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Abstract: Airborne SAR is an important data source for crop mapping and has important applications
in agricultural monitoring and food safety. However, the incidence-angle effects of airborne SAR
imagery decrease the crop mapping accuracy. An active pairwise constraint learning method (APCL)
is proposed for constrained time-series clustering to address this problem. APCL constructs two types
of instance-level pairwise constraints based on the incidence angles of the samples and a non-iterative
batch-mode active selection scheme: the must-link constraint, which links two objects of the same
crop type with large differences in backscattering coefficients and the shapes of time-series curves;
the cannot-link constraint, which links two objects of different crop types with only small differences
in the values of backscattering coefficients. Experiments were conducted using 12 time-series images
with incidence angles ranging from 21.2◦ to 64.3◦, and the experimental results prove the effectiveness
of APCL in improving crop mapping accuracy. More specifically, when using dynamic time warping
(DTW) as the similarity measure, the kappa coefficient obtained by APCL was increased by 9.5%,
8.7%, and 5.2% compared to the results of the three other methods. It provides a new solution for
reducing the incidence-angle effects in the crop mapping of airborne SAR time-series images.

Keywords: synthetic aperture radar (SAR); crop mapping; time-series images; constrained clustering;
active constraint learning

1. Introduction

Food security is the foundation and guarantee of human health and social stability.
Timely and accurate crop mapping can assist with crop production management, crop yield
prediction, crop disaster warning, and crop planting planning, which is of considerable
importance to ensure food security [1–3]. Remote sensing technology has become an
important means of crop mapping due to its wide coverage, low cost, near real-time
performance, and the large amount of information [1,4–6].

Among the numerous earth observation sensors, synthetic aperture radar (SAR) sys-
tems on airborne platforms have been gaining popularity in crop mapping applications. On
the one hand, the airborne platforms have the advantages of good flexibility and reusabil-
ity and can guarantee regular and high-frequency observations throughout the growing
season, which increases their suitability for agricultural monitoring. On the other hand,
as an activate microwave sensor, SAR provides unique information for crop mapping:
the microwave signal is sensitive to the dielectric and geometrical properties of crops [7],
and the acquired backscattering coefficients are synthesized information of the land cover
type, terrain slope, surface roughness, local incidence angle, and dielectric constant [8].
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Thus, rich polarimetric features can be extracted by various polarimetric decomposition
algorithms [9–13].

The accuracy of crop mapping in a single image is affected by the phenomenon
of “same object with different spectra” and “different objects with the same spectra.”
Several researchers currently use time-series analysis technology to map crops from time-
series images based on the differences in the growth trends of the crops over the whole
growth period. These methods can be divided into two main categories: supervised and
unsupervised methods. In the supervised methods, many researchers have focused on
finding remarkably effective features and classifiers to improve the accuracy of specific crop
mapping tasks [14–20]. This kind of method can achieve high accuracy but usually requires
a large number of training samples, and the acquisition of high-quality training samples can
be remarkably time-consuming. Considering the difficulty of the collection of high-quality
training samples, the unsupervised crop mapping approaches have attracted increasing
attention in recent years. In the unsupervised approaches, some of the methods use crop
phenology to establish rules for distinguishing the different crops [21,22]. However, the
establishment of rules is highly dependent on expert knowledge and specific crops, which
leads to weak universality. Therefore, other methods have been developed using time-
series clustering technology [23–28]. Time-series clustering is a process of combining
homogeneous time-series data based on a certain similarity measure [29], and its accuracy
is mainly affected by the similarity measure criterion, the time-series data representation
method, and the clustering method [29]. Time-series clustering technology can be used to
cluster the time-series curves of crops effectively due to the differences in the growth cycles
and trends of different crops.

However, when applied to the airborne SAR imagery, the crop mapping accuracy may
be reduced by the large range of incidence angles. More specifically, when the incidence
angles of the images substantially vary, the backscattering coefficients of the same type
of crops at the near and far ranges of the image might be quite different, complicating
the clustering of these crops into a single group. For the incidence angle effects, some
studies [24,30,31] removed the regions with excessively large incidence angles from the
image, which cannot fully exploit the image data. Other studies use incidence-angle
correction techniques to address these problems, such as normalizing the backscattering
coefficient with respect to the incidence angle [32], model and correct for the effect of
variation in incidence angle in azimuth line [33], a cosine correction estimated through
linear regression [34], and a histogram matching procedure, where the adjustment was
based on the lowest two central moments, the mean and variance [35]. However, these
techniques are usually suitable for specific data with a small range of incidence angles or
specific types of ground objects.

Constrained clustering methods are introduced in this paper to solve the incidence
angle effects. Constrained clustering (which is also known as semi-supervised clustering)
can introduce background knowledge (also known as side information) to guide a clustering
algorithm [36]. The constrained clustering methods focus on the most commonly used
K-means based algorithms, in which the clustering algorithm or the objective function
is modified such that user constraints are used to guide the algorithm for remarkably
appropriate data partitioning [36]. In addition, the current study focused on the most
widely used instance-level pairwise constraints [37]: must-link constraints (MLCs) and
cannot-link constraints (CLCs). An MLC ensures that two instances should remain in the
same cluster, while a CLC ensures that two instances should be in two different clusters [38].
The quality of the constraints plays a critical part in constrained clustering. However, the
commonly used constraint generation methods in many studies [36,39–43] are random
sampling and manual selection. In random sampling, the constraints are generated by
randomly taking pairs of points and generating an MLC or CLC depending on whether
they belong to the same class or not. Consequently, the quality of the constraints cannot
be guaranteed. In the manual selection, the speckle noise inherent in SAR images will
aggravate the difficulty of the identification of constraints. Some studies [44–47] have
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attempted to introduce remarkably effective constraint information, but their methods are
only applicable in specific domains.

Therefore, an active pairwise constraint learning method (APCL) is introduced to
achieve reliable crop mapping from airborne SAR images via constrained time-series clus-
tering. The proposed method integrates the batch-mode active selection, the information
contained in the incidence angle, and the characteristics of the crop time-series curves to
learn informative instance-level constraints. The method was designed for SAR images
with a wide range of incidence angles and was verified in the experiments conducted in this
study, where crops from the uninhabited aerial vehicle synthetic aperture radar (UAVSAR)
images were mapped using several constrained clustering methods and time-series similar-
ity measures.

2. Study Area and Experimental Data

The study area located in the southwest of Winnipeg, Manitoba, Canada, is covered
by various crops, as shown in Figure 1a,b. Four types of crops were considered in the
crop mapping experiments: oat, corn, canola, and soybean. The reference map for the crop
distribution is shown in Figure 1c, which was established in accordance with the land-cover
classification map produced by the NASA National Snow and Ice Data Center Distributed
Active Archive Center (NSIDC DAAC) [48].
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ArcGIS Online Map; (c) reference map of crop distribution.

The data used in this study were the UAVSAR images obtained during the Soil
Moisture Active Passive Validation Experiment 2012 (SMAPVEX2012). The SMAPVEX12
campaign lasted 43 days (7 June–19 July 2012), and the soil moisture and vegetation
conditions changed significantly during the time period. A total of 13 days of UAVSAR
data were acquired by the end of the campaign [30]. Twelve UAVSAR images of the same
flight line were used for crop mapping. The images were ground-range projected and
multi-looked data (GRD) whose preprocessing procedures include radiometric calibration,
geometric correction (WGS-84), and multi-look processing (15 pixels in range and 60
pixels in azimuth directions). These images were resampled from 1134× 795 (pixels) to
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378× 265 (pixels) to reduce the time spent in the experiment. The images are multi-looked;
thus, any speckle-filtering process was not conducted on the images. A description of the
data is provided in Table 1, and the corresponding Pauli RGB images are shown in Figure 2.
The local incidence angles of the pixels in the images are shown in Figure 3, where the
minimum value is 21.2◦ (near range) and the maximum value is 64.3◦ (far range). The
local incidence angle is defined as the angle between the radar line-of-sight and the surface
normal vector [33,49,50]. The terrain of the study area can be characterized as flat; thus, the
incidence angle and local incidence angle are assumed to be the same in this paper. The
numbers of pixels for each crop type are presented in Table 2.

Table 1. Description of the UAVSAR time-series images.

Sensor Look
Direction

Band
(Frequency)

Incidence
Angle (◦)

Image Size
(Pixels)

Observation Date
(2012)

UAVSAR Left L (1.26 GHz) 21.2–64.3 378 × 265
17, 19, 22, 23, 25, 27,

29 June
5, 10, 13, 14, 17 July

Remote Sens. 2022, 14, x FOR PEER REVIEW 4 of 22 
 

 

acquired by the end of the campaign [30]. Twelve UAVSAR images of the same flight line 
were used for crop mapping. The images were ground-range projected and multi-looked 
data (GRD) whose preprocessing procedures include radiometric calibration, geometric 
correction (WGS-84), and multi-look processing (15 pixels in range and 60 pixels in azi-
muth directions). These images were resampled from 1134 × 795 (pixels) to 378 × 265 
(pixels) to reduce the time spent in the experiment. The images are multi-looked; thus, 
any speckle-filtering process was not conducted on the images. A description of the data 
is provided in Table 1, and the corresponding Pauli RGB images are shown in Figure 2. 
The local incidence angles of the pixels in the images are shown in Figure 3, where the 
minimum value is 21.2° (near range) and the maximum value is 64.3° (far range). The local 
incidence angle is defined as the angle between the radar line-of-sight and the surface 
normal vector [33,49,50]. The terrain of the study area can be characterized as flat; thus, 
the incidence angle and local incidence angle are assumed to be the same in this paper. 
The numbers of pixels for each crop type are presented in Table 2. 

Table 1. Description of the UAVSAR time-series images. 

Sensor Look Di-
rection 

Band (Fre-
quency) 

Incidence An-
gle (°) 

Image Size 
(Pixels) 

Observation Date 
(2012) 

UAVSAR Left L (1.26 GHz) 21.2–64.3 378 × 265 
17, 19, 22, 23, 25, 27, 

29 June 
5, 10, 13, 14, 17 July 

 
Figure 2. Pauli RGB images of the UAVSAR time-series images, with red |𝑆 − 𝑆 | , green 4|𝑆 | , and blue |𝑆 + 𝑆 | . 
Figure 2. Pauli RGB images of the UAVSAR time-series images, with red |SHH − SVV |2, green
4|SHV |2, and blue |SHH + SVV |2.

Table 2. Number of pixels of each crop.

Crop Type Number of Pixels

Oats 3454
Corn 4395

Canola 10,426
Soybean 12,330

Total 30,605
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The Pauli RGB images reveal that the backscattering characteristics of the same crop
at the near and far ranges are quite different. The backscattering coefficients are mainly af-
fected by the terrain slope, soil moisture, geometric structure, and incidence angle. Among
these factors, the topography is flat to gently undulating, with slopes from 0% to 2%; the
types of soil in this area are loam and clay, which have similar soil moisture contents [30,51];
and the geometric structures of the same crops in this area are similar. According to NOAA
Global Surface Summary of Day [52], during the period of data acquisition, the average
temperature in this area is 20.3 ◦C, and the accumulated precipitation is 4.5 cm. Therefore,
the large variation of the incidence angle (21.2◦–64.3◦) is considered in this paper to be the
main factor causing the large difference in backscattering between the near and far ranges
of the same crop. In addition, the shape of cropland in this region is relatively regular,
which makes it more conducive to study the impact of the incidence angle effect.

Previous works [20,53,54] have proven that among the polarization channels of HH,
HV, and VV, the HV polarization is the most effective channel for discriminating differ-
ent types of crops in the crop mapping of polarimetric SAR time-series images because
the HV is remarkably sensitive to the volume scattering, which supports the value of
structural features in distinguishing across crop types [20]. Therefore, only the backscat-
tering coefficient of HV polarization (SHV) was used for the crop mapping experiments
in this paper; that is, the time-series curve for each sample Si was constructed using the
corresponding SHV values in all 12 images (i.e., Si =

{
St1

HV , St2
HV , · · · , Stn

HV
}

). In addition,
using only SHV rather than all the polarimetric features can simplify the analysis of the
characteristics of time-series curves and provide guidance for crop mapping using single
and dual-polarization data.

3. Methods

The constrained clustering methods using instance-level constraints were introduced
to improve the reliability and stability of time-series clustering results. However, the
effectiveness of pairwise constraints from the commonly used random sampling remains
uncertain. Therefore, considering the characteristics of UAVSAR time-series images, a
new method for generating informative pairwise constraints—namely, “active pairwise
constraint learning (APCL),” is proposed. The flowchart of APCL is shown in Figure 4,
which comprises the following two main steps: (1) extraction of the candidate sample set
and (2) construction of the pairwise constraints.
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3.1. Non-Iterative Batch-Mode Active Selection Theory

The construction of instance-level pairwise constraints is based on a group of samples
with rich information (that are representative and diverse). Active learning is commonly
used in classification tasks to select the informative samples, which are regarded as the most
helpful to improve the classifier performance [55]. Two criteria are usually available for the
measurement of the information of samples: (1) an uncertainty criterion and (2) a diversity
criterion. The uncertainty criterion usually selects the samples near the class boundary
because they are not easily categorized into a certain class by the classifier—that is, these
samples have the highest uncertainties. Significant differences between a group of samples
in the diversity criterion can effectively avoid knowledge redundancy; therefore, these
samples have abundant information. The uncertainty and diversity criteria are considered
in the proposed method to extract an informative candidate sample set.

However, conventional active learning techniques select only a single sample at each
iteration for manual labeling and retrain the prediction model [56–59], which is inefficient
and inapplicable to the clustering task of the paper. The batch-mode active learning (BMAL)
technique is considered for selecting samples, in which a batch of samples are selected for
manual annotation simultaneously at each round, to address the aforementioned limitations.
The key issue of BMAL is to select the most informative batch of samples with as minimal
redundancy to provide the most possible information to the prediction model [56,58,60,61].
Notably, differently from the conventional BMAL in classification tasks, a non-iterative
batch-mode active selection scheme, in which the sample selection process was performed
only once, is considered.

3.2. Extraction of the Candidate Sample Set

This step aims to extract a group of samples with representativeness and diversity
based on the non-iterative batch-mode active selection scheme.

First, based on the study of Stanitsas et al. [62], the silhouette coefficient [63] is used
for the measurement of the uncertainty of samples. The silhouette coefficient of a sample is
calculated as follows:

S(i) =
b(i)− a(i)

max(a(i), b(i))
(1)
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where a(i) is the average dissimilarity of sample I with all the other samples within the
same cluster, and b(i) is the lowest average dissimilarity of sample i to each of the clusters
to which it is not assigned. The range of S(i) is between −1 and 1.

The samples with low silhouette coefficients are likely to be assigned to the wrong
clusters; therefore, these samples will also have the highest uncertainties. The samples
were first clustered using unconstrained time-series clustering, and then their silhouette
coefficients were calculated on the basis of the clustering results to calculate the silhouette
coefficient of each sample.

Two regions with equal space spans were then separated from the study area along the
range direction: (1) the near range region (with incidence angles ranging from 21.2◦ to 47.2◦,
denoted by NR) and (2) the far range region (with incidence angles ranging from 54.0◦ to
64.3◦, denoted by FR). The variation in the incidence angle values along the range direction
is nonlinear; therefore, the corresponding incidence angle ranges of the two regions are
different. The separation of NR and FR aims to extract two candidate sample sets (denoted
by UNR and UFR, respectively) independently from the two regions and then improves
the informativeness of the generated constraints, which is comprehensively discussed
in Section 4.4.

Finally, based on the silhouette coefficients of the samples, two candidate sample sets
with high uncertainty and considerable diversity were extracted from the two regions using
a greedy strategy. The main ideas of the strategy are as follows: (1) the samples with low
silhouette coefficients are preferred, (2) the selected samples should be evenly distributed
in different clusters, and (3) the geometric distance in the feature space between samples
inner a cluster should be larger than a specified threshold T. The first idea is to ensure
that the selected samples have high uncertainty, and the last two ideas aim to ensure that
the selected samples are of considerable diversity. In real programming implementation,
achieving the greedy sample extraction strategy is easy, and various implementation
methods are available [37]; however, its implementation is not comprehensively discussed.
In the proposed method, the sizes of UNR and UFR are both set to one-third of the number
of constraints to be constructed.

K-means [64] is used as the unconstrained clustering algorithm, with the ED as the
similarity criterion, to visualize the efficiency of the proposed method. The extracted
candidate sample sets UNR and UFR are shown in Figure 5, where the number of samples
in each candidate sample set is 150.
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3.3. Construction of the Pairwise Constraints

Two characteristics of the crops in the UAVSAR time-series images are considered
when learning the pairwise constraints from UNR and UFR: (1) the time-series curves of
the same type of crops from the near and far ranges may have high shape similarity but
large spatial distances; and (2) the time-series curves of the different types of crops with
small differences of incidence angle may be close to each other in the feature space, thereby
leading to misclassification. Consequently, the MLCs and CLCs are constructed on the basis
of the first and second characteristics, respectively. The detailed procedure of constructing
the NMLC MLCs and NCLC CLCs is presented below.

3.3.1. Construction of the Must-Link Constraints (MLCs)

First, the Pearson correlation coefficient is used to construct a shape similarity
matrix MPearson:

MPearson(i, j) = r
(

si
NR, sj

FR

)
(2)

where si
NR and sj

FR are the ith sample of UNR and the jth sample of UFR, respectively. Thus,
each element in MPearson corresponds to two samples from UNR and UFR.

Second, the elements in MPearson are sorted in accordance with their Pearson correla-
tion coefficient values from small to large. Then, the pairs of samples, wherein the samples
in each pair are of the same crop type according to the order are chosen until NMLC pairs of
samples, are selected. These selected sample pairs are the required MLCs. Furthermore,
each sample can be selected at most two times to guarantee the diversity of the constraints.

The learned MLCs have the following features. (1) Each pair of constraints links
the samples of the same class from different incidence angle regions (which means that
their backscattering coefficients markedly differ). (2) The shape similarity between the
time-series curves of linked samples is low (because their correlation coefficients are small).
(3) The linked samples are from the candidate sample set (indicating their high clustering
uncertainties). Therefore, the linked samples are the most difficult to cluster correctly.

3.3.2. Construction of the Cannot-Link Constraints (CLCs)

Two sets of CLCs are constructed from UNR and UFR. Taking the construction of the
CLCs from UFR as an example, the detailed process is as follows.

Firstly, the samples in candidate set UFR are used to construct an ED matrix MED:

MED(i, j) = ED
(

si
FR, sj

FR

)
(3)

where si
FR is the ith sample of UFR, sj

FR is the jth sample of UFR, and MED(i, j) = MED(j, i).
That is, MED is a symmetric matrix.

The elements in the upper triangular matrix are then sorted in accordance with their
ED values from small to large, where each element corresponds to a pair of samples
from UFR.

Finally, the NCLC/2 pairs of samples, which are different types of crops, were selected
in accordance with the order and then used as a set of CLCs. In addition, each sample was
selected at most two times to guarantee the diversity of the constraints. Another set of
CLCs of quantity NCLC/2 was constructed from UNR using the above procedure, and a
group of CLCs of quantity NCLC can then be obtained.

The linked samples in the above flowchart are from the same region (region FR or NR)
and are close in the feature space, allowing easy clustering into the same group. Therefore,
using these samples as CLCs could help improve the clustering.

K-means was used as the unconstrained clustering algorithm and the ED as the similar-
ity measure for the active constraint learning to visualize the distribution of the constraints
constructed by the proposed method (APCL). The constraints of another two constraint
learning methods were used for comparison. The first method was random sampling
based on regions of incidence angle (denoted by RSRIA), which randomly generates CLCs
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within the same incidence angle region and generates MLCs between different incidence
angle regions. The second method is the commonly used random sampling. The number
of each kind of pairwise constraint was set to 200 for both constraint learning methods.
The distributions of the obtained constraints are shown in Figure 6. Compared with the
constraints of random sampling, the constraints of the proposed method link the sam-
ples with low silhouette coefficients, and all these samples are from either the near or the
far range.
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4. Results and Discussion

This section includes four parts. In the first part, a qualitative analysis of impact of the
incidence angle effect on crop separability is presented via the time-series curves of various
crop types with different incidence angles. In the second part, we present the results of
numerous experiments that were conducted to illustrate the efficiency of the proposed
method. Only 20% of the total number (30,605) of samples of the time-series images were
used in each experiment due to the large number of experiments and the time-consuming
time-series clustering. In the third part, all the samples in the study area were used for
the clustering, and the corresponding crop classification maps were then generated. In the
experiment, when generating MLCs and CLCs, the processes of identifying whether the
two selected samples should be linked were based on the ground truth data (in practice,
this method should be conducted manually). In the fourth part, a quantitative evaluation of
the informativeness of the constraints was conducted. All the experiments were performed
on a 64-bit Window 10 PC, and the programming language was Python 3.

4.1. Impact of the Incidence Angle Effect on Crop Separability

First, considering that the incidence angle has different impacts on different regions,
the following three regions with equal space spans were separated from the study area
along the range direction to further discuss the temporal characteristics of the crop under
different incidence angles: a region with small incidence angles (incidence angles ranging
from 21.2◦ to 32.0◦, denoted by Inc_S); a region with medium incidence angles (incidence
angles ranging from 50.0◦ to 56.0◦, denoted by Inc_M); and a region with large incidence
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angles (incidence angles ranging from 60.0◦ to 64.3◦, denoted by Inc_L). One hundred
samples of each type of crop were then sampled from these three regions, as follows:

SHV =
1

100

100

∑
i=1

Si
HV (4)

The averaged SHV of the selected samples of each crop was used to construct the
time-series curves. A total of 12 time-series curves were generated for the four crops from
the three regions, as shown in Figure 7.
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Figure 7. Time-series curves of the crops in different regions. “_L” denotes that the crop is from the
region of Inc_L, “_M” denotes that the crop is from the region of Inc_M, and “_S” denotes that the
crop is from the region of Inc_S.

These findings show that the SHV values of all the crops substantially change over
time. For oats, the shape of the time-series curve in the region of Inc_L is similar to that in
the region of Inc_M, and that in the region of Inc_S markedly changes. For corn, the SHV of
the time-series curve in Inc_S is significantly higher than those of Inc_M and Inc_L after
day 0705. For canola, the SHV of the time-series curve in Inc_M is significantly higher than
those of Inc_S and Inc_L before day 0629. For soybean, the shapes of the three time-series
curves are similar. Thus, the different characteristics of the time-series curves of some crops
are attributed to the different incidence angles.

Three similarity matrices based on the Euclidean distance (ED), dynamic time warping
(DTW), and Pearson correlation coefficient were generated as shown in Figure 8 to further
evaluate the distinguishability of these crop time-series curves. The ED is a lock-step
measure (one-to-one) and sensitive to scaling, and the Pearson correlation coefficient is
invariant to the scale and location of the data points [65]. DTW [66] uses a dynamic
programming (DP) method to find an optimal alignment between the two time series via
nonlinear warping, thus increasing its suitability for evaluating the similarity of time series
of different lengths.
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where 0 denotes the highest similarity; (b) similarity matrix based on the DTW, where 0 denotes the
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the highest similarity.

These findings show that the similarities between some curves of different crops are
relatively high. Therefore, many crop samples will be easily misclassified in the time-series
clustering. For instance, in Figure 8a, the ED between Oats_L and Oats_S is larger than that
between Oats_L and Soybean_L and Soybean_S. Thus, when using the ED as the similarity
metric in time-series clustering, the samples of oats in Inc_L are likely to be clustered into
one group with the soybean samples. The ED between the soybean samples and their
time-series curves is relatively small, indicating that they are less likely to be misclassified
in the process of time-series clustering. Figure 8c shows that the similarities between corn
and soybean are relatively high, indicating that the samples of these crops would be easily
misclassified when using Pearson correlation coefficient as the similarity metric.

The characteristics of the crops in the UAVSAR time-series images can be summarized
as follows. (1) The time-series curves of crops change significantly with time. (2) The
time-series curves of the same type of crops have similar shapes in all the regions of Inc_S,
Inc_M, and Inc_L. (3) The spatial distance between the time-series curves of the same crops
in the feature space may be substantially large due to their difference in incidence angle.
(4) The time-series curves of different crops may have considerable shape similarities
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or small spatial distances. Among these characteristics, the first two characteristics are
beneficial to the clustering of the same crops from different regions, and the latter two
characteristics are not conducive to the clustering.

4.2. Constrained Clustering Accuracy Analysis

The experimental settings of each group of experiments in the first part are presented
in Table 3. Each group of experiments was repeated five times, and the average accuracy
was taken as the final result for analysis. In each group of experiments, 20% of the total
samples were first randomly sampled, and then these samples were used in the experiments
to make the results comparable. Finding the optimal number of initial clustering centroids
is difficult for all scenarios because it may be different under various clustering methods,
similarity criteria, and types of constraints. The optimal number was simply set as eight
(two times the number of crop types), and the number of MLCs was set similarly to that of
the CLCs.

Table 3. Experimental settings of each group of experiments.

Constrained Clustering Algorithm
1. COP-KMeans,
2. PC-KMeans,
3. MIP-KMeans

Time-series similarity criterion
1. Euclidean distance (ED)
2. Dynamic time warping (DTW)
3. Pearson correlation coefficient (Pearson)

Constraint generation method
1. Active pairwise constraint learning (APCL)
2. Random sampling based on regions of incidence angle (RSRIA)
3. Random sampling

Number of pairwise constraints {0,150,300,450,600,750,900,1050,1200,1350,1500,1650,1800,1950,2100,2250,2400}

Values of sample’s time series Backscattering coefficients of HV polarization in the 12 images

The three constrained clustering algorithms used in the experiments are all K-means-
based methods, which are suitable for time-series application because they iteratively
calculate distances to cluster and update these centroids [42]. Their iterative processes are
similar, but their usage of constraints is quite different. Therefore, the use of these methods
is helpful to analyze how the constraints work and evaluate the effectiveness of constraints
from different methods.

In COP-KMeans [39], before assigning a sample to a cluster, it first judges whether the
sample is linked with clustered samples by the MLCs (if any) and assigns the sample to the
same cluster; otherwise, it is assigned to the nearest cluster while not violating the CLC.
However, if not all the constraints are satisfied, then the algorithm fails and no clustering
result can be obtained. The following adjustments are performed in the experiments to
ensure the COP-KMeans output clustering result: if a sample has constraint violations in
each iteration, then the sample will not be assigned to any clusters; if samples that have
constraint violations still exist at the end of the last iteration, then these samples will be
assigned to the clusters with the fewest constraint violations. PC-KMeans [67] formulates
the goal of clustering as minimizing a combined objective function: the sum of the total
distance between the samples and their cluster centroids and the cost of violating the
pairwise constraints. The constraint violation cost was a relative value in the experiments;
that is, the cost of each constraint violation was set as 0.1 times the distance between the
sample and the cluster centroid. MIP-KMeans [68] considers the sample constraints and
objective function in its entire combinatorial configuration and uses a general optimization
tool (the Gurobi optimizer) to solve it [42]. The maximum number of iterations of these
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algorithms was set as 200, and the convergence condition for these methods was that the
change of position of any centroids is no more than a threshold (which was set as 0.0005).

Three time-series similarity measures were used in this study: the ED, DTW, and
the Pearson correlation coefficient (denoted by Pearson). For each experiment, in the
unconstrained clustering for calculating silhouette coefficient, the used time-series similarity
measure was set to be the same as that used in the constrained clustering.

The normalized mutual information (NMI) [69] was used as the clustering evaluation
index. The range of NMI is [0, 1], and a high value indicates an effective clustering
performance. The mean and standard deviation of NMI for each group of experiments are
shown in Figure 9.
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Figure 9. Performance plots show how the NMI increases with the number of pairwise constraints:
(a) results of COP-KMeans; (b) results of PC-KMeans; (c) results of MIP-KMeans. The circular
markers, the inverted triangular markers, and the square markers correspond to the results obtained
using ED, DTW, and Pearson, respectively.

For convenience, in Figure 9, “RC” represents “constraints from random sampling,”
“RA” represents “constraints from RSRIA,” and “AC” represents “constraints from APCL.”
For example, “RC&ED” represents the results obtained using constraints generated by
random sampling and the ED as the similarity criterion.
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As shown in Figure 9, the results are for unconstrained clustering when the number
of the constraints is zero. The clustering processes of the three constrained clustering
algorithms are consistent with that of the traditional K-means method when the number is
zero and their NMI values are different. This phenomenon is due to the random selection
of the initial clustering centroids of COP-KMeans and the generation of initial clustering
centroids of PC-KMeans and MIP-KMeans in specific ways. For further details, please refer
to [67,68].

These findings show that COP-KMeans is insensitive to the number of constraints, and
only “AC&ED” and “AC&DTW” have better NMI than unconstrained clustering results
when the number of pairwise constraints is larger than 1650. PC-KMeans can effectively
utilize the constraint information; therefore, its accuracies are generally better than those of
the two other algorithms. Among the results of PC-KMeans, the NMI curves of APCL are
better than random sampling and RSRIA and all have an ascending trend, especially for
the curve of “AC&ED.” MIP-KMeans is remarkably sensitive to the number of constraints.
Thus, all of the NMI curves show an ascending trend with the increase in the number of
pairwise constraints, except for the curve of “RC&Pearson.” In addition, when the number
of constraints was 2250, the curve of “AC&ED” of MIP-KMeans achieved the best NMI
value of 0.562 among all the results in Figure 9.

Overall, the experimental results demonstrate the superiority of the proposed APCL,
which can improve the clustering accuracy effectively under various constrained clustering
algorithms, time-series similarity criteria, and different numbers of constraints.

No obvious correlation exists between the running time of the clustering algorithms
and the number of constraints in the above experiments. Therefore, the average run-
ning time of each algorithm was calculated under all numbers of constraints, as shown
in Figure 10.

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 22 
 

 

those of the two other algorithms. Among the results of PC-KMeans, the NMI curves of 
APCL are better than random sampling and RSRIA and all have an ascending trend, es-
pecially for the curve of “AC&ED.” MIP-KMeans is remarkably sensitive to the number 
of constraints. Thus, all of the NMI curves show an ascending trend with the increase in 
the number of pairwise constraints, except for the curve of “RC&Pearson.” In addition, 
when the number of constraints was 2250, the curve of “AC&ED” of MIP-KMeans 
achieved the best NMI value of 0.562 among all the results in Figure 9. 

Overall, the experimental results demonstrate the superiority of the proposed APCL, 
which can improve the clustering accuracy effectively under various constrained cluster-
ing algorithms, time-series similarity criteria, and different numbers of constraints. 

No obvious correlation exists between the running time of the clustering algorithms 
and the number of constraints in the above experiments. Therefore, the average running 
time of each algorithm was calculated under all numbers of constraints, as shown in Fig-
ure 10. 

 
Figure 10. Average running time of each algorithm. The bars in the red range are the results using 
ED, the bars in the blue range are the results using DTW, and the bars in the green range are the 
results using Pearson. 

The running times of different algorithms and time-series criteria are quite different. 
DTW is more time-consuming than ED and Pearson among all the methods due its high 
computational complexity. COP-KMeans with AC&DTW is the most time-consuming 
method because it requires additional iterative time to convergence. When using ED or 
DTW as the similarity measure, MIP-KMeans uses less running time than COP-KMeans 
and PC-KMeans. This finding is due to MIP-KMeans solving an overall optimal result in 
each iteration [68], which demonstrated a fast convergence speed, resulting in fewer iter-
ations than the other two algorithms. However, in the results of using Pearson as the sim-
ilarity measure, the running time of MIP-KMeans is significantly larger than COP those 
of KMeans and PC-KMeans. The reason is that the distinguishability of various crops was 
poor when using Pearson. Thus, MIP-KMeans had to spend additional time in performing 
global optimization in each iteration to find an overall solution in which the pairwise con-
straints were also satisfied. Therefore, the convergence speed of MIP-KMeans is slow, re-
sulting in higher time consumption than the two other algorithms. 

4.3. Crop Classification Accuracy Analysis 
All the samples (the total number is 30,605) of the study area were used for time-

series clustering, and PC-KMeans was used as the constrained clustering algorithm to 

Figure 10. Average running time of each algorithm. The bars in the red range are the results using
ED, the bars in the blue range are the results using DTW, and the bars in the green range are the
results using Pearson.

The running times of different algorithms and time-series criteria are quite different.
DTW is more time-consuming than ED and Pearson among all the methods due its high
computational complexity. COP-KMeans with AC&DTW is the most time-consuming
method because it requires additional iterative time to convergence. When using ED or
DTW as the similarity measure, MIP-KMeans uses less running time than COP-KMeans
and PC-KMeans. This finding is due to MIP-KMeans solving an overall optimal result
in each iteration [68], which demonstrated a fast convergence speed, resulting in fewer



Remote Sens. 2022, 14, 6073 15 of 21

iterations than the other two algorithms. However, in the results of using Pearson as the
similarity measure, the running time of MIP-KMeans is significantly larger than COP those
of KMeans and PC-KMeans. The reason is that the distinguishability of various crops was
poor when using Pearson. Thus, MIP-KMeans had to spend additional time in performing
global optimization in each iteration to find an overall solution in which the pairwise
constraints were also satisfied. Therefore, the convergence speed of MIP-KMeans is slow,
resulting in higher time consumption than the two other algorithms.

4.3. Crop Classification Accuracy Analysis

All the samples (the total number is 30,605) of the study area were used for time-series
clustering, and PC-KMeans was used as the constrained clustering algorithm to further
evaluate the effectiveness of APCL. The three time-series similarity criteria (ED, DTW, and
Pearson) and the generation methods (RSRIA and random sampling) of the two constraints
were also used for comparison. The total number of MLCs and CLCs was 12,000 (40% of
the total samples), and the number of initial cluster centroids was set to eight. In addition,
the results of PC-KMeans with zero constraints were used as the baseline for comparison.

After obtaining the clustering results, for each cluster, the number of samples of each
class was counted in accordance with the reference map, and then the class label with the
largest number of samples was assigned to the cluster (in practice, the process of labeling
clusters should be performed manually). Each experiment was repeated five times. The
accuracy of each result is presented in Table 4. The classification map with the highest
accuracy for each method is presented in Figure 11.

Table 4. Classification accuracy obtained by all methods.

Method Similarity
Criteria

F-Score
OA Kappa

Oats Corn Canola Soybean

Unconstrained
ED 71.8% 76.5% 86.1% 88.2% 83.5% 76.6%

DTW 66.9% 73.2% 82.6% 88.0% 81.8% 73.3%
Pearson 68.4% 52.5% 83.3% 75.9% 73.5% 62.4%

Random
sampling

ED 69.5% 78.2% 84.3% 89.7% 83.6% 76.6%
DTW 66.4% 75.9% 82.9% 88.3% 82.3% 74.1%

Pearson 67.1% 52.9% 84.4% 81.9% 77.2% 66.6%

RSRIA
ED 74.4% 80.4% 87.6% 91.1% 86.2% 80.3%

DTW 71.3% 79.3% 85.7% 89.4% 84.7% 77.6%
Pearson 66.4% 36.9% 84.0% 82.0% 75.8% 63.9%

APCL
ED 75.9% 85.5% 89.2% 92.0% 88.1% 82.9%

DTW 81.9% 83.6% 90.0% 89.9% 88.1% 82.8%
Pearson 82.5% 51.0% 87.1% 82.2% 79.8% 70.2%

The four methods unconstrained clustering, random sampling, RSRIA, and APCL all
achieved their best accuracy (kappa coefficient) when using ED as the similarity criterion,
which were 76.6%, 76.6%, 80.3%, and 82.9%, respectively, as shown in Figure 11. APCL also
achieved a kappa of 82.8% when using DTW. All the four methods had poor accuracies
when using Pearson. However, the accuracy of APCL (kappa = 70.2%) was still higher than
those of the other methods.

Among the four crop types, the F-score for oats was relatively low when using ED as
the similarity criterion because its backscattering coefficients were close to that of other
crops, as shown in Figure 7. When using Pearson as similarity criterion, the F-score for
corn was substantially low for all the methods. This phenomenon was due to the relatively
low shape similarity of corn’s time-series curves in different incidence angles, increasing
the difficulty of clustering into one group using Pearson. In addition, for the F-score of each
crop type, the best accuracies of oats, corn, canola, and soybean were all achieved by APCL.
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When the results of unconstrained clustering were used as the baseline, the constraints
of random sampling minimally helped improve the accuracy, and those of RSRIA can
improve the accuracy to a certain extent. This phenomenon demonstrates the effectiveness
of the proposed strategy of generating CLCs within the same incidence angle region and
generating MLCs between different incidence angle regions. The comparison between the
results of RSRIA and APCL shows the significance of the proposed strategy of extracting
candidate sample set based on silhouette coefficients. These results prove the performance
and application value of APCL in the constrained clustering of Airborne SAR imagery.

4.4. Evaluation of the Informativeness of the Constraints

If the constraints can be satisfied in the unconstrained clustering results, the con-
strained clustering based on these constraints may not improve the clustering accuracy [36].
In other words, for a group of constraints, a large number of unsatisfied constraints in the
unconstrained clustering result indicate that these constraints contain additional informa-
tion. Therefore, based on the results of unconstrained clustering with PC-KMeans as the
clustering method and ED as the time-series similarity criterion, the quantity of informa-
tion for the pairwise constraints (6000 pairs of MLCs and 6000 pairs of CLCs) obtained by
random sampling, RSRIA, and APCL was evaluated. The number of unsatisfied constraints
in the unconstrained clustering results is presented in Table 5.
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Table 5. Number of unsatisfied constraints in the unconstrained clustering results.

Method Must-Link
Constraint

Cannot-Link
Constraint Total

Random sampling 3089 308 3397
RSRIA 3302 304 3606
APCL 4283 1691 5974

First, the total number of unsatisfied constraints for APCL is larger than that for the
other methods. Second, only a few of the CLCs of random sampling and RSRIA were
unsatisfied, and many of the CLCs of APCL were unsatisfied. Therefore, the information
contained in the constraints of APCL is abundant. In addition, the number of unsatisfied
MLCs is substantially larger than that of the unsatisfied CLCs, which indicates that the
MLCs carry additional information and are thus effective at improving the accuracy of
constrained clustering. Thus, before the constraint learning, the informativeness of the
different kinds of constraints should first be evaluated, and the specific constraints should
then be constructed to acquire substantially useful information under limited size of
constraints [38,42].

In the following, the reason for having additional unsatisfied MLCs in APCL is
discussed. The clustering is markedly affected by the different incidence angles. Thus, the
absolute value of the incidence angle difference between every two samples in an MLC is
calculated, and then the histograms are drawn, as shown in Figure 12. Each bar in Figure 12
corresponds to the number of satisfied or unsatisfied MLCs under the specific difference of
incidence angle.
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In Figure 12a, most of the MLCs of random sampling show a small incidence angle
difference, and half are satisfied. In Figure 12b, most of the MLCs have in an incidence angle
range of 13–35◦, but many remain unsatisfied. In Figure 12c, most of the MLCs have an
incidence angle range of 15–39◦, and the number of satisfied MLCs is significantly less than
in the above results. Thus, MLCs are only minimally satisfied when the difference between
incidence angles is large. This phenomenon is due to the differences in backscattering
coefficients of the same crop’s samples with large differences in incidence angles. Therefore,
clustering these samples into one group by unconstrained clustering is difficult. Second,
the proposed APCL can generate MLCs that are difficult to satisfy. The above results prove
that the pairwise constraints obtained by the proposed method are more informative than
that of RSRIA and random sampling.

As a semi-supervised clustering technique, constrained clustering also needs some
supervised information to generate constraints. However, unlike the conventional super-
vised methods, supervision by instance-level constraints is more general and more realistic
than specific class labels. By using knowledge, a user can specify whether pairs of samples
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belong to the same cluster or not even when the class labels remain unknown [36]. The
poor visual effect of PolSAR images increases the difficulty in identifying the class labels
of samples [29,70]. In this case, the method of generating pairwise constraints shows its
advantages. However, designing the corresponding human–computer interaction system
in practical application to construct constraints remains a problem that must be solved in
the future.

5. Conclusions

An active pairwise constraint learning method is proposed in this paper to reduce the
incidence angle effect in crop mapping. The proposed method can construct informative
pairwise constraints based on the incidence angles of the samples and a non-iterative batch-
mode active selection scheme. Comparison experiments on the UAVSAR images have
shown the effectiveness of the proposed APCL method compared to the commonly used
constraint construction methods for constrained clustering at improving the crop mapping
accuracy and the superiority. However, the proposed method ignores transferring pairwise
constraint information between samples to reinforce the constraints, and the future work
will focus on effectively transferring constraint information. Thus, a way to pre-evaluate
the optimal proportion of different types of constraints is also needed.
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