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Abstract: In this paper, cognitive technology is introduced into the integrated satellite terrestrial
system to realize the dynamic spectrum sharing of the system and improve the utilization rate of
spectrum resources. To overcome the effects of low signal-to-noise ratio (SNR) and noise uncertainty
in the channel, a dual-threshold cooperative sensing strategy based on energy detection is introduced.
Spectrum sensing is considered as a binary hypothesis problem, but the uncertainty of noise inter-
ference in the integrated satellite terrestrial cognitive system will cause the perception to appear
ambiguous. Moreover, the noise power varies with time and relative position within a certain range.
In the fuzzy state, the perception technology adopts the equal-gain merging algorithm, and derives
the voting optimization algorithm to improve the accuracy of decision-making. In addition, taking
the minimum error probability as the optimization goal, the optimal adjustment of the adaptive
double threshold is realized based on the equal-gain combining algorithm. The simulation results
show that the spectrum detection accuracy under low SNR is improved, and the opportunity for
terrestrial networks to share spectrum resources is increased.

Keywords: integrated satellite terrestrial system; spectrum sharing; equal-gain merging algorithm;
dual threshold cooperative sensing

1. Introduction

The research into and widespread application of 1G to 5G technologies demonstrate
the great potential of terrestrial cellular networks [1]. However, in sparsely populated areas,
terrestrial cellular networks will lose profitability due to economic costs [2]. Conversely,
mobile satellite systems can provide large-area network coverage at a lower cost. However,
due to the shadow effect, satellite networks cannot provide coverage in dense places such
as urban areas [3]. Therefore, integrated satellite terrestrial systems can achieve global
coverage at an optimal cost by combining a terrestrial network that provides cellular
coverage with a satellite network [4]. However, the implementation of an integrated
satellite and terrestrial system will be a complex process. The user cost and user experience
of satellite communications should be as close as possible to terrestrial networks [5]. If the
spectrum resources of the satellite network can be reused, not only can the spectrum be
used free of charge, but also the spectrum utilization rate can be further improved and the
problem of spectrum scarcity can be alleviated [6,7].

Cognitive technology is an effective way to realize spectrum sharing of integrated
satellite and terrestrial systems which can not only realize dynamic and flexible spectrum
sharing, but also effectively improve spectrum utilization [8]. The basic principle of cogni-
tive radio is to allow unlicensed spectrum users to access parts of the licensed frequency
band in an opportunistic and interference-free manner. However, in the energy detection
algorithm of spectrum sensing, the detection threshold is mainly affected by the noise of the
detection band [9]. Therefore, cognitive radio technology can achieve minimal dependence
on the primary user (PU) [10]. However, in a practical satellite cognitive environment, the
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energy received by the secondary user (SU) from the Geostationary Orbit (GEO) satellite
is very small due to the large signal path loss. In addition, the shadow effect makes the
signal energy received by the terrestrial SU very small, resulting in a significant decrease in
the detection performance of the energy detection algorithm [11]. Multi-threshold energy
detection is an upgrade of single-threshold energy detection, which can improve detection
probability and reduce conflicts between cognitive users and authorized users [12].

Spectrum sensing is an important task for which great care must be taken when select-
ing a solution. Reference [13] connects, manages and helps intelligently allocate resources
among secondary users at a central hub through cooperative spectrum sensing. Adding and
implementing appropriate machine learning algorithms can help in intelligently predicting
spectrum allocation methods. Spectrum detection methods, cyclostationary methods (for
high-noise environments) and energy-detection methods (for low-noise environments) are
implemented in this work. Machine learning classification techniques, namely decision
tree classification and random forest classification, have been implemented for predicting
spectrum sensing methods by taking the energy level (dB) and noise level (dB) of the
received signal as features. Reference [14] proposes an intelligent machine learning (ML)
model to identify and cluster malicious Cognitive Radio-based Internet of Things (CR-IoT)
users, and a blockchain technology to design a security framework for efficient spectrum
usage and sharing. Each cognitive user acts as a perception node and a mining node
in the blockchain-enabled CR-IoT network. Cognitive users will be properly organized
before the collaborative spectrum sensing (CSS) and mining process. In short, the CSS
approach and secure spectrum access are only motivated by an optimized cognitive user
group. Extensive experiments demonstrate the effectiveness of the proposed ML model in
blockchain-enabled CR-IoT.

Recently, academia has focused on cognitive-based dual-threshold decision-making
mechanisms. Reference [15] designed a two-step cooperative sensing scheme. First, cogni-
tive users use single-threshold energy detection to detect the presence of authorized users.
Based on the spectrum sensing results of all cooperative nodes in the fusion center (FC),
the cognitive user performs dual-threshold energy detection and makes fusion decisions.
However, the judgment process of fusion strategy is not explained in detail in the literature.
Reference [16] designed a dual-threshold spectrum sensing algorithm based on energy
detection and cyclostationarity. First, a dual-threshold energy detection algorithm is used
to determine whether a PU exists. The fuzzy signal between two thresholds is judged
using a cyclostationary feature detection algorithm. However, the design complexity of the
cyclostationary feature detection algorithm is relatively high.

Reference [17] studies a new cognitive satellite scheme for GEO and Low Earth Orbit
(LEO) broadband systems, and proposes the concept of Cognitive Satellite Positioning (CSP)
to describe the motion of LEO satellites relative to the ground. Then, due to the uncertainty
of spatial noise and lack of prior knowledge, an optimized algorithm for double-threshold
energy detection is selected. Reference [18] uses an adaptive dual-threshold detection
algorithm (ADE) to improve detection performance, but does not consider the detection
of the fuzzy state. The algorithm is able to increase the number of samples at low signal-
to-noise ratio (SNR) and complexity. Reference [19] proposes a dynamic dual-threshold
spectrum sensing algorithm based on the Markov model (DDEMM). The algorithm uses
historical state information to assist decision-making, thereby improving the accuracy of
decision-making. Therefore, the cognitive integrated satellite terrestrial network based
on double-threshold detection can solve the problem of low detection accuracy in fuzzy
states caused by severe channel fading and low SNR. Moreover, the integrated satellite
terrestrial network based on cognitive radio can make full use of spectrum resources, and
has gradually become a research hotspot in academia.

In this paper, an equal-gain combining algorithm is introduced to improve the detec-
tion accuracy of fuzzy states. Through the dynamic management of spectrum resources,
the detection parameters are adjusted and the spectrum is used opportunistically to im-
prove the utilization rate of spectrum resources. In the architecture of this paper, Section 2
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introduces the system model, and Section 3 introduces the dual-threshold cooperative
spectrum sensing technique based on equal-gain combination. The adaptive dual-threshold
cooperative sensing technology is introduced in Section 4, and simulation analysis is carried
out in Section 5.

2. System Model
2.1. Integrated Satellite Terrestrial Cognitive System

The spectrum sharing frequency band in this paper is 2 GHz, in which the GEO
satellite network is the licensed frequency band and the terrestrial network is the cognitive
system. Therefore, the priority of spectrum usage belongs to the primary satellite users,
while the ground-based cognitive users share the satellite frequency band through spectrum
sensing technology. For the downlink of the integrated satellite terrestrial cognitive scenario,
the terrestrial SU uses cognitive technology to share the frequency band of the satellite
downlink. There are two interfering links in the scenario: (1) interference of satellite signals
on cognitive base stations or terminals. (2) interference of signals transmitted by cognitive
base stations or cognitive users on satellite terminals. Figure 1 shows the integrated satellite
terrestrial network spectrum sharing system considered in this paper.
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2.2. Dual Threshold Energy Detection Model

Generally, spectrum sensing can be considered as a binary hypothesis problem. The
null hypothesis, H0, is that PU does not exist, that is, the band is not occupied. The
alternative assumption, H1, is that PU exists, that is, the frequency band is occupied.

r(m) =

{
w(m) m = 1, 2, · · · , M H0
s(m)h(m) + w(m) m = 1, 2, · · · , M H1

, (1)

where r(m) is the signal received by terrestrial SU, s(m) is the signal of the satellite PU.
h(m) is the spectrum sensing channel gain between satellite PU and SU, w(m) is the noise
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signal, and M is the number of sampled signals during the observation time. The statistics
of energy detection algorithm can be expressed as:

Ri(ri) =
M

∑
m=1
|ri(m)|2, (2)

where ri = (ri(1), ri(2), · · · ri(M)) is the i-th sensed signal energy, Ri(i) is the detection
statistics, and M is the number of sampling points. In the case of additive white Gaussian
noise, the detection probability Pd and false alarm probability Pf are respectively expressed as:

Pd = P(Ri(ri) > λ|H1) = Q

 λ−M(σ2
x + σ2

w)√
2M(σ2

x + σ2
w)

2

, (3)

Pf = P(Ri(ri) > λ|H0) = Q

(
λ−Mσ2

w√
2Mσ4

w

)
, (4)

When the noise power σ2
w is known, the error threshold λ can be calculated by the

false alarm probability Pf :

λ = (Q−1(Pf )
√

2M + M)σ2
w, (5)

However, the noise in the integrated satellite terrestrial cognitive system includes
not only Gaussian white noise, but also other types of interference. At the same time, the
noise power varies with time and relative position within a certain range, and this noise
instability is the noise uncertainty. The increase of noise uncertainty will make the spectrum
sensing performance worse, that is, the detection probability will decrease and the false
alarm probability will increase. In order to reduce the influence of noise, double-threshold
energy detection can be used to improve the accuracy of spectrum sensing. Assume that
the noise uncertainty of the wireless channel is:

ρ =
σ̂2

w
σ2

w
∈ [10−A/10, 10A/10], A ≥ 0, (6)

where σ̂2
w is the noise variance.A is the upper bound of 10lgρ, which is the largest noise

uncertainty. Then the lower bound λ1 and upper bound λ2 of the algorithm are:

λ1 =

(√
2
N

Q−1(Pf ) + 1)

)
1
ρ

σ2
w. (7)

λ2 =

(√
2
N

Q−1(Pf ) + 1)

)
ρσ2

w . (8)

In practice, there may be fuzzy states where binary assumptions cannot make
accurate decisions.

Rc =


1 R > λ2 H1
x λ1 ≤ R ≤ λ2 H
0 R < λ1 H0

. (9)

where Rc is the sub-channel state. The detection result R is compared with the threshold
value to determine whether the PU exists. In the sub-channel state, “1” indicates that
the PU exists, “0” indicates that the PU does not exist, and “x” indicates that the PU is
in a fuzzy state. Figure 2 shows the above three states, and the range between the two
thresholds is the blurred area, that is, the blurred state. Moreover, in the fuzzy state, it is
difficult to use a single threshold to judge the existence of a PU.
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In state H0, the probability Pa, false alarm probability Pf and hole uncertainty ∆0 are
defined as:

Pf = P(Ri(ri) > λ2|H0) = Q

(
λ2 −Mσ2

w√
2Mσ4

w

)
(10)

Pa = P(Ri(ri) < λ1|H0) = 1−Q

(
λ1 −Mσ2

w√
2Mσ4

w

)
(11)

∆0 = P(λ1 ≤ Ri(ri) ≤ λ2

∣∣∣H0) = 1− Pf − Pa . (12)

In state H1, the detection probability Pd, miss detection probability Pm and occupancy
uncertainty ∆1 are defined as:

Pd = P(Ri(ri) > λ2|H1) = Q

(√
2Kγ

K + 1 + γ
,

√
λ2(K + 1)
K + 1 + γ

)
(13)

Pm = P(Ri(ri) < λ1|H1) = 1−Q

(√
2Kγ

K + 1 + γ
,

√
λ1(K + 1)
K + 1 + γ

)
(14)

∆1 = P(λ1 ≤ Ri(ri) ≤ λ2|H1) = 1− Pd − Pm . (15)

where Q(·) is the standard Gaussian complementary distribution function. The channel
model uses a Rician channel, where K is the Rician factor.

3. Dual Threshold Cooperative Spectrum Sensing Based on Equal Gain Combination
3.1. Integration Strategy

In the cooperative sensing strategy used in spectrum sensing, each SU needs to trans-
mit the local decision data of each node to the FC for mutual cooperation. In cooperative
spectrum sensing, a key technology is to efficiently process the data transmitted by each
cooperative node and make effective decisions. At present, the decision-making strate-
gies of collaborative spectrum sensing mainly include: (1) Decision fusion, that is, hard
decision-making, and decision fusion is carried out through the decision results transmitted
by cooperative nodes. (2) Data fusion, that is, soft decision-making, requiring full use of
sensors and data. Collaborative spectrum sensing generates a deterministic description of
the observed samples through a comprehensive analysis of the observed information.

The hard fusion criterion of cooperative awareness requires each SU participating in
the cooperation to submit a local detection result, that is, the node determines that the
existence of the detected PU is “1”, otherwise it is “0”. Then, each cognitive user submits the
detection result of each node to FC. Typically, cooperative sensing includes “AND”, “OR"
and “K-out-of-N” algorithms. Assuming that there are N sensing nodes for cooperative
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spectrum sensing, the “AND” algorithm requires N sensing nodes to detect the presence
of a PU. The perceptual result means that the FC can only determine the existence of the
PU when it receives N “1”s. The “OR” algorithm is that only one sensing node detects the
existence of PU, and FC can make the result of PU. The “K-out-of-N” algorithm first needs
to determine the voting threshold K. When fewer than K sensing nodes give a decision,
the FC decides that the PU does not exist. Moreover, the size of K can be fixed or adjusted
according to the accumulation of test results. Therefore, collaborative sensing can improve
the detection performance, and different fusion strategies will have different effects on the
detection results.

For the fusion criterion, the joint detection probability Qd and joint false alarm proba-
bility Qf can be obtained as:

Qd_K = P
(

N
∑

i=1
di ≥ k|H1

)
=

N
∑

i=k
Ci

N Pd(1− Pd)
N−i

Q f _K = P
(

N
∑

i=1
di ≥ k|H0

)
=

N
∑

i=k
Ci

N Pf

(
1− Pf

)N−i . (16)

where the dual threshold of spectrum sensing technology adopts λ0 and λ1. If SU uses
dual-threshold energy detection for local decision-making, and does not deal with fuzzy
states at this time, the following formula is obtained:

Qd_K_dou = P{G = 1|H1 } =
N
∑

K=1
CK

N

K
∏
i=1

P(Oi ≤ λ0 ∪Oi ≥ λ1|H1 )

∗
N
∏

i=K+1
P(λ0 < Oi < λ1|H1 )

K
∑

i=k
Ci

KPi
dPK−i

m

=
N
∑

K=1
CK

N(1− ∆1)
K∆1

N−K
K
∑

i=k
Ci

KPi
dPK−i

m

(17)

Q f _K_dou = 1− P{G = 1|H0 } =
N
∑

K=1
CK

N

K
∏
i=1

P(Oi ≤ λ0 ∪Oi ≥ λ1|H1 )

∗
N
∏

i=K+1
P(λ0 < Oi < λ1|H1 )

K
∑

i=k
Ci

KPi
f PK−i

a .

=
N
∑

K=1
CK

N(1− ∆0)
K∆0

N−K
K
∑

i=k
Ci

KPi
f PK−i

a

(18)

The voting threshold of the traditional K-rank criterion is k = dN/2e, and d·e is the
ceiling function. In addition, the voting threshold can be adjusted automatically.

At present, the commonly used soft decision algorithms include weight combination,
likelihood ratio algorithm, and so on. Compared with other soft fusion standards, the
weighted gain combining algorithm (WGC) is widely used due to its low complexity
and easy implementation. Therefore, this paper mainly introduces the weighted gain
combination algorithm. The process of the WGC algorithm is that the cooperative cognitive
nodes send the detected energy value directly to the FC, and then set a weight wi as a
multiplication factor according to the contribution of the cognitive nodes. FC compares the
result calculated by the formula (19) with the threshold η to obtain the decision result.

S =
n

∑
i=1

Xiwi. (19)

When the weight coefficient is wi = 1, WGC is equivalent to the equal gain combining
(EGC) algorithm. When the FC uses the EGC criterion to make data decisions, the coopera-
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tive cognitive nodes need to pass the local measurement value Xi, i = 1, 2, · · · , N to the FC.
The EGC algorithm is modeled as follows:

GEGC =


0 SEGC =

N
∑

i=1

Xi
Nδ2

n
< λEGC H0

1 SEGC =
N
∑

i=1

Xi
Nδ2

n
≥ λEGC H1

. (20)

where λEGC is the threshold of the EGC algorithm, and δ2
n is the noise variance. This paper

assumes that each cognitive node is independent and identically distributed. Therefore,
when the measured value is in a fuzzy state, the equal-gain combination algorithm is used,
and the distribution of SEGC in H0 and H1 obeys the following formulas:

SECG ∼
{

χ2
2uN H0

χ2
2uN(2µNγ) H1

. (21)

The joint detection probability and false alarm probability of the algorithm are
as follows: {

Q f _EGC =
Γ(Nu,λEGC/2δ2

n)
Γ(Nu)

Qd_EGC = Q
(√

2γ,
√

λEGC
) . (22)

where γ =
N
∑

i=1
γi is the instantaneous SNR of FC, and γi is the SNR of the i-th cognitive

user. In order to improve the accuracy of decision-making, the EGC algorithm is used to
judge the received signal samples in a fuzzy state.

3.2. Algorithm Analysis and Optimization

Most of the dual-threshold cooperative spectrum sensing algorithms are based on
the K-rank fusion strategy, which directly ignores the decision-making of the fuzzy state.
Therefore, the optimal voting threshold is derived by using EGC judgment to improve the
decision-making accuracy of fuzzy state. In fact, EGC-based dual-threshold cooperative
spectrum sensing is an algorithm that combines software and hardware. First, cooperative
cognitive nodes detect dual-threshold energy. Second, the detection result Yi is sent to the
FC. For nodes in the fuzzy state, the sensing signal is sent directly to the FC.

Yi =


0 Xi ≤ λ1

X λ1 < Xi < λ2

1 Xi ≥ λ2

. (23)

where Xi is the local detection energy value, and λ1 and λ2 are preset double thresholds.
The FC will classify the received Yi, and use a soft decision for the submitted local detection
energy value Xi. The judgment result S is obtained by using the EGC judgment mentioned
above, and then a hard judgment is made in the FC together with Yi whose local detection
results are 0 and 1, and finally whether the PU exists can be judged.

In order to improve the sensing accuracy of the integrated satellite terrestrial system,
the voting optimization algorithm of the double-threshold cooperative spectrum sensing
algorithm based on EGC is deduced. The joint probability of the algorithm is as follows:

Qd = 1− (1− Pd_EGC)(1−Qd_K_double)

= 1− Pm_EGC + Pm_EGC
N
∑

M=1
CM

N (1− ∆1)
M∆1

N−M
M
∑

i=k
Ci

MPi
dPM−i

m
(24)

Qm = 1−Qd (25)
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Q f = 1−
(

1− Pf _EGC

)(
1−Q f _K_double

)
= 1− Pa_EGC + Pa_EGC

N
∑

M=1
CM

N (1− ∆0)
M∆0

N−M
M
∑

i=k
Ci

MPi
f PM−i

a .
(26)

According to the above formula, the global error probability can be defined as:

Qerror = Qm + Q f

= 1 + Pm_EGC − Pm_EGC
N
∑

M=1
CM

N (1− ∆1)
M∆1

N−M
M
∑

i=k
Ci

KPi
dPM−i

m

−Pa_EGC + Pa_EGC
N
∑

M=1
CM

N (1− ∆0)
M∆0

N−M
M
∑

i=k
Ci

MPi
f PM−i

a .

(27)

In order to obtain the optimal voting threshold kopt, i.e., Qerror is the minimum. Then
the derivation of Formula (28) is as follows:

∂Qerror
∂k = ∂Qm

∂k +
∂Q f
∂k = Qerror(k+1)−Qerror(k)

(k+1)−k

= Pm_EGC
N
∑

M=1
CM

N (1− ∆1)
M∆1

N−MCk
MPk

d PM−k
m

−Pa_EGC
N
∑

M=1
CM

N (1− ∆0)
M∆0

N−MCk
MPk

f PM−k
a .

(28)

When Qerror reaches the minimum, then ∂Qerror
∂k = 0. The following formula can

be obtained:

Pm_EGC(1− ∆1)
M∆1

N−MPk
d PM−k

m = Pa_EGC(1− ∆0)
M∆0

N−MPk
f PM−k

a . (29)

The derivation of both sides of formula (29) is as follows:

kopt =
M ln

(
Pa
Pm

)
+ ln

(
1−∆0
1−∆1

)M(∆0
∆1

)N−M Pa_EGC
Pm_EGC

ln
(

PaPd
PmPf

) . (30)

When kopt satisfies Formula (30), Qerror reaches a minimum value, and we obtain:

∂2Qerror
∂k2

∣∣∣k=kopt =
∂Qerror(k+1)

∂k

∣∣∣k=kopt −
∂Qerror(k)

∂k

∣∣∣k=kopt
(k+1)−k

=
N
∑

M=1
CM

N C
kopt+1
M Pm_EGC(1− ∆1)

M∆1
N−M Pd

Pm
P

kopt
d P

M−kopt
m

−
N
∑

M=1
CM

N C
kopt+1
M Pa_EGC(1− ∆0)

M∆0
N−M Pf

Pa
P

kopt
f P

M−kopt
a .

(31)

From Formula (10) to Formula (15), theoretically there are Pa > Pm and Pd > Pf . The
results are as follows:

Pd
Pm

>
Pf

Pa
(32)

∂2Qerror

∂k2

∣∣∣k=kopt > 0. (33)

The minimum value of the global error probability is obtained when ∂Qerror
∂k = 0.

kopt =


M ln

(
Pa
Pm

)
+ ln

(
1−∆0
1−∆1

)M(∆0
∆1

)N−M Pa_EGC
Pm_EGC

ln
(

PaPd
PmPf

)
. (34)
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where Pa,Pm,Pd,Pf ,∆0 and ∆1 are functions of the lower limit λ1 and upper limit λ2 of
double thresholds. The optimal voting threshold can be obtained by substituting the lower
bound λ1 and the upper bound λ2.

4. Adaptive Dual Threshold Cooperative Sensing

The value of the lower threshold λ1 and the upper threshold λ2 of the dual-threshold
spectrum sensing algorithm, and the fuzzy state between them, will affect the complexity
of the spectrum sensing algorithm. The area of fuzzy state is reduced when the SNR is
high, thereby reducing the complexity of spectrum sensing decisions. In addition, the
decision-making ability of the system can be further improved by adaptively adjusting the
thresholds of the dual thresholds.

The double-threshold algorithm satisfies λ1 ≤ λ2, and the size of the double-threshold
will directly affect the change in decision-making performance. When the threshold value
λ1 decreases, Pm will decrease. When the value of λ2 increases, Pf will decrease, but Pd
may also decrease. As the difference between the two thresholds increases, the probability
of a received signal sample in fuzzy state increases. The global error probability is defined
in Formula (28), and when solving the adaptive dual-threshold algorithm, the optimization
problem is:

min(Qerror(λ1, λ2))
s.t. 0 < λ1 < λ2 < +∞.

(35)

Find the optimal λ1opt and λ2opt when Qerror(λ1, λ2) is the minimum value. Then λ1opt

and λ2opt are required to meet the following requirements:
∂Qerror(λ1,λ2)

∂λ1

∣∣∣λ1opt
= 0

∂Qerror(λ1,λ2)
∂λ2

∣∣∣λ2opt
= 0

. (36)

Through mathematical derivation, we can obtain:

∂Qerror(λ1,λ2)
∂λ1

∣∣∣λ1opt
=

∂

(
−

N
∑

M=1
CM

N

M
∑

i=k
Ci

K Pm_EGC(1−∆1)
M∆1

N−M Pi
dPM−i

m

)
∂λ1

∣∣∣λ1opt

+
∂

(
N
∑

M=1
CM

N

M
∑

i=k
Ci

K Pa_EGC(1−∆0)
M∆0

N−M Pi
f PM−i

a

)
∂λ1

∣∣∣λ1opt

(37)

∂Qerror(λ1,λ2)
∂λ2

∣∣∣λ2opt
=

∂

(
−

N
∑

M=1
CM

N

M
∑

i=k
Ci

K Pm_EGC(1−∆1)
M∆1

N−M Pi
dPM−i

m

)
∂λ2

∣∣∣λ2opt

.

+
∂

(
N
∑

M=1
CM

N

M
∑

i=k
Ci

K Pa_EGC(1−∆0)
M∆0

N−M Pi
f PM−i

a

)
∂λ2

∣∣∣λ2opt

(38)

To make Equations (37) and (38) equal to 0, we assume:

G(γ) = −
N
∑

M=1
CM

N

M
∑

i=k
Ci

KPa_EGC(1− ∆0)
M−1∆0

N−MPi
f PM−i

a M

+
N
∑

M=1
CM

N

M
∑

i=k
Ci

KPa_EGC(1− ∆0)
M∆0

N−M−1Pi
f PM−i

a (N −M)

−
N
∑

M=1
CM

N

M
∑

i=k
Ci

KPa_EGC(1− ∆0)
M∆0

N−MPi
f PM−i−1

a (M− i)

(39)
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Q(γ) = −
N
∑

M=1
CM

N

M
∑

i=k
Ci

KPm_EGC M(1− ∆1)
M−1∆1

N−MPi
dPM−i

m M

+
N
∑

M=1
CM

N

M
∑

i=k
Ci

KPm_EGC M(1− ∆1)
M∆1

N−M−1Pi
dPM−i

m (N −M).

−
N
∑

M=1
CM

N

M
∑

i=k
Ci

KPm_EGC M(1− ∆1)
M∆1

N−MPi
dPM−i−1

m (M− i)

(40)

The first optimal threshold result can be obtained as follows:

λ1opt =

√
2M(γ + 1)× ln

(√
γ + 1

G(γ)

Q(γ)

)
. (41)

Using the same derivation process, we assume:

Y(γ) = −
N
∑

M=1
CM

N

M
∑

i=k
Ci

KPa_EGC(1− ∆0)
M−1∆0

N−MPi
f PM−i

a M

+
N
∑

M=1
CM

N

M
∑

i=k
Ci

KPa_EGC(1− ∆0)
M∆0

N−M−1Pi
f PM−i

a M(N −M)

−
N
∑

M=1
CM

N

M
∑

i=k
Ci

KPa_EGC(1− ∆0)
M∆0

N−MPi−1
f PM−i

a M∆0Pi

(42)

Z(γ) = −
N
∑

M=1
CM

N

M
∑

i=k
Ci

KPm_EGC M(1− ∆1)
M−1∆1

N−MPi
dPM−i

m M

+
N
∑

M=1
CM

N

M
∑

i=k
Ci

KPm_EGC M(1− ∆1)
M∆1

N−M−1Pi
dPM−i

m (N −M) .

−
N
∑

M=1
CM

N

M
∑

i=k
Ci

KPm_EGC M(1− ∆1)
M∆1

N−MPi−1
d PM−i

m i

(43)

The second optimal threshold result can be obtained as follows:

λ2opt =

√
2M(γ + 1)× ln

(√
γ + 1

Y(γ)
Z(γ)

)
. (44)

Therefore, Equations (41) and (44) are the optimal solutions for the threshold and vary
with the current SNR.

5. Simulation Results and Analysis

Figures 3 and 4 are the curves of the error probability of the integrated satellite
terrestrial system with the change of the SNR in the case of different noise uncertainties
of the dual-threshold cooperative energy detection technology. Moreover, a lower error
probability means a stronger detection capability of the spectrum sensing system. When
Pf = 0.1 is set and the number of cognitive nodes is N = 5, the simulations are carried
out for the cases where the noise uncertainty is ρ = 1.01 and ρ = 2. As shown in Figure 3,
when the noise uncertainty satisfies ρ = 1.01, the noise uncertainty is extremely low, and
the two thresholds of the dual-threshold detection algorithm are relatively close. At this
time, the detection probability of the OR algorithm and the double-threshold cooperative
spectrum sensing algorithm based on EGC is obviously better than the performance of
other fusion strategies. The OR criterion only needs to have one cooperating node judged as
1, then the system judges that the frequency band is occupied. Therefore, the OR algorithm
exchanges a part of Pf for the improvement of Pd, while the double-threshold cooperative
spectrum sensing algorithm based on EGC increases the detection probability by increasing
the judgment of the fuzzy state.
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As shown in Figure 4, when the noise uncertainty is ρ = 2, the error probability of the
EGC-based dual-threshold cooperative spectrum sensing algorithm is significantly higher
than the other three fusion criteria in the case of low SNR. This is because when the noise
uncertainty is ρ = 2, the fuzzy state area increases significantly, and the K-rank, OR and
AND criteria all ignore the fuzzy state judgment. When the EGC-based dual-threshold
cooperative spectrum sensing algorithm is used for decision, the fuzzy state is decided by
EGC, which improves the decision accuracy of the system. By analyzing Figures 3 and 4,
the sensing system using the EGC-based dual-threshold cooperative spectrum sensing
algorithm has higher stability. Therefore, the simulation results show that the detection
probability of the double-threshold cooperative spectrum sensing algorithm based on EGC
is better when the noise uncertainty is relatively high. In addition, the increased detection
probability indicates that the terrestrial network can use the satellite frequency band more
flexibly, which further improves the spectral efficiency.
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Figure 5 shows the error probability change of the double threshold K-rank algorithm
and optimized K-rank algorithm with SNR under M = 1000, Pf = 0.1. The optimization
algorithm uses a dynamic voting threshold technique with the goal of minimizing the error
probability. Adapting the optimization algorithm to changes in the current environment, the
error probability is significantly reduced as shown in Figure 3. In addition, when ρ = 1.01,
the decision mainly relies on the K-rank cooperation algorithm, and the performance
improvement is obvious. However, when ρ = 2, most of the signal energy is in fuzzy state,
which mainly depends on the EGC algorithm.
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Figure 5. Performance of optimized K-rank algorithm.

Figure 6 shows the performance analysis of the EGC-based adaptive dual-threshold
collaborative sensing optimization algorithm. The false alarm probability of GEO satellite is
Pf = 0.1, and five cooperative sensing nodes are used. The adaptive algorithm dynamically
adjusts the threshold through the SNR, and the fuzzy area becomes larger when the SNR
is low. Conversely, the fuzzy area becomes smaller when the SNR is high. Moreover, the
simulation results also show that the EGC-based algorithm can improve the detection
accuracy. In addition, the accuracy of decision-making mainly depends on the collaborative
decision-making strategy, and the detection probability is improved by optimizing the
voting algorithm.

In order to analyze the performance of the optimization algorithm of dual threshold
cooperative sensing based on EGC, this paper compares it with several other algorithms.
Figure 7 shows the performance comparison of the proposed algorithm with other algo-
rithms. The simulation results show that the performance of the adaptive cooperative
algorithm based on EGC is higher than the other three algorithms. When the SNR is
higher than −8 dB, the detection performances of the adaptive dual-threshold co-sensing
algorithms based on the EGC, “ADE” and "DDEMM" algorithms are comparable. The
adaptive dual-threshold cooperative perception based on EGC, “DDEMM”, “Cyclostation-
DE” and “ADE” algorithms starts to drop sharply at −14 dB, −10 dB, −10 dB and
−7 dB, respectively. The adaptive dual-threshold cooperative algorithm based on EGC has
better decision-making effect with the decrease of SNR. Compared with the “DDEMM”,
“Cyclostation-DE” and “ADE” algorithms, the detection performance of the EGC-based
dual-threshold cooperative sensing algorithm at 20 dB is improved by 40.1%, 187% and
195.75%, respectively.
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When the detection probability Pd ≥ 0.9 is satisfied, the minimum SNR of the above
four algorithms are −15 dB, −10 dB, −13 dB and −8 dB, respectively. Figure 7 shows that
the adaptive dual-threshold cooperative sensing algorithm based on EGC has a significant
improvement over other algorithms under the condition of low SNR. In the case of low
SNR (−30dB to −20 dB), the adaptive dual-threshold cooperative sensing based on EGC
and “DDEMM” algorithm has better detection performance. However, the detection
performance of “DDEMM” slowly improves with the increase of the SNR. The traditional
self-adaptive double-threshold algorithm lacks the judgment of ambiguous state, and the
overall detection performance is not high. However, the cyclostationary feature detection
introduced by the “Cyclosure-DE” algorithm can improve the detection performance, but
cannot overcome the limitation of fixed thresholds.
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6. Conclusions

In this paper, cognitive radio technology is introduced into the integrated satellite
terrestrial system to dynamically realize spectrum sharing to increase spectrum utilization.
The spectrum sensing scenario of the integrated satellite terrestrial system is studied,
and the fading situation of the sensing link is determined. However, the uncertainty of
noise interference in the system can lead to a fuzzy state of perception. The traditional
double-threshold cooperative sensing technology usually ignores the detected fuzzy state.
Therefore, the equal-gain combination algorithm is introduced to improve the decision-
making accuracy of the fuzzy state. Furthermore, the optimal value of voting threshold
and dual threshold algorithm is derived based on the equal gain combination algorithm
to minimize the error probability. The simulation results show that the optimal values
of the two thresholds vary with the SNR, which can dynamically adapt to the complex
scene of the integrated satellite terrestrial system. The dual-threshold cooperative spectrum
sharing algorithm improves the detection accuracy of the integrated satellite terrestrial
sensing system. Cognitive technology increases the opportunity for ground systems to
share satellite spectrum, reduces the interference of ground systems to satellite systems,
and alleviates the current shortage of spectrum resources.
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