Therefore, the proposed NTPT method has the strongest anti-noise ability and
highest localization accuracy, whereas the NSPT method is most affected by noise and has
the lowest localization accuracy in each direction; this can be explained by the fact that the
single-point method needs to measure three components of the magnetic field vector.

Table 1. Average relative error percentages of the three methods considering noise.

Method
Error

x y z

NTPT (%) 0.034% 0.013% 0.05%
XTPT (%) 0.95% 0.71% 0.56%
NSPT (%) 8.24% 5.69% 6.72%

3.3. Influence of Distance between Observation Points

Since the distance between two observation points is arbitrary and unconstrained, it is
necessary to analyze the influence of different distances on the localization results. Suppose
that observation point 1 is located at the position of rotation angle α1 = 0◦ and remains
unchanged, and observation point 2 moves along circular trajectory and the rotation angle
α2 varies from 1◦ to 359◦ with an interval of 1◦. Other simulation conditions are the same
as those of the last simulation.

Figure 6 shows that, with the increase in the rotation angle of observation point 2, the
distance between the two observation points increases first and then decreases, and reaches
the maximum value when α2 = 180◦. The localization error ε is used as the evaluation
index of the localization result:

ε =

√
(x− x0)

2 + (y− y0)
2 + (z− z0)

2 (16)

where x0, y0, z0 are the real values of the position of the magnetic target, and x, y, z are the
estimated values of the localization method. Figure 7 shows the variation in the localization
error ε of the three methods with the increase in the rotation angle α2 of the observation
point 2.

Combining Figures 6 and 7, it can be seen that, as the distance between the two obser-
vation points increases/decreases, the localization error of the XTPT increases/decreases.
When the rotation angle α2 is 180◦, the distance between the two observation points reaches
a maximum value of 24 m and, at the same time, the localization error of the XTPT reaches a
maximum value of 53.29 m. However, the localization error of the proposed NTPT method,
which is also a two-point tensor method, does not increase or decrease regularly with the
increase/decrease in the distance; that is, the NTPT method is independent of the distance
between the two observation points. The maximum error of the NTPT method is 1.86 m,
and that of the NSPT method is up to 7.46 m. Furthermore, the minimum error of the
NTPT method is 0.00024 m, whereas that of the NSPT and XTPT methods is 0.52 and
0.32 m, respectively. The simulation results indicates that the NTPT method is not only
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unaffected by the variation in the distance between the two observation points, but also
has the highest localization accuracy, whereas the XTPT method is easily affected by the
distance between the two observation points, which is due to the approximate calculation
used in the inversion process. The condition for the approximate calculation is that the
distance between the two observation points is as small as possible. Therefore, in order
to achieve high localization accuracy, the XTPT method needs to constrain the distance
between the two observation points.
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4. Experiments and Result Analysis
4.1. Magnetic Gradient Tensor Measurement Array Model

According to relevant theory, there are only five independent components among all
the magnetic gradient tensor components. As long as the five independent components
are known, the magnetic gradient tensor can be obtained. Studies shows that the planar
magnetic gradient tensor measurement array is easy to implement, and the center point
of the structure is easy to determine [36]. A planar cross-shaped magnetic gradient tensor
measurement array composed of four three-axis magnetometers is used in this paper, and
the model is shown in Figure 8. The magnetometers are arranged symmetrically in pairs,
and the baseline distances are both d. Based on the principle of difference on the same
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axis, the tensor matrix expression at the center point O of the cross-shaped structure can be
written as:

G =
1
d


B1x − B3x B2x − B4x ∗
B1y − B3y B2y − B4y ∗
B1z − B3z B2z − B4z ∗

 (17)
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4.2. Experimental Verification and Result Analysis

In order to verify the actual effect of the proposed method, a field experiment was
carried out in a space with a relatively stable magnetic field. As shown in Figure 9a,
the magnetic gradient tensor measurement system includes a cross-shaped bracket, a
planar cross-shaped magnetic gradient tensor measurement array, a power supply, and
an acquisition module. The planar cross-shaped magnetic gradient tensor measurement
array consists of four three-axis fluxgate magnetometers produced by British company
Bartington, with a baseline distance of 40 cm. The error of the magnetic gradient full
tensor obtained by the planar cross-shaped measurement array is due mainly to three
aspects: using a finite difference to approximate the true first-order gradient, the noise
of the magnetometers, and the residual error after measurement array calibration. The
cross-shaped bracket is made of non-magnetic acrylic board. To ensure the consistency of
acquisition accuracy, all sensor output signals are acquired by the same acquisition module.
Furthermore, to reduce the influence of the diurnal variation of the geomagnetic field,
the experiment was carried out at 0–3 A.M., and the ambient temperature was 20 ◦C. To
avoid the influence of the ambient magnetic gradient, we measure the background gradient
before placing the magnetic target. After placing the magnetic target, the background
magnetic gradient is subtracted from the measured value of the magnetic sensor to obtain
the final magnetic gradient data.
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measurement system; (b) magnetic gradient tensor localization experiment.

Due to the complexity of the construction of the circular trajectory platform, we chose
the straight trajectory for the experiment. The experiment process is shown in Figure 9b.
Taking the center point of the straight trajectory as the coordinate origin, the magnetic target
was located at (−81.7, −49.6, 90.9) cm. The planar cross-shaped magnetic gradient tensor
measurement array moved along the straight-line z = x, the total length of the trajectory
was 180 cm, and the interval of measurement points was set to 30 cm. Therefore, seven
sets of measurement data were obtained. The three-axis fluxgate magnetometer located at
the center of the cross-shaped bracket was used to measure the three components of the
magnetic field vector used in the NSPT method.

4.2.1. Localization with Adjacent Measurement Points

First, any adjacent measurement points are used for two-point tensor localization, that
is, the distance between the two observation points is fixed at 30 cm. There are six sets
of two-point localization solutions and seven sets of single-point localization solutions;
Table 2 shows the relative error percentages of the NTPT, XTPT, and NSPT methods in
three directions.

Table 2. Relative error percentages of the three methods when locating with adjacent points.

Sets
NTPT (%) XTPT (%) NSPT (%)

x y z x y z x y z

1 9.31 3.24 16.13 12.32 2.14 14.38 24.32 26.85 32.07
2 1.69 11.13 5.60 14.59 5.11 14.41 14.78 20.02 35.68
3 6.40 7.26 10.82 5.17 17.53 16.09 20.95 37.44 34.89
4 11.68 4.93 6.45 3.67 16.39 15.42 30.57 42.05 31.96
5 10.97 14.06 11.89 9.61 5.60 10.24 32.94 39.40 14.93
6 13.01 0.15 9.62 9.34 0.13 12.37 28.94 22.00 44.31
7 - - - - - - 26.49 17.06 25.63

Mean 8.84 6.80 10.09 9.12 7.82 13.82 25.57 29.26 31.35

The underline indicates the maximum or minimum relative error percentage.

From Table 2, we can first find that the localization accuracy of the two-point tensor
method is better than that of the single-point tensor method. The minimum errors of the
NTPT method and XTPT method are 0.15% and 0.13%, respectively, whereas that of the
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NSPT method is up to 14.78%. Moreover, the maximum errors of the NTPT method and
XTPT method in the x-direction are 13.01% and 14.59%, respectively, which are smaller
than the minimum error of the NSPT method in the x-direction. The maximum error of the
NSPT method is 44.31%, which is 28.18% and 26.78% higher than that of the NTPT method
and the XTPT method, respectively. Furthermore, the average relative error percentages
of the NTPT method and XTPT method in the three directions are all smaller than the
average relative error percentages of the NSPT method, and the maximum average relative
error percentage differences are 21.26% and 17.53% in the z-direction, respectively. Then,
comparing the two two-point tensor methods, it can be found that the localization accuracy
of the NTPT method is slightly higher than that of the XTPT method. The maximum error
of NTPT method is 16.13% in the z-direction, whereas that of the XTPT method is 17.53%
in the y-direction. The average relative error percentages in the x-, y-, and z-directions of
the NTPT method are reduced by 0.28%, 1.02%, and 3.73%, respectively, compared with
the XTPT method. The above conclusions are consistent with the simulation results in
Section 3.2, which proves the correctness of the simulation experiments.

4.2.2. Localization with Variational Observation Point Distances

In order to verify the influence of the distance between the two observation points
on the localization results of the two-point tensor method, the measurement data were
reprocessed. We took the first measurement point as observation point 1 and kept this
unchanged, and the remaining measurement points were sequentially regarded as obser-
vation point 2 to perform two-point localization. With the change in observation point 2,
the distance between the two observation points gradually increased. A total of six sets
of two-point localization solutions were obtained, and the relative error percentages are
shown in Table 3.

Table 3. Relative error percentages of the three methods when the distance between the two observa-
tion points varies.

Sets
Distance

(cm)
NTPT (%) XTPT (%)

x y z x y z

1 30 9.31 3.24 16.13 12.32 2.14 14.38
2 60 14.55 3.39 13.56 15.96 5.14 23.41
3 90 4.09 6.90 13.17 13.34 13.55 34.86
4 120 10.92 2.80 10.19 7.75 41.71 53.99
5 150 9.43 1.82 8.63 7.13 86.65 93.04
6 180 3.62 4.56 4.57 21.64 141.98 152.97

Mean - 8.65 3.78 11.04 13.02 48.53 62.11

Compared with the previous two-point localization using adjacent points, the relative
error percentages of the XTPT method increase significantly in all three directions. The
relative error percentages in the y- and z-directions increase exponentially with the distance
between the two observation points, and the average relative error percentages increase by
40.71% and 48.29%, respectively. The average relative error percentage in the x-direction
increases by 4%. Furthermore, when the distance between the two observation points is
greater than 90 cm, the relative error percentages in the z-direction are greater than 53.99%,
and the localization method can be considered invalid. However, the NTPT method is not
affected by the distance between the two observation points. The relative error percentages
of each point only fluctuate slightly due to the influence of random noise. The average
relative error percentages in the z-direction increase by 0.95%, whereas those in the x- and
y-directions decrease by 0.19% and 3.02%, respectively. Furthermore, the average relative
error percentages of the NTPT method in all three directions are much smaller than those
of the XTPT method.
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5. Conclusions

The current localization methods based on the magnetic gradient tensor are susceptible
to geomagnetic noise interference, can easily introduce approximation errors, and have a
complex inversion process. To address these shortcomings, the NTPT method is proposed.
This method realizes target localization according to the spatial relations between the
magnetic target and the observation points. Considering the convenience of operation,
previous simulations usually use latitude trajectories parallel to the x–y-plane to analyze the
localization accuracy. In fact, slight changes in the z-coordinate can also affect the analysis
of the localization results. Therefore, a special circular trajectory that changes in all three
directions is used for simulation. Simulation results indicate that the proposed method has
strong anti-noise ability. When noise is not considered, the method can achieve error-free
localization. After adding noise, the maximum error is increased by 2.76%, whereas that of
the XTPM and NSPT methods is increased by 3.55% and 30.89%, respectively. In addition,
the NTPT method is not sensitive to the variation in the distance between the two points
and has the highest localization accuracy. At a detection distance of 20 m, regardless of
the change in the distance between two observation points, the maximum localization
error is 1.86 m. The experimental results also prove that the NTPT method can avoid the
interference of the geomagnetic field and the influence of the distance change between the
observation points, and achieve high positioning accuracy. The maximum average error is
reduced by 3.73% and 21.26% compared with the XTPT and NSPT methods, respectively.

If there are multiple measurement points, two measurement points at any position can
be combined to achieve localization using the NTPT method, and multiple inversion solu-
tions can be obtained with a small number of measurement points, so that the information
of each measurement point can be fully utilized. The NTPT method has the potential for
industrial, civil, and military applications, and indicates the direction for target detection
based on magnetic gradient tensor. However, only prototype verification of the detection
of a single target with a constant magnetic moment is performed in this paper. For the
detection of multiple targets or targets with variable magnetic moments, further research
is required. In addition, the errors introduced when calculating the magnitude of the
relative position vector may be transmitted into the calculation of the unit direction vector,
resulting in a considerable positioning error at some points. Therefore, there is still room
for improvement. In the future, we will work on simultaneously solving the magnitude
and unit direction vector of the relative position vector, and carry out feasibility analysis
for practical application scenarios, such as unexploded ordnance detection, underwater
target detection, vehicle detection, and mineral exploration.
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