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Abstract: An urban thermal environment is an area receiving special attention. In order to effec-
tively explore its spatio-temporal characteristics during hot summer days, this study introduced the
standard deviational ellipse (SDE) to construct an urban heat island index to describe the general
spatial character of an urban thermal environment, and then used local Moran’s I to identify its local
spatial cluster characteristics. Finally, the regressions of ordinary least squares (OLS) and spatial lag
model (SLM) were adopted to explore the effect of woodland, water body and impervious surface
on the thermal environment. Taking the city of Wuhan as a study area and using the air temper-
ature on seven consecutive days, from 17 July to 23 July in 2018, from the China Meteorological
Administration Land Data Assimilation System (CLDAS-V2.0), the results show that the urban heat
island index can effectively represent the general characteristics of the thermal environment. The
general trends of heat island intensity decrease first and then increase from 00:00 to 24:00. The heat
island intensity is at its minimum from 10:00 to 16:00, and at its maximum from 22:00 to 4:00 the
next day. Local Moran’s I values indicate that the clusters of high air temperature at 06:00 and at
22:00 are associated with the impervious surface and the water body. This is further illustrated by the
regression analysis of OLS, which can explain 50–60% of the spatial variation of the air temperature.
Then, the fitness of the SLM is greatly improved; the coefficients of determination at 06:00 and at
22:00 are all not less than 0.97. However, the explanation of the local land uses accounting for the
spatial variation of the air temperature becomes lower. The regression analysis also shows that the
woodland always has the effect of decreasing air temperature at 06:00, 14:00 and 22:00, implying that
increasing the vegetation may be the most effective way to mitigate the adverse circumstance of the
urban thermal environment.

Keywords: thermal environment; heat island intensity; spatio-temporal characteristics; local spatial
pattern; land use; regression analysis

1. Introduction

Human activities, especially urbanization, have gradually changed the Earth’s surface
landforms, and then caused changes in the urban thermal environments. Urban heat island
(UHI) effect, a phenomenon according to which urban areas have higher air temperatures
than the surrounding rural areas, is a prominent problem of the urban thermal environment.
The effect of UHI on heat wave intensifies during the period of prolonged extreme heat [1],
and the synergy [2] between the two even causes an increased heat stress that is higher
than the combined effect of the background UHI and heat waves [3], which may increase
the mortality related to high temperatures in urban areas [4] and have a profound impact
on the human living environments [5].

Land cover change through urban sprawl and cultivated land degradation has a
dramatic effect on UHI intensity [6], as the city with a higher urban land cover usually has
the higher UHI intensity [7]. Moreover, the urban radiant heat is varied and depends largely
on the type of land cover and urban surface [8]. Different land uses have different effects on
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UHI [9]. The lack of vegetation may contribute to higher temperatures in industrial parks,
while the temperatures go up by up to 2 ◦C in commercial districts on weekends [10]. It
is found that the impervious surface area (ISA) is the most significant factor causing the
increasing temperature [11], while the land surface temperature (LST) generally increases
in parallel with the ISA [12]. Then, the urban green space and its spatial configurations,
such as larger patches, simpler shapes, being more connected and less fragmented, have a
significant effect on the LST [13]; in particular, they contribute to a lower LST [14,15].

Effective water resources management is also of great significance to reduce the heat
island effect [16]. Studies have found that the intensity of the UHI effect decreases by
11.33% with the increase in water-body coverage by 10% during the daytime [17]. However,
the water will increase the UHI effect after the evening, for its high heat capacity inhibits
its circulation and makes it remain at relatively high temperatures [18].

There are many types of UHIs [19], of which the most commonly used are surface UHI
(SUHI), based on LST, and canopy UHI (CUHI), based on air temperature within the urban
canopy layer. These two types of UHI depict the thermal environment characteristics in
different vertical layers of the urban structure. The approaches to measure the two types of
UHI both have advantages and disadvantages [20]. Most of the studies focus on SUHIs
because the LST data are easy to obtain from remote sensing, but the uncertainty of the LST
is too great to obtain reliable urban thermal trends [21]. Moreover, the CUHIs described by
using air temperature, which is obtained through meteorological field measurements, is
more relevant to public health [22] and is a key parameter for studying the UHI effect [23].

Although there are a large number of studies focusing on UHI, some problems with
respect to it are still ambiguous. The UHI intensity is conventionally defined as the
difference in temperature between an urban and rural area [24]. The traditional detection of
intensity is conducted at two fixed in situ stations in urban and rural regions [25]. Similarly,
the calculation of the surface UHI is conducted over selected pixels located in the urban
and rural regions based on remote sensing data [26]. The estimations both depend on the
determination of urban and rural stations or pixels [23,27]. However, the air temperatures
of the urban area are heterogeneous in space, and the choice of a rural area also affects
the quantification. There are some modified methods to improve the estimation [28–32],
such as calculating the average temperature of the corresponding areas, but the spatial
characteristics of the urban thermal environment are still not good enough to present. In
addition, the studies on the evolution of the spatio-temporal characteristics of the urban
thermal environment during a day are scarce.

Thus, this study focuses on the air temperature and introduces the standard deviational
ellipse (SDE) to explore the general spatial distribution of an urban thermal environment.
We then further construct an UHI index to characterize UHI intensity. This index is not
just determined by the air temperatures of two points but with the purpose of effectively
reflecting the general spatial character of the urban thermal environment. Taking the city
of Wuhan as a study area, and using the air temperature data of seven consecutive days
with sunny and cloudy weather conditions in the hot summer of 2018, we first analyzed
the general spatial thermal character and calculated the UHI index every two hours during
the seven days. Then, we chose three time points in each day and used local Moran’s I to
explore the local spatial pattern of the thermal environment in the study area. Furthermore,
the regression analysis including ordinary least squares (OLS) and the spatial lag model
(SLM) are adopted to explore the land uses that contribute to the spatial variation of
air temperature. The efforts of this work are aimed at trying to provide a method to
characterize the spatial distribution of the thermal environment and the UHI effect more
effectively as well as to illustrate their evolutions with the high temporal resolution during
a day.
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2. Materials and Methods
2.1. Study Area and Data Source

Wuhan, the capital of Hubei Province, is the city with the largest population in Central
China, between the latitudes 29◦58′19.04”N and 31◦21′44.07”N and between the longitudes
113◦41′32.86”E and 115◦4′55.70”E, covering a total area of approximately 8624.69 km2

(Figure 1a), and with an average elevation of about 37 m above sea level. The city possesses
the distinctive character of having a large number of water bodies (Figure 1b), which is why
it was once called “the city of a thousand lakes”. According to Köppen climate classification,
the study area has a Cfa climate with abundant rainfall, cool winters and hot summers.
As one of the Four Furnaces of China, Wuhan is always suffering heat waves and high air
temperatures in the summertime.
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In this study, we focused on the days that are the hottest in the summer. Additionally,
both sunny and cloudy days are included in our analysis to compare the differences in
thermal environmental characteristics between the two weather conditions. Thus, we
chose the days from 17 July to 23 July in 2018 as the study period. The weather of the
middle three days in the study area was sunny, while for the four other days it was cloudy,
which is illustrated in Table 1. The air temperature (2 m above the land surface) of these
seven days was obtained from the China Meteorological Administration (CMA) Land
Data Assimilation System (CLDAS) version 2.0 dataset, called “CLDAS-V2.0” dataset, in
China Meteorological Data Service Centre. The “CLDAS-V2.0” dataset is a grid fusion
analysis dataset with the resolution of 0.0625◦ × 0.0625◦ and 1 h. There are 207 grid
points in the city of Wuhan; the distance between two adjacent grid points in the east–
west direction is about 6.0 km and that in the north–south direction is about 6.9 km
(Figure 1a). The dataset is developed by using a multiple-grid variational assimilation
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called Space and Time Mesoscale Analysis System (STMAS), along with physical inversion,
terrain correction based on the ground, satellite observations from various sources and
CLM3.5, CoLM, Noah-MP land surface model. Evaluated by 2400 in situ national automatic
stations of the China Meteorological Administration (CMA), the RMSE of the 2 m air
temperature of the dataset is 0.88 ◦C; the bias is −0.13 ◦C; and the correlation coefficient is
0.97 (http://data.cma.cn/en/?r=data/detail&dataCode=NAFP_CLDAS2.0_NRT, accessed
on 16 November 2020). Studies evaluating the near-surface air temperature of CLDAS
also show that it has a high reliability in China and is significantly correlated with the
observations [33,34]. The dataset has been widely used in various studies [35–38].

Table 1. Weather conditions of the study area in the study period.

Date Weather Condition

17 July Cloudy
18 July Cloudy
19 July Sunny
20 July Sunny
21 July Sunny
22 July Cloudy
23 July Cloudy

The land use data of the study area are from Resource and Environment Science and
Data Center, Chinese Academy of Sciences (https://www.resdc.cn, accessed on 17 October
2021). The data include 6 major categories of cropland, woodland, water body, impervious
surface and bare land as well as 25 secondary classes, with a resolution of 30 m by 30 m
(Figure 1b). The overall accuracy of the data is about 95% for 25 secondary land use
classes [39].

2.2. Standard Deviational Ellipse and Urban Heat Island Index

The standard deviational ellipse (SDE) is a technique to explore spatial distributions.
It was first introduced in study of geographic density in sociology, such as population
distribution [40], and is now widely used to estimate spatial distribution evolutions and
trends [41,42]. We employed this technique in this study. Moreover, we further developed
a new index based on it.

The analysis of the SDE includes weighted SDE and non-weighted SDE. The steps of
calculating the weighted SDE are as follows. The first is to calculate the weighted mean
center of the point set, which is given by:

xw =

n
∑

i=1
wixi

n
∑

i=1
wi

, yw =

n
∑

i=1
wiyi

n
∑

i=1
wi

, (1)

where xi and yi are the coordinates of the ith point; n is the total number of the points; wi is
the weight of the ith point. Thereafter, the transformed coordinates, which are the different
metric spaces between the ith point and the weighted mean center, are given as follows:

x′i = xi − xw, y′i = yi − yw. (2)

Then, the angle of rotation, measured clockwise from North to the long axis of the
ellipse, can be calculated by:

tan θ =

(
n
∑
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w2

i x′i
2 −

n
∑

i=1
w2

i y′i
2
)
+

√(
n
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i x′i
2−
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w2

i y′i
2
)2
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(
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2
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. (3)

http://data.cma.cn/en/?r=data/detail&dataCode=NAFP_CLDAS2.0_NRT
https://www.resdc.cn
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Finally, the standard distances of the ellipse on x and y directions can be produced by:

σx =

√√√√√√√
n
∑

i=1

(
wix′i cos θ − wiy′i cos θ

)2

n
∑

i=1
w2

i

, (4)

σy =

√√√√√√√
n
∑

i=1

(
wix′i cos θ + wiy′i cos θ

)2

n
∑

i=1
w2

i

. (5)

When wi = 1 in the above equations, the results of the weighted SDE are the same as
the non-weighted SDE. In this study, we use the weighted SDE to explore the spatial distri-
bution of air temperature and combine its results with those of the non-weighted SDE for
further analysis. Evidently, the weight of a point relates to the air’s temperature. However,
if the weight is set equal to the air temperature of the point, the weight discrimination is
very small for the minor difference between the air temperature of the maximum and the
minimum in the study area, which is about 5 ◦C or even less, whereas the air temperature
of the point is generally around 30 ◦C. Therefore, we introduce the air temperature of an
area identified as rural and use it combined with the air temperature of the grid point to
construct the weight. Since the weight cannot be negative, the functional form of the weight
is constructed as:

wi = f (Tai, Tar) = exp(Tai − Tar), (6)

where Tai is the air temperature (◦C) of the ith point and Tar indicates the air temperature
(◦C) of the rural area. Therefore, what an area is considered as rural, distinguished from
the urban area, is a key point. We first analyzed the air temperature isotherm and the
air temperature profile of an extended area covering the city of Wuhan. Then, based on
combined analysis of air temperature distribution and land use configuration, we identified
a typical area as rural. Thereafter, we calculated the mean value of the air temperature with
respect to the grid points in the typical rural area and used this mean value as the Tar. Since
a higher wi is obtained with a higher Tai, it is evident that the higher the Tai near the center
of the study area, the smaller the standard distances of the ellipse in Equations (4) and (5).
This suggests that the smaller the area of the weighted SDE, the more intensive the heat
island effect. As for the non-weighted SDE, it is equivalent to considering all the grid points
to have equal weights; that is to say, all the grid points with the same air temperature,
representing the state of having no heat island effect in the study area. Therefore, we
construct an UHI index that reflect the heat island intensity, as follows:

I =
SSDE−nonW

SSDE−W
=

πσx−nonWσy−nonW

πσx−Wσy−W
=

σx−nonWσy−nonW

σx−Wσy−W
, (7)

where SSDE−nonW, σx−nonW and σy−nonW are the area and standard deviations on x and y
directions of the non-weighted SDE, respectively; SSDE−W, σx−W and σy−W are those of
the weighted SDE. When the value of this index is larger than 1, this indicates that the
corresponding area presents the state of the heat island effect. Moreover, the weaker the
heat island effect of the study area, the closer the value of this index is to 1, and the more
intensive the heat island effect, the larger the value of the index. Conversely, a value of the
UHI index less than 1 suggests that the weights of the grid points near the center are lesser
than those far from the center. Since the wi monotonically increases with the Tai base on
Equation (6), the air temperature has the same spatial distribution trend as the weights,
therefore representing the state of cool island.
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2.3. Spatial Pattern Analysis

Spatial autocorrelation refers to the potential interdependence of observed data of
some variables within the same distribution area. Moran’s I is a commonly used spatial
autocorrelation statistic to describe the concentration or dispersion of variables in space.
Moran’s I can be divided into global Moran’s I and local Moran’s I. Global Moran’s I shows
whether there exists aggregation or outliers in a space, and is then used for exploring the
global correlation between regions. The local Moran’s I [43], a statistic to measure the local
spatial autocorrelation index, is used to reflect the characteristics of agglomeration and
differentiation of related variables in a small-scale spatial structure, which is used in this
study to analyze the spatial pattern of the air temperature of the study area. It can be
expressed as follows:

Ii = ZiWZi , (8)

where

Zi =
Tai − Ta

S
, (9)

WZi =
n

∑
j=1,j 6=i

w∗ijZj =
n

∑
j=1,j 6=i

w∗ij

(
Taj − Ta

S

)
, (10)

where Tai is the air temperature of grid point I; Ta and S are the mean and the standard
deviation of the air temperatures of all grid points in the study area, respectively; n is
the total number of the grid points; and wij* is a normalized spatial weight of point j
with respect to point i, derived from a non-normalized spatial weight. In this study, the
non-normalized spatial weight is defined as the inverse of the distance squared, which is
given by:

wij =

{
1/d2

ij, dij ≤ b
0, dij > b

, (11)

where dij is the distance between grid point i and j; b is a distance bandwidth. In
this study, b is specified with the value of 11 km, which implies that only the grid points
surrounding the grid point i have weights larger than 0, with other grid points given the
weights of 0. Usually, there are 8 points surrounding a grid point, but less than 8 points for
each of the points at the edge of the study area. Thereafter, the normalized spatial weight is
given by:

w∗ij = wij/
n

∑
j=1,j 6=i

wij . (12)

In Equations (8)–(10), Zi describes the air temperature of point i in deviations from
the mean of air temperature of the study area and WZi represents the weighted summation
of air temperature deviations of the grid points surrounding point i from the mean of air
temperature. Through the analysis of local Moran’s I, the patterns of spatial clusters of
grid points and the outliers with a statistically significance can be obtained. If Zi > 0 and
WZi > 0, this means the grid point and the outliers have high values (relative to the mean
value), called the cluster of high values (HH). If Zi < 0 and WZi < 0, this means the grid
point and the outliers have low values (relative to the mean value), called the cluster of low
values (LL). The other two patterns are the grid point having a high value and surrounded
by grid points with low values (HL), with Zi > 0 and WZi < 0, and the grid point having a
low value and surrounded by grid points with high values (LH), with Zi < 0 and WZi > 0.

2.4. Regression Analysis

Linear regression analysis is a common method to analyze the relationship of a de-
pendent variable driven by other factors. In this study, the dependent variable is the air
temperature of the grid point, and the independent variables are the proportions of the
land uses in the area with respect to the Thiessen polygon of each grid point. The ordinary
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least squares (OLS) model, involving a global multiple linear regression (MLR) in this study,
is formed as:

Ta = Xβ + ε, (13)

where Ta is a vector with respect to the air temperature of the grid points of the study area;
X is a matrix containing intercept (a vector of ones with the length equal to the total number
of the grid points) and values of land use fractions of the Thiessen polygon corresponding
to each grid point; β is a vector of the regression coefficients; and ε is a vector of random
errors. Additionally, stepwise regression technology is used to select the proper explanatory
variables from the proportions of the six land use types illustrated in Figure 1b.

Usually, there are spatial autocorrelations with geographical variables. Thus, spatial
regression models may be more effective in explaining the relationship of the variables
compared with the OLS model. Spatial lag model (SLM) and spatial error model (SEM) are
two common types of spatial regression model [44]. Since SLM is mostly suitable to deal
with the problem associated with spatial diffusion, a characteristic of heat, we adopt SLM
to further analyze air temperature with driving factors. The SLM adds an autocorrelation
term of the air temperature of the grid points to the right of Equation (13). Additionally,
the driving factors that we use for the model are the final selected explanatory variables
based on the stepwise regression analysis. The model is described as follows:

Ta = ρWTa + Xβ + ε, (14)

where ρ is the parameter characterizing the contribution of spatial autocorrelation; W
is a row-sum standardized spatial weight matrix with the elements of wii* = 0 and wij*
calculated by Equation (12); and WTa represents the spatially lagged response of the air
temperature of the grid points.

3. Results
3.1. General Spatio-Temporal Distribution of the Thermal Environment

We calculated the mean air temperature of the grid points in an extended area includ-
ing the city of Wuhan during the nighttime (20:31 the day before to 06:30) and the daytime
(06:31 to 20:30) from 17 July to 23 July. We then plotted the air temperature isotherms,
which are illustrated in Figure 2. It can be seen that the islands of air temperature protrude
above the surrounding air temperature field both during nighttime and daytime, revealing
that heat islands are present in the city of Wuhan. The center of the heat island is slightly
southwest of the city center during the nighttime, and slightly west of the city center
during the daytime. The northern region is relatively cool compared to the entire city.
Furthermore, we analyzed the air temperature profile along the line of AB in Figure 2. The
profiles of the air temperature are shown in Figure 3. Based on the combined analysis of air
temperature distribution and land use configuration, we chose a typical rural area located
to the northwest of the city of Wuhan, illustrated in Figure 2. The air temperature of the
designated rural area is flat, which means that the change rate is small, as seen from the
profiles (Figure 3), and the air temperature gradient on the designated rural area boundary
toward the city center is uphill and increased. On the other hand, as seen in Figure 1b, the
designated rural area is dominated by the cropland and contains some woodland and a
small amount of impervious surface. All these temperature and land use characteristics are
typical of rural areas. Therefore, we used the mean air temperature of the grid points in
this area to represent the rural air temperature.
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After determining the rural air temperature, the weights of the grid points were
obtained according to Equation (6). Then, we took the 207 grid points in the city of Wuhan
for the SDE analysis. Furthermore, based on Equation (7), the values of the UHI index for
every two hours from 00:00 on 17 July to 00:00 on 24 July were derived, which are shown in
Figure 4. The trends of the UHI index within each day are very similar, generally decreasing
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from 04:00 to 10:00 and increasing from 16:00 to 22:00. The UHI index minimum of each day
occurs between 10:00 and 16:00, and the maximum occurs between 22:00 and 04:00 the next
day. Additionally, the difference between the UHI index minimum of these seven days is
very small. However, the peak values of the UHI index curve from the evening of 19 July to
the early morning of 22 July are obviously higher than those of the other days. The weather
from 19 July to 21 July is sunny, while the other days it is cloudy, which indicates that sunny
days enhance the heat island effect at night compared to cloudy days, but the heat island
effect with respect to the two weather conditions during the day is not much different.
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The non-weighted SDEs and the weighted SDEs at 06:00, 14:00 and 22:00 of the seven
days are illustrated in Figure 5. The center of the non-weighted SDEs represents the
geographical center of the study area, and that of the weighted SDEs represents the center
of the thermal field. It is evident that the centers of the thermal fields in the morning and
at night are southwest of the geographical center of the city. Moreover, the shape of the
weighted SDEs can reflect the dispersion of air temperature. Similar to the spatially normal
distribution, the ellipse of the one standard deviation encompasses approximately 68% of
the cumulate air temperature weights (wi in Equation (6)) in the area. Except for 21 and
23 July, the weighted SDEs at 06:00 and 22:00 each day are close in shape, position and size.
This illustrates that the spatial distributions of the thermal characteristics at 06:00 and at
22:00 are very similar. Likewise, the weighted SDE at 14:00 and the non-weighted SDEs
are close in shape, position and size except for 17 and 22 July. Since the non-weighted SDE
is considered as having no heat island effect, the results illustrate that the heat islands at
14:00 are weak. On the contrary, as shown in Figure 5, the distinction of the weighted SDEs
at 06:00 and at 22:00 from the non-weighted SDEs are broad, especially in size and position,
indicating that the heat island effect is intense at these two time points.

3.2. Local Spatial Pattern of the Thermal Environment

A local spatial analysis of the air temperature distribution is performed at 06:00, 14:00
and 22:00 on the seven days. Identified by calculating local Moran’s I values, the spatial
clusters and the outliers of the grid points at the three time points are, respectively, shown
in Figures 6–8. Only the HH and LL clusters are of statistical significance in the study
area at the three time points on all the seven days. The areas, except for the HH and LL
clusters, are of no significance. These results indicate that the air temperature distribution
has similarly high or low values in neighboring zones; there is no grid point with high air
temperature surrounded by grid points with low air temperature nor grid point with low
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air temperature surrounded by grid points with high air temperature. This also implies
that the air temperature of a grid point is affected by the surrounding points.
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As seen from Figure 6, the local spatial patterns of the thermal characteristic at 06:00
on seven days mostly overlap, especially on 18 and 19 July. As for 22:00 (Figure 8), the
local spatial patterns from 17 July to 19 July mostly overlap and those on 21 and 22 July
mostly overlap. Additionally, the overlap proportion of the HH clusters at 06:00 and 22:00
is large in general. However, the HH clusters at 14:00 are substantially different from
those at 06:00 and 22:00. Additionally, the corresponding weighted SDEs are displayed in
Figures 6–8. It can be seen that the results of the SDE analysis are consistent with the local
spatial pattern analysis. The shape, position, and size of the weighted SDEs at 06:00 and
22:00 are dominantly determined by the distribution of the HH cluster.

A further analysis regarding the land uses is illustrated in Figure 9, which shows
the proportions of the land uses within the HH clusters, LL clusters and no significance
clusters. In the HH clusters (Figure 9a), there are four time points at which the proportion
of impervious surface is the largest (22:00 on 17 July; 06:00 on 18 July; 06:00 and 22:00
on 19 July), whereas the proportion of the cropland is the largest at the other time points.
However, the proportion of cropland is always the largest in the LL clusters (Figure 9b) and
no significance clusters (Figure 9c). This probably suggests that cropland is not associated
with either high air temperature or low air temperature. The large proportion of cropland
in the HH clusters and LL clusters may be due to the fact that the air temperature over
cropland is easily affected by neighboring with other land uses. When excluding cropland,
as in the HH clusters at 06:00 and 22:00, the proportions of the impervious surface and
water bodies are the two largest; additionally, the proportion of impervious surface is
generally larger than that of water bodies, except for 22:00 on 20 July and 06:00 on 21 July,
which are approximately equal. This may suggest that the HH clusters at 06:00 and 22:00
are associated with the impervious surface and water bodies. Since the proportion of water
bodies in the no significance clusters is not very small, this may indicate that the association
of the water bodies with the HH clusters at 06:00 and 22:00 is weak. As for the HH clusters
at 14:00, the proportion of water bodies is larger than that of impervious surface on five
out of seven days; however, these proportions of water bodies is not fairly larger and even
sometimes less than those in the no significance clusters. Thus, the water bodies may
even be more weakly associated with the HH clusters at 14:00. When considering the land
uses in the LL clusters after excluding cropland, the proportion of woodland is always
the largest; moreover, the proportion of woodland in the HH clusters and no significance
clusters is always very small. This suggests that the LL clusters are strongly associated
with woodland (mainly distributed in the northern part of the city).

3.3. Land Uses Contributing to Air Temperature Variation

We used a regression analysis to analyze the contribution of land uses to the special
distribution of air temperature. We carried out the ordinary least squares (OLS) regression
analysis of the air temperature of the grid points with the proportions of land uses with
respect to the Thiessen polygons of the grid points. Additionally, stepwise regression
technology was used to select the proper variables and eliminate the variables without
significance (at the significant level of 0.05).

Among the proportions of the six land use types illustrated in Figure 1b, the main
variables contributing to the variation of air temperature are the proportion of woodland
area (PWDA), the proportion of water body area (PWBA) and the proportion of impervious
surface area (PISA); more details of the OLS regression results are shown in Table 2. The
stepwise regression technology can mitigate the collinearity of the predictor variables in
the model to some extent. Moreover, the variance inflation factors (VIFs) for the predictors
in the final regression model were evaluated and the maximum VIF is presented (Table 2).
All the values of the maximum VIF are less than 2, indicating essentially no collinearity.
Therefore, the predictor variables could independently predict the value of the dependent
variable. The coefficients of PWDA are all significant and all negative at 06:00, 14:00 and 22:00
from 17 July to 23 July, which means that by increasing the proportion of woodland area,
the air temperature will decrease. As for PWBA and PISA, both coefficients are significant
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and positive at 06:00 and 22:00 on the seven days; however, at 14:00, the coefficients of
PWBA are only significant on two days and those of PISA are only significant on three days.
This means that in the morning and evening, increasing the proportions of water body
area and impervious surface area will increase the air temperature. However, at noon, the
effects of the water body and the impervious surface may require further consideration, for
the coefficients of PWBA and PISA are not always significant.
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When considering the fitness of the OLS model varying in time (R2 in Table 2), it can
be seen that the R2 value at 22:00 is larger than that at 06:00 each day, and that the R2 value
at 06:00 is larger than that at 14:00. With the exception of 22 July, the OLS model can explain
more than 50% of the variation in the spatial distribution of air temperature at 22:00; at 06:00,
there are three days on which more than 50% of the variation can be explained by the model.
However, at 14:00, the model can explain not more than 40% of the variation, with the
exception of 17 and 22 July, and even less than 20% on 21 July. This suggests that there are
some other factors affecting the spatial distribution of air temperature. Moreover, we used
the spatial lag model (SLM) with the same independent variables than for the regression
analysis. The results are shown in Table 3. The R2 of the model is very high at all the time
points, much larger than that of the OLS model. None of the R2 values at 06:00 and 22:00 are
lesser than 0.97; only the R2 values at 14:00 on 19 and 23 July are slightly lesser than 0.90, but
also greater than 0.89. This means that the explanation of the SLM is improved. However,
the absolute values of the coefficients of the explanatory variables become smaller. This is
because some variation of the dependent variable explained by the independent variable is
substituted by the spatially lagged term (WTa in Equation (14)). When the absolute value
becomes very small and close to zero, it may not even be statistically significantly different
from the zero value. As seen from Table 3, all the coefficients with absolute values of less than
0.1 are not significant. Two of the coefficients of PISA that are significant in the OLS model
become not significant. Even the coefficients of PWBA all become not significant. Conversely,
the Lag coefficients of the SLM are very high (higher than 0.95) and extremely significant at
all the time points, which indicates that the contribution of spatial autocorrelation to the
spatial variation of air temperature is very high and that the air temperature of one grid
point is greatly affected by its neighboring points. This implies that the effect of spatial
diffusion is significant in the spatial distribution of air temperature.
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Table 2. Coefficients of the OLS regression with respect to air temperature.

Date Time Constant PWDA PWBA PISA Max VIF R2 Adjusted
R2

17 July
06:00 26.77 *** −1.202 *** 1.223 *** 2.594 *** 1.207 0.430 0.422
14:00 35.67 *** −0.963 *** 1.026 *** 1.145 *** 1.207 0.408 0.399
22:00 30.33 *** −2.247 *** 1.175 *** 2.756 *** 1.207 0.614 0.608

18 July
06:00 27.12 *** −1.590 *** 1.279 *** 3.009 *** 1.207 0.499 0.492
14:00 37.02 *** −1.517 *** - - - 0.329 0.326
22:00 30.82 *** −2.860 *** 1.287 *** 2.877 *** 1.207 0.555 0.548

19 July
06:00 27.19 *** −1.749 *** 1.488 *** 2.995 *** 1.207 0.522 0.515
14:00 37.45 *** −1.061 *** - 0.327 ** 1.068 0.335 0.328
22:00 30.75 *** −2.710 *** 1.749 *** 3.367 *** 1.207 0.523 0.516

20 July
06:00 27.10 *** −2.375 *** 1.742 *** 3.160 *** 1.207 0.504 0.497
14:00 37.68 *** −1.568 *** - −0.634 *** 1.068 0.373 0.367
22:00 30.47 *** −3.102 *** 2.048 *** 2.960 *** 1.207 0.546 0.539

21 July
06:00 27.34 *** −2.751 *** 1.630 *** 2.902 *** 1.207 0.591 0.585
14:00 38.34 *** −0.895 *** - - - 0.169 0.165
22:00 30.99 *** −3.622 *** 2.528 *** 3.152 *** 1.207 0.526 0.519

22 July
06:00 26.84 *** −2.669 *** 2.176 *** 2.658 *** 1.207 0.487 0.479
14:00 36.63 *** −1.862 *** - - - 0.473 0.471
22:00 30.44 *** −2.325 *** 1.862 *** 2.431 *** 1.207 0.495 0.487

23 July
06:00 26.97 *** −2.218 *** 1.847 *** 2.715 *** 1.207 0.463 0.455
14:00 36.72 *** −0.923 *** 0.362 *** - 1.113 0.355 0.349
22:00 30.15 *** −2.300 *** 0.882 *** 2.147 *** 1.207 0.535 0.528

*** Significant at p < 0.001, ** significant at p < 0.01.

Table 3. Coefficients of the SLM regression with respect to the air temperature.

Date Time Lag
Coefficient Constant PWDA PWBA PISA R2

17 July
06:00 0.986 *** 0.358 * −0.264 *** 0.068 0.154 * 0.977
14:00 0.962 *** 1.368 *** −0.289 *** 0.071 0.068 0.962
22:00 0.965 *** 1.057 *** −0.373 *** 0.040 0.221 *** 0.986

18 July
06:00 0.984 *** 0.429 * −0.299 *** 0.051 0.199 ** 0.981
14:00 0.964 *** 1.356 *** −0.395 *** - - 0.934
22:00 0.972 *** 0.862 *** −0.388 *** 0.016 0.202 *** 0.990

19 July
06:00 0.982 *** 0.476 ** −0.329 *** 0.049 0.184 ** 0.982
14:00 0.956 *** 1.682 *** −0.388 *** - −0.009 0.892
22:00 0.980 *** 0.611 ** −0.348 *** 0.029 0.235 *** 0.990

20 July
06:00 0.981 *** 0.497 ** −0.341 *** 0.041 0.214 ** 0.985
14:00 0.962 *** 1.456 *** −0.420 *** - −0.119 ** 0.934
22:00 0.970 *** 0.894 ** −0.301 *** 0.099 0.254 *** 0.989

21 July
06:00 0.963 *** 1.005 *** −0.404 *** 0.077 0.215 *** 0.987
14:00 0.973 *** 1.074 ** −0.331 *** - - 0.900
22:00 0.979 *** 0.643 ** −0.329 *** 0.041 0.207 *** 0.993

22 July
06:00 0.980 *** 0.514 ** −0.322 *** 0.099 0.188 ** 0.989
14:00 0.941 *** 2.167 *** −0.457 *** - - 0.941
22:00 0.974 *** 0.793 ** −0.340 *** −0.003 0.213 *** 0.984

23 July
06:00 0.980 *** 0.531** −0.320 *** −0.004 0.191 *** 0.990
14:00 0.947 *** 1.952 *** −0.334 *** 0.011 - 0.891
22:00 0.969 *** 0.927 ** −0.353 *** 0.035 0.134 * 0.970

*** Significant at p < 0.001, ** significant at p < 0.01, * significant at p < 0.05.
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4. Discussion
4.1. Advantage of the UHI Index

Figure 10 displays the standard deviation of air temperature (Ta-SD) of the grid points,
its trend generally corresponding to that of the UHI index (Figure 4). It may be supposed
that the UHI index is simply determined by the variation of air temperature with respect to
the grid points. However, this is not exactly true. In order to illustrate this issue, we first
calculated the difference in the UHI index and the difference in the Ta-SD in 2 h steps. We
then calculated the quotient of the differences, which is shown in Figure 10. As it can be
seen, the difference quotient is positive most of the time, but there are still some times when
the difference quotient is negative. This means that at some time points, not very few, the
change trend of the UHI index is opposite to that of the Ta-SD. As the UHI index is derived
from an SDE analysis, it considers not only the value distribution of air temperature, but
also the spatial distribution. With the same Ta-SD, the spatial distribution could be different,
so the values of the UHI index may be distinct. In specific situations, with the same Ta-SD,
an area may present the state of heat island or the state of cool island. However, these
situations can be distinguished by the UHI index, for its value of the former is greater than
1 and that of the latter less than 1. Thus, the UHI index has an advantage in characterizing
the spatial distribution of the thermal environment and the UHI effect.
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4.2. Thermal Environment in Relation to Weather Condition

The weather conditions of the seven days on which we analyzed the thermal environ-
mental characteristics are cloudy and sunny. As it can be seen, the UHI index from 10:00
to 16:00 does not vary much on these seven days. However, the values of the UHI index
at 22:00 and at 24:00 on the three sunny days are all greater than those on the four cloudy
days. These results are in accordance with the other literature. There is wide consensus
that the UHI effect is strong during the nighttime but weak or even disappears during the
daytime [45–48]. Thus, the influence of weather conditions on the UHI effect is slight dur-
ing the daytime. However, during the nighttime, previous studies have demonstrated that
that the UHI intensity in clear conditions is evidently greater than in overcast conditions
during the nighttime [47,49,50].

Conventionally, UHI intensity is usually the difference between urban peak air tem-
peratures and rural air temperatures. In this study, the curve of the UHI index reflects that
the air temperature difference between urban center and the outskirts of the city during the
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nighttime on sunny days is generally greater than that on cloudy days, implying that the
spatial heterogeneity of thermal environmental characteristics increases in sunny days.

4.3. Limitations of the Regression Models

In this study, we attribute the spatial variation of the air temperature to local land
uses by using a regression analysis. In fact, wind is also an important factor affecting air
temperature, which is not considered in the regression model. This may be a reason why
the coefficients of the determination with respect to the OLS model are not very satisfactory.
Yet, the magnitude of the variation in air temperature explained by the land use regression
model is also not very satisfactory in previous studies [51–54]. However, it is difficult
to consider the contribution of wind in a global regression model, for the effect of wind
on local air temperature is complex. Even if the wind remains in a constant direction, it
may decrease the air temperature in one local area but may increase the air temperature in
another local area, not to mention that the wind’s direction frequently changes. Thus, it
may not be suitable to consider the contribution of wind to local air temperature in space
when using the OLS model. When the SLM is adopted, the coefficients of the determination
greatly improve. Since the SLM can reflect the effect of spatial diffusion, it can be supposed
that the model takes into account the effect of the wind to some extent. However, this
comes at the cost of losing the explanation of the local independent variables, namely
the proportion of land uses, for the absolute values of the regression coefficients become
smaller and some of them are even without significance.

5. Conclusions

In the light of the ambiguous measurements in UHI intensity and the scarce studies
on the spatial characteristics’ evolution of the urban thermal environment with the high
temporal resolution during a day, this study introduces the SDE method to depict the
general spatial character of the urban thermal environment and constructs an UHI index
to evaluate the UHI intensity based on the SDE. Taking the city of Wuhan as a study area,
the results illustrate that the UHI index can effectively represent the general characteristics
of the thermal environment in the study area. The trends of the UHI intensity generally
decrease from midnight to midday, and generally increase from midday to evening. The
local spatial pattern analysis through local Moran’s I shows that there are only high–high
clusters and low–low clusters of air temperature with statistical significance in the study
area. The former clusters are mainly associated with the imperious surface, and are also
associated with water bodies in the morning and the evening. The latter clusters are mainly
associated with woodland. This can be further demonstrated by a regression analysis.
The regression analysis of the SLM also indicates that the effect of spatial diffusion has a
significant influence on the distribution of air temperature in space.

Furthermore, the regression analysis indicates that the effects of water body on air
temperature are mostly not statistically significant at noon according to the OLS model
and are even all insignificant in the morning, noon and evening according to the SLM
model. Nevertheless, woodland always has a cooling effect in the morning, at noon and in
the evening, implying that increasing the vegetation may be the most effective strategy to
mitigate the urban thermal environment. The regression results also show that the OLS
model could not fit the spatial distribution of air temperature well enough, while the fitness
of the SLM is greatly improved. However, the explanation of the proportion of the local land
uses accounting for the spatial variation of air temperature becomes lower. An improved
model is still required to explain the spatial distribution of the urban air temperature.
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