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Abstract: Semantic segmentation of remote sensing images plays a crucial role in urban planning and
development. How to perform automatic, fast, and effective semantic segmentation of considerable
size and high-resolution remote sensing images has become the key to research. However, the existing
segmentation methods based on deep learning are complex and often difficult to apply practically due
to the high computational cost of the excessive parameters. In this paper, we propose an end-to-end
lightweight progressive attention semantic segmentation network (LPASS-Net), which aims to solve
the problem of reducing computational costs without losing accuracy. Firstly, its backbone features
are based on a lightweight network, MobileNetv3, and a feature fusion network composed of a
reverse progressive attentional feature fusion network work. Additionally, a lightweight non-local
convolutional attention network (LNCA-Net) is proposed to effectively integrate global information
of attention mechanisms in the spatial dimension. Secondly, an edge padding cut prediction (EPCP)
method is proposed to solve the problem of splicing traces in the prediction results. Finally, evalu-
ated on the public datasets BDCI 2017 and ISPRS Potsdam, the mIoU reaches 83.17% and 88.86%,
respectively, with an inference time of 0.0271 s.

Keywords: lightweight network; attention mechanism; very high resolution; deep learning

1. Introduction

Due to the rapid development of remote sensing equipment and technology, the
amount and ease of access to spatial data have significantly increased. How to interpret
large-size and high-resolution remote sensing images automatically, quickly, and efficiently
has become a hot issue for research. Among them, the semantic segmentation of remote
sensing images plays a vital role in urban planning [1–5], environmental monitoring [6–10],
forest and crop analysis [11–15], and smart city construction [16–20].

Semantic segmentation for remote sensing imagery aims to interpret the ground con-
tent of the image and obtain its pixel-level semantic annotation [21]. The segmentation tasks
usually focus on extracting single or multiple categories, such as buildings [22], roads [23],
the vegetation [24], etc. However, due to the complex and diverse information these
categories possess, the richness of features and the varying scale sizes pose a significant
challenge to the semantic segmentation of remote sensing images.

Traditional image processing methods cope with the task of semantic segmentation
of remote sensing images mainly by extracting color, grayscale, geometric features, etc.,
such as the extraction of water body information from Landsat ETM+ images using Ada-
Boost algorithm [25] and a multi-scale building extraction method based on mathematical
morphology [26]. These manually designed feature extractors are relatively complex and
challenging to adapt to complex application scenarios with limited generalization capability.
In recent years, the fire of deep learning methods, especially convolutional neural networks
(CNNs), has gradually replaced the traditional techniques in various computer vision tasks.
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Undoubtedly, new research directions have also opened up in the semantic segmentation
of remote sensing images.

The critical advantage of CNN-based algorithms is that they provide an end-to-end
solution for image detection, where the ability to generalize is greatly improved by replacing
the manually designed feature layers with autonomous feature learning methods. For
example, building fully connected networks (FCNs) combine deep and shallow information
to produce accurate segmentation results [27]. However, FCNs lose much information
during upsampling because they do not consider the progressive relationship between
pixels; so, SegNet [28], which performs nonlinear upsampling using pooling indexes,
was proposed. This architecture is well-suited for scene-understanding applications and
has good accuracy. Based on this idea, U-Net [29], symmetric path networks have also
achieved good semantic segmentation results. Although these networks have significant
consequences for category segmentation, they lack detail processing capability due to
insufficient use of context. To address this limitation, Chen et al. proposed a DeepLabv3+
network using atrous convolution and atrous spatial pyramid pooling (ASPP) [30], which
captures objects and links images at multiple scales. The contextual approach can robustly
segment object classes while representing the detailed information of the target well.

However, all these networks are very complex, and the number of parameters is huge
when applied to the semantic segmentation of remote sensing images, which inevitably
brings the problem of increasing computational cost. The remote sensing images may vary
significantly in terms of feature points due to factors, such as climate change, regional
topography, water quality, vegetation types, and even different styles of architecture.
Therefore, the models designed for semantic segmentation of remote sensing images
should be as lightweight as possible so that prediction results can be obtained as soon as
possible at a low cost in the face of changing environments.

Since lightweight networks have a limited ability to extract features compared to
deep models, how to perform automatic, fast, and effective semantic segmentation of very
high-resolution remote sensing images without reducing accuracy becomes the purpose of
our research.

The flow chart of this paper’s proposed remote sensing image segmentation system
is shown in Figure 1. Step 1 involves cropping the edge padding high-resolution remote
sensing, Step 2 involves predicting the small-segmented images sequentially using the
proposed LPASS-Net, and Step 3 involves stitching the predicted results together and
restoring them.
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The main contributions of this paper are as follows:
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1. A lightweight progressive attention semantic segmentation network (LPASS-Net)
is proposed, which utilizes an efficient, lightweight backbone network, atrous spa-
tial pyramid pooling (ASPP) modules, and reverse progressive attention. Using an
enhanced feature fusion network, the algorithm improves its robustness when seg-
menting targets of different scales and solves the problem of local information loss. In
contrast, the design of the feature fusion network can enrich the diversity of features
of each discipline, which is conducive to improving the accuracy of segmentation
when size and perspective change phenomena.

2. The proposed lightweight non-local convolutional attention network (LNCA-Net) is
a spatial dimensional attention mechanism that breaks the limitation of only local
feature integration by an improved autocorrelation matrix operation.

3. An edge padding cut prediction (EPCP) is proposed to segment and splice images
by the edge padding method, which can well solve the problem of producing splice
traces when direct prediction is performed.

2. Related Work

Most deep-learning semantic segmentation models are based on an encoder–decoder
architecture. The encoder uses convolutional and pooling layers to reduce the feature
map size to obtain a feature map. The decoder projects the acquired feature semantics
onto a high-resolution pixel space to obtain a dense classification. SegNet and U-Net
are representative encoder–decoder architectures, where SegNet’s network design uses
nonlinear upsampling in the decoder stage to reduce the number of parameters needed
during training. U-Net consists of a systolic path for collecting context and an extended
symmetric path for identifying precise locations. This structure allows features to be
stitched together in the channel dimension to form richer features, efficiently performing
semantic segmentation even with few training images. In recent research, many researchers
have worked on improving the fused attention mechanism for semantic segmentation of
remote sensing images.

For example, Ref. [31] proposed a fused sparse channel attention (SCA)-based UNet
dual stream branching model (DF-UNet) with segmentation and ranking branches for
detecting different levels of wheat yellow rust in remote sensing images. Ref. [32] proposed
inserting channel spatial attention (CSA) in the fused encoder and decoder features to de-
tect particular types of unauthorized buildings. Ref. [33] proposed a remote sensing urban
scene image segmentation model based on ResNet18 as the encoder and transformer as the
decoder and developed an efficient attention mechanism to model global and local infor-
mation in the decoder. Ref. [34] proposed to improve the U-Net model using two attention
mechanisms, ECA-Net and PSA-Net, aiming to segment important details in wind turbines
from images captured by remote sensing. Ref. [35] proposed an attention-augmented
convolution-based residual UNet architecture (AA-ResUNet) for road extraction in remote
sensing images, where the attention-enhanced convolution operation helps to capture
remote global information and obtain a more discriminative feature representation. These
works are used to improve the segmentation efficiency by modifying the model structure
by incorporating attention mechanisms.

By contrast, many works have focused on weighting the features at each pixel location
to improve the segmentation efficiency. For example, Ref. [36] proposed a novel bottleneck
structure operation to optimize DeepLabv3+, which uses operations, such as reweighting
and summation by the attention mechanism, to make the features of essential regions in
the image more significant, improving the expressive power of the convolutional neural
network, and better solving the problem of coarse boundaries in semantic segmentation.
A sense-global-entropy network (DGEN) is proposed by [37], which introduces a dual
local and global attention mechanism to embed it into densely connected convolutional
networks (DenseNets) to preserve the integrity of segmentation. Ref. [38] embedded a
channel-attention mechanism in a multi-scale adaptive feature fusion network (MANet)
to fuse semantic features. High-level and low-level semantic information is connected by
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global average pooling to generate global features for semantic segmentation in remote
sensing images.

However, most methods only consider segmentation accuracy and ignore the limita-
tion of an excessive number of parameters due to the complexity of the model itself. In
this paper, we propose an efficient and a robust semantic segmentation network named
LPASS-Net to address the limitations of previous studies. The rationality and superiority of
the method are demonstrated in a series of ablation experiments using two publicly avail-
able datasets, which help to promote the development of remote sensing image processing
applications and provide new ideas for lightweight research of neural networks.

3. Methodologies

The overall architecture of our proposed LPASS-Net is shown in Figure 2, which con-
sists of three main parts: a backbone feature extraction network part based on MobileNetv3,
an ASPP module and an enhanced feature extraction network part consisting of a RPA-Net,
and finally, a prediction network part. Notably, we propose a modified LNCA-Net, which
constitutes a reverse progressive attentional feature fusion structure by gradually adding
this attentional module to enrich the diversity of feature layers and adaptively adjust the
attention of the network.
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Figure 2. The network framework of the LPASS-Net is proposed in this paper.

Firstly, since the number of parameters in the backbone network directly determines
the overall parameter size of the model, MobileNetv3 was used as the backbone network
for feature extraction to meet the overall lightweight network. In addition to the four
adequate feature layers obtained using the backbone network, the final feature layer Conv4
had a shape of (16, 16, 256) and was connected to an ASPP module with five parallel
branches. To enhance the expressiveness of the feature map and facilitate the detection of
targets at different scales, null convolution was used to achieve local and global feature
fusion. Secondly, the reinforced feature layers of the ASPP module were used for reverse
progressive upsampling. Combining with the attention mechanism LNCA-Net, the feature
fusion and upsampling were performed gradually with the remaining three feature layers
in the backbone network to obtain the final feature layer with all fused features. Finally,
this feature layer was used to classify each feature point, equivalent to the predictive
classification of each pixel point, to form the predictive output module.
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3.1. Lightweight and Efficient Backbone Network

For deep learning algorithms designed for semantic segmentation problems applied
to high-resolution remote sensing images, it is especially critical that the network itself
is lightweight and efficient due to the memory and power constraints of the application
device. The problem of how to make the network computationally reduced while ensuring
accuracy has received widespread attention, of which the MobileNet series is excellent,
whereas MobileNetV3 [39], after the accumulation of the first two generations of V1 [40]
and V2 [41], utilizes the deep separable convolution of MobileNetV1 while synthesizing
MobileNetV2 with linear bottleneck and a squeeze-and-excitation network (SE-Net) [42]
of the inverse residual structure. The overall computation of the neural network mainly
depends on the number of parameters of the backbone network, so it is essential to choose
a lightweight backbone network. In this paper, the B-neck structure of MobileNetV3 was
used as the backbone network by concatenating, as shown in Figure 3, to improve the
execution speed of the network.
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The B-neck was composed of an inverted residual block, first using 1 × 1 standard
convolution to up-dimension and then extracting features by depthwise separable convo-
lution, using SE-Net attention mechanism, and finally using 1 × 1 standard convolution
to down-dimension and output. This design allowed less information to be lost when
high-dimensional information was passed through the activation function. In addition, the
B-neck was divided into two structures according to the step size. The shortcut connection
was only available when the stride was 1, i.e., when the input features had the same shape
as the output features. We constructed the feature extraction backbone network in Figure 2
by combining two kinds of B-neck.

The feature extraction process used a preliminary feature map obtained by one standard
convolution first, followed immediately by each feature layer being compressed and deepened
by combining one Stride 2 and multiple Stride 1s. A total of four feature layers, namely Conv1,
Conv2, Conv3, and Conv4, were obtained with shapes of (128, 128, 32), (64, 64, 64), (32, 32,
128), and (16, 16, 256), respectively. These preliminary feature layers needed to be processed
through an enhanced feature extraction network to deepen the sampling capability of the
model to deepen the model’s sampling capability for features.
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3.2. Enhanced Feature Extraction Network

The enhanced feature extraction network proposed in this paper aimed to increase
the richness of the feature map and was composed of an ASPP module and a reverse
progressive attention feature fusion network. The ASPP module evolved from the spatial
pyramid pooling (SPP) module [43]. It aimed to sample features by convolution kernels at
different scales, enabling accurate and efficient classification of regions at arbitrary scales.
This method of fusing local and global feature information can enhance the correlation
between features in the spatial dimension. However, using pooling layers alone in SPP to
increase the perceptual field also decreased the resolution and led to the loss of detailed
information. To solve this problem, one can use null convolution instead of pooling layers
to achieve a larger perceptual field while reducing the loss of resolution [44].

The ASPP module shown in Figure 4 has five branches, the first three use a 3× 3 atrous
convolution with convolution kernels and rates of 6, 12, and 18, respectively. The last two
branches will use a standard convolution with a 1 × 1 kernel, the difference being whether
or not they pass through the global average pooling layer. The features of each branch are
then merged to obtain a Conv4_1 of the shape (16, 16, 256) by compressing the number of
channels using the standard convolution of 1 × 1. The structure of an atrous convolution
with different rates in parallel is often used in semantic segmentation because it can increase
the perceptual field and capture multi-scale information without increasing the number of
parameters. However, the pixel points generated by the nature of the atrous convolution
are disjointed, and they are independent of each other lacking dependencies, which can
cause local information loss and no correlation between features at a distance. Therefore,
the latter two branches of the ASPP module proposed in this paper were designed to
compensate for this drawback by enhancing the global and local information interaction
through global average pooling and standard convolution with a 1 × 1 convolution kernel.
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Since there are targets of different sizes in the semantic segmentation of high-resolution
remote sensing images, even though the feature layer Conv4 of the backbone feature ex-
traction network can obtain feature layers with high semantic information after processing
by the ASPP module, its size is small, compared with other feature layers of larger sizes,
which still retain rich feature details. More feature layers need to be combined to improve
the accuracy of the results. However, blind direct upsampling for the concatenated merging
of multiple feature layers is flawed due to the interference of redundant details in the
background for detection.
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It becomes necessary to use an attention mechanism to weigh the features at all pixel
locations for each size. As shown in the RPA-Net of Figure 2, each backbone feature layer
was attentionally enhanced and then combined with the previous feature layer that was
upsampled so that a gradual reverse progression of decoding allowed more features to be
generated for semantic segmentation.

The core idea of the attention mechanism was to let the model learn to focus on the
critical information and ignore the unimportant information, which was to understand
the weight distribution by using the relevant feature map and then apply the obtained
weights to the original feature map, to sum up, the weights. The weighting can be applied
to the spatial domain to transform the information in the spatial part of the image to
extract the critical data. It can also be used in the channel domain, adding a weight to each
channel signal to represent the channel’s relevance to the necessary information; the more
significant the importance, the higher the relevancy.

In our previous work, we proposed the lightweight residual convolutional attention
network (LRCA-Net) [45], which is spatial-channel hybrid attention, with the core idea of
improving the channel attention module of CBAM [46] by using 1D convolution instead of
fully connected layers and adding a residual structure. Such an improvement can improve
the performance a lot, but it does not improve the spatial attention module, as shown
in Figure 5.
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The spatial attention module pools the input features with the shape of C × H ×W
by the maximum and average pooling and then connects the two obtained features into a
channel pool with the shape of 2× H ×W and convolves them by a standard convolutional
layer of size 7 × 7 to obtain the spatial attention map by sigmoid as in Equation (1).

As
(

F′
)
= σ

(
k7×7([Maxpool

(
F′
)
; Avgpool

(
F′
)]))

, (1)

where As denotes the spatial attention module, F′ denotes the channel refined feature, σ
denotes the sigmoid function, and k7×7 represents the convolution of kernel size 7 × 7.

By analyzing it, it can be seen that the drawback of such a spatial attention module
is very obvious because simply performing a 7 × 7 convolution is limited by the size
of the convolution kernel, which is only limited to the features of adjacent points that
can be captured by the convolution and lacks the remote interaction between any two
more distant positions; so, how to use the attention structure in the spatial dimension to
effectively integrate global information by performing autocorrelation on the global feature
map has become the direction of this improvement.

Non-local neural networks provide an autocorrelation matrix algorithm for the prob-
lem of how to capture long-range dependencies [47]. Along this line, we improved the
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spatial attention module, as shown in Figure 6. First, we generated three copies of the input
feature maps F′ of shape H ×W × C by standard convolution of 1 × 1, respectively, and
reshaped them into N × C, where N is equal to H ×W, as in Equation (2).

{R1, R2, R3} ∈ R N×C = reshape
(
Conv2d

(
F′
))

, (2)

where Conv2d represents the convolution kernel as a 1 × 1 standard convolution operation,
reshape is the reshaping function, and the shapes of R1, R2, and R3 are N × C, where N is
equal to H ×W.
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After transposing R3 to obtain RT
3 and performing matrix multiplication with R2, using

the softmax layer to obtain the spatial attention map, we performed matrix multiplication
with R1 and reshaped it to obtain R4 with the shape H × W × C as in Equation (3), and
finally added R4 to the input feature map F′ to obtain the spatial-refined feature F” as
in Equation (4).

R4 = reshape
(

R1

(
S
(

RT
3 × R2

)))
, (3)

As
(

F′
)
= F′′ = F′ + R4, (4)

where RT
3 represents the transpose matrix of R3, S represents the softmax function, and F”

represents the spatial-refined feature.
In contrast to the previous spatial attention module, performing the standard convolu-

tion operation involved only a weighted sum of the pixel values around that location. In
contrast, by an improved autocorrelation matrix operation, finding a value at a location
corresponded to a weighted sum of the values at all locations. For the features at a specific
location, the features at all locations were aggregated and updated by a weighted sum,
where the weights were determined by the similarity of the features at the corresponding
two locations. Therefore, the implementation of non-local attention that associated the
features between two pixels at a certain distance on the image helped the network model
accomplish the semantic segmentation task; an illustration of the dependencies of the global
context information compared to the local information is shown in Figure 7.



Remote Sens. 2022, 14, 6057 9 of 24Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 24 
 

 

 
Figure 7. Global and local information dependencies. Local dependencies are presented by convo-
lution (yellow). The long-distance boxes (red) present the global dependencies. 

With replacement of the previous method with a proposed spatial attention module, 
the overall structure of the improved attention mechanism LNCA-Net was obtained, as 
shown in Figure 8. Since the network design without changing the feature map size al-
lowed LNCA-Net to be inserted into arbitrary network structures, the progressive atten-
tional feature fusion structure was designed in combination with such an attention mech-
anism. 

 
Figure 8. The overall structure of the lightweight non-local convolutional attention network (LNCA-
Net) contains the original channel attention mechanism Ac and the modified channel attention 
mechanism As. 

Image conversion from low- to high-resolution images can lead to distortion. Using 
the skip connection structure to combine the distortions was relatively negligible and re-
tained more detailed information. Such a progressive feature fusion structure can directly 
connect gradient, point, line, and other input to the decoder more accurately after the at-
tention enhancement process of the same shape feature layer in the encoder, which is 

Figure 7. Global and local information dependencies. Local dependencies are presented by convolu-
tion (yellow). The long-distance boxes (red) present the global dependencies.

With replacement of the previous method with a proposed spatial attention module,
the overall structure of the improved attention mechanism LNCA-Net was obtained, as
shown in Figure 8. Since the network design without changing the feature map size allowed
LNCA-Net to be inserted into arbitrary network structures, the progressive attentional
feature fusion structure was designed in combination with such an attention mechanism.
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Figure 8. The overall structure of the lightweight non-local convolutional attention network (LNCA-Net)
contains the original channel attention mechanism Ac and the modified channel attention mechanism As.

Image conversion from low- to high-resolution images can lead to distortion. Using the
skip connection structure to combine the distortions was relatively negligible and retained
more detailed information. Such a progressive feature fusion structure can directly connect
gradient, point, line, and other input to the decoder more accurately after the attention
enhancement process of the same shape feature layer in the encoder, which is equivalent to
adding more detailed information when judging the target region, which is beneficial to
obtain more accurate segmentation results.
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3.3. Splicing Optimization Method

Due to the high resolution and large size of the directly captured remote sensing
images, they cannot be directly input into the network. For this reason, we have designed
a cut-and-predict method, the core of which is to divide the original image into several
small pieces of the same size and then input them into the network for prediction and
stitching. Stitching the prediction results directly will produce stitching traces because of
the boundary feature extraction, which will affect the final output. To solve this problem,
we needed to perform edge filling on the original image when segmenting it, as in Figure 9.
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Figure 9. Example of the edge padding cutting operation.

The main idea of EPCP is to segment a sliding window of each region that covers the
center patch and its 8 neighboring patches and to keep only the center part of the image for
each prediction, and the rest part is discarded. Then, the discarded part will also become
the center part of the following prediction using the sliding window. This method avoids
the problem of feature extraction of the border and the splicing trace, which affects the final
segmentation effect. For example, suppose the center patch size is 128 × 128, the step size
is set to 128, and it moves to the right in the form of a sliding window.

3.4. Experiments

In this section, we first introduced the dataset and experimental environment used.
Then, we described the model training setup and evaluation metrics, and finally, we
evaluated the reliability of our proposed method by analyzing and discussing the experi-
mental results.

3.4.1. Dataset and Experimental Environment

We conducted experiments on two remote sensing datasets with different styles, as
shown in Figure 10, the Big Data and Computing Intelligence Contest 2017 (BDCI 2017)
dataset and the International Society for Photogrammetry and Remote (ISPRS) Potsdam
dataset. The BDCI 2017 dataset provides a total of four remote sensing images of water
towns in China, with corresponding annotated images, which are annotated into five cate-
gories: vegetation, buildings, water bodies, roads, and others, among which cultivated land,
forest land, and grassland are classified as vegetation. In contrast, ISPRS Potsdam shows
a typical historical city with giant building blocks, narrow streets, and dense settlement
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structures. We used eight pairs of these remote sensing images with their corresponding
ground annotated images for the experiment, and their annotations were classified into six
categories: impervious surfaces, buildings, low vegetation, trees, cars, and clutter.
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Figure 10. Examples of original and annotated images of two different styles of remote sensing
datasets used for the experiments in this paper: (a) the BDCI 2017 dataset and (b) the ISPRS Potsdam
dataset, respectively.

To facilitate deep learning of the network model, we obtained more diverse data
samples by data augmentation. In this study, we first needed to cut the remote images
in the two datasets to scale each image to 256 × 256. Then, we used rotation, mirroring,
color transformation, and Gaussian filtering to enrich the diversity of the data samples and
finally obtained 100,000 training data, respectively, where each training and validation set
was randomly divided in the ratio of 9:190,000 and 10,000, respectively. Some examples of
the original images and labels of the dataset are shown in Figure 11.
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Figure 11. Representative samples of each category in the dataset after data enhancement of the
original images are shown on the left and ground truth on the right: (a) the BDCI 2017 dataset and
(b) the ISPRS Potsdam dataset.

The experimental setup of this study is shown in Table 1. An RTX 3050 graphics card
was paired with an Intel(R) Core (TM) i5–11400F processor to form a high-performance
workstation. TensorFlow2 was used to build the experimental models for training, valida-
tion, and testing, and CUDA was used to compute the results.

Table 1. Mainframe hardware and software for workstations.

Items Description

H/W

CPU Intel(R) Core (TM) i5–11400F
RAM 16 GB
SSD Samsung SSD 500GB

Graphics Card NVIDIA GeForce RTX 3050

S/W
Operating System Windows 11 Pro, 64bit

Programming Language Python 3.7
Learning Framework TensorFlow 2.2.0
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3.4.2. Evaluation Metrics and Experimental Details

To verify the accuracy of the network, we used the following metrics to evaluate the
model. Semantic segmentation tasks usually combined precision and recall to evaluate the
results as in Equations (5) and (6). The mean intersection over union (mIoU) and F1-score
were chosen to evaluate the overall results as in Equations (7) and (8); the larger these
values are, the higher the agreement of the predicted results with the ground truth. These
indicators are calculated as follows:

Precision =
TP

TP + FP′
(5)

Recall =
TP

TP + FN′
(6)

where T/F denotes true/false, which indicates whether the prediction is correct, and P/N
denotes positive/negative, which indicates a positive or negative prediction result.

mIoU =
1
C ∑C

c=1
TPc

TPc + FPc + FNc
′ (7)

F1 = 2× Precision× Recall
Precision + Recallc′

(8)

where TPc, FPc, and FNc denote true positives, false positives, and false negatives of a
particular object indexed to class C, respectively.

4. Results and Discussion

To verify the rationality and effectiveness of LPASS-Net, we designed ablation ex-
periments to explore the effect of the execution of different combinations of modules in
the network on the results. As a fair comparison, except for the parameters of the added
modules, such as the dataset (ISPRS Potsdam dataset), input image size, relevant hyperpa-
rameters, training strategy, and experimental environment, they are the same in the ablation
experiments. As shown in Table 2, when the original base algorithm (baseline) uses only
the end feature layer extracted by the backbone network for upsampling reduction and
outputs the results without adding any module, the mIoU is only 73.50%. After adding the
ASPP module, the mIoU improves significantly to 76.11%, and after adding the progressive
attention network, the results improve to 83.17%. These ablation experiments show that
the proposed network module can effectively improve the segmentation accuracy when
performing segmentation tasks.

Table 2. Results of ablation experiments using the same dataset (BDCI 2017), where bold numbers
indicate the highest mIoU, “

√
” indicates that the leftmost component is used in the model, and “×”

indicates that the leftmost component is removed. In each column, the last number represents the
mIoU obtained using the corresponding component.

Backbone Feature Extraction Baseline
√ √ √

ASPP module
√ √ √

RPA-Net (No attention)
√

×
RPA-Net (LNCA-Net) ×

√

mIoU 73.50 76.11 80.91 83.17

To validate our improved attention mechanism, we designed ablation experiments
for the attention mechanism, the corresponding results are presented in Table 3. They
are based on testing of the single model proposed in this paper, with no differences in
the network modules used, and with the same dataset, input image size, and associated
hyperparameters, where the baseline is set not to add any attention module. The models
of all attention methods improve the segmentation results. However, when we used the
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improved method, better results were achieved using the other attention methods. It
is confirmed that the non-local attention method is more effective in integrating global
information than the method that performs only standard convolution.

Table 3. Experiments on the ablation of attentional mechanisms using the same dataset (BDCI 2017),
where bold numbers indicate the highest mIoU, “+” indicates that a particular attention module has
been added to the baseline.

Settings Input Size Parameters (Millions) mIoU (%)

Baseline 256 × 256 7.14 80.91
+CBAM 256 × 256 7.24 82.03

+LRCA-Net 256 × 256 7.29 82.87
+LNCA-Net 256 × 256 7.18 83.17

In addition, to further discuss the necessity of several attentional module configurations
in RPA-Net, ablation experiments were designed to verify the effect of the execution method
of progressively combining attentional modules on the results. As shown in Table 4, when
the original base algorithm (baseline) performs only upsampling reduction and outputs the
results without adding the attention module, the mIoU is only 80.91%. After gradually adding
the LNCA-Net module, the mIoU increases to 81.51%, 82.47%, and 83.17%, respectively. The
results of this ablation experiment demonstrate the rationality of the proposed progressive
attention module addition method when performing segmentation tasks.

Table 4. Results of ablation experiments using the same dataset (BDCI 2017), where bold numbers
indicate the highest mIoU and “

√
” indicates the top component used in the model. In each row, the

last number represents the mIoU obtained using the corresponding component.

LNCA-Net Modules
mIoU

Baseline A1 A2 A3
√

80.91√ √
81.51√ √ √
82.47√ √ √ √
83.17

For the predicted patch image to be stitched directly, it often produces stitching traces
as shown in Figure 12. It can be seen that this problem is well solved by the EPCP method
proposed in this paper, and the splice traces are substantially reduced and do not affect the
segmentation effect.
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Figure 12. Examples of the results of two datasets optimized by EPCP, respectively, where the red
boxes mark the splice traces: (a) unoptimized results and (b) optimized results.

For a comprehensive evaluation, the LPASS-Net algorithm is compared with represen-
tative semantic segmentation models, such as SegNet [28], PSPNet [48], U-Net [29], and
DeepLabv3+ [30], to enrich the comparison models by replacing the backbone network.

Figure 13 shows a plot of the loss values during the training of the model and a
plot of the validation loss function obtained by validating the model using the validation
dataset during the training process. The training is divided into two phases, the freeze
phase and the unfreezing phase. The pre-trained MobileNetv3 backbone model was used
to initialize the weight parameterization of the underlying shared convolutional layer.
The loss function was set to a cross-entropy loss function with training batch sizes of 16
and initial learning rates of 0.001 and 0.0001 for the freeze and thaw phases, respectively.
The first 50 epochs freeze the backbone network weights and prioritize the training of
network weights other than the backbone network, and the second 50 epochs unfreeze
the backbone network for full network training. This has the advantage of fine-tuning the
original weights of the backbone network, thus accelerating the convergence of the network
and saving training time.
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The comparison of quantitative experimental results using the same dataset and model
training methods is reported in Table 5. The mIoU of our proposed method can reach
83.17% and 88.86% on the BDCI 2017 dataset and ISPRS Potsdam dataset, respectively, and
mF1 reaches 89.17 and 94.55, respectively, which is an improvement compared with other
segmentation methods.

Table 5. Comparison of quantitative experimental results on the two datasets, where bold numbers
indicate the best value for each column. The first of these numbers is the result from the BDCI 2017
dataset, the second is from the ISPRS Potsdam dataset, and the inferred time is the time required to
predict a 256 × 256 patch image.

Method Backbone Parameters
(Millions) mF1 mIoU (%) Inference Time (s)

SegNet VGG16 21.61 74.01 76.96 67.82 70.41 0.0358
ResNet50 44.86 77.64 80.32 71.16 75.47 0.0428

PSPNet
ResNet50 46.77 84.42 87.09 79.91 82.35 0.0397

MobileNetv3 2.41 79.11 84.82 74.75 78.13 0.0260

U-Net
VGG16 24.89 81.14 84.62 76.43 81.82 0.0364

ResNet50 44.01 81.94 84.87 77.96 81.46 0.0411

DeepLabv3+ Xception 41.25 86.22 91.14 82.15 86.39 0.0386
ResNet50 27.75 85.31 88.80 80.56 82.27 0.0365

LPASS-Net MobileNetv3 7.17 89.17 94.55 83.17 88.86 0.0271

In practical applications, it is essential to consider not only the efficiency of the model
but also the size of the model. As shown in Figure 14, compared to PSPNet (MobileNetv3)
with a similar number of parameters, our method improves mIoU by 8.42% and 10.73%,
respectively, and F1-score by 10.06% and 9.73% on both datasets. Although these algo-
rithms have no shortage of models with high segmentation efficiency, such as DeepLabv3+
(Xception) and PSPNet (ResNet50), our method is not only more accurate compared to them,
but the model sizes are only 17.38% and 15.33% of theirs. According to the visualization
results in Figures 15 and 16, LPASS-Net segmented buildings’ edges more clearly than
other models. The SegNet and U-Net can segment more significant buildings and vehicles,
but there are a lot of errors in segmenting small clutters. PSPNet and DeepLabv3+ perform
very well in general, but compared with LPASS-Net, the segmentation of low vegetation
and trees is not accurate enough. For the time factor, our method takes only 0.0271s to
process, which implies a good improvement in processing speed compared to DeepLabv3+
when reaching the same mIoU level. This shows that our proposed LPASS-Net can achieve
high segmentation accuracy with a smaller model size.
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Figure 14. Model size vs. mIoU and mF1 in (a) the BDCI 2017 dataset and (b) the ISPRS Potsdam
dataset. Details are in Table 5. Note that our approach obtains better results while having less
model complexity.

After completing the overall evaluation of the models, we use the intersection over
the union set as a class evaluation metric. Based on the BDCI 2017 and ISPRS Potsdam
da-tasets, Tables 6 and 7 show the IOU results of different methods.

Table 6. The results of IOU on the BDCI 2017 dataset of different methods (%), where the bolded
numbers indicate the best value for each column.

Method Vegetation Buildings Water Bodies Roads Others

SegNet 78.7 68.1 73.8 70.4 64.8

PSPNet 83.4 79.3 83.2 80.5 73.15

U-Net 82.7 74.9 81.5 79.6 71.1

DeepLabv3+ 86.9 80.1 84.1 82.7 76.95

LPASS-Net 88.3 80.5 85.4 81.1 80.55

Table 7. The results of IOU on the ISPRS Potsdam dataset of different methods (%), where the bolded
numbers indicate the best value for each column.

Method Impervious
Surfaces Buildings Low

Vegetation Trees Cars Clutter

SegNet 77.1 73.2 83.1 72.9 76.7 69.8

PSPNet 81.5 80.6 87.4 84.6 88.3 71.7

U-Net 80.5 81.1 85.8 84.5 89.6 69.4

DeepLabv3+ 83.7 84.1 91.5 86.1 93.8 78.9

LPASS-Net 83.4 87.9 95.4 90.4 95.6 80.5
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Figure 15. Examples of segmentation details of different models on the ISPRS Potsdam dataset:
(a) original image, (b) ground truth, (c) SegNet, (d) U-Net, (e) PSPNet, (f) Deeplabv3+, (g) LPASS-Net,
where the category details are shown in Table 8.
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Figure 16. Examples of full-size output results of different models on the ISPRS Potsdam dataset:
(a) original image, (b) ground truth, (c) SegNet, (d) U-Net, (e) PSPNet, (f) Deeplabv3+, (g) LPASS-Net,
where the category details are shown in Table 8. In addition, the visualization results of each model
are obtained by adding EPCP to ensure the fairness of the ablation experiment.

Table 8. Details of each category in the prediction results.

The BDCI 2017 Dataset The ISPRS Potsdam Dataset

Category Vegetation Building Water
Bodies Road Other Impervious

Surface Building Low Vegetation Tree Car Clutter

Color

The experimental visualization results, shown in Figures 17 and 18, show that LPASS-
Net can distinguish different feature types and perform very accurately in the boundary
detail part. In particular, the segmentation accuracy of vehicles, building clusters, roads,
and vegetation is higher than other models. Because LPASS-Net can combine multi-scale
semantic information, and when combined with LNCA-Net, which uses an attention
mechanism, it can enhance the correlation between pixels and greatly enrich the diversity
of features. It confirms the robust segmentation capability of our LPASS-Net, which can be
well applied to the semantic segmentation of remote sensing images.
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Figure 18. The overall visualization results of the test images provided by (a) the BDCI 2017 dataset
and (b) the ISPRS Potsdam dataset, where the category details are shown in Table 8.

5. Conclusions

To perform automatic, fast, and effective category segmentation of large-size and
high-resolution remote sensing images and to solve the problem of reducing computational
cost without losing accuracy, an end-to-end LPASS-Net is proposed in this study. Firstly,
MobileNetv3 is used as the backbone feature extraction network, which can ensure efficient
automatic feature extraction while significantly reducing the overall number of model
parameters. Secondly, an enhanced feature extraction network consisting of an ASPP
module and a RPA-Net is designed, which can improve the algorithm’s robustness in
segmenting targets at different scales. In contrast, the design of the feature fusion network
can enrich the diversity of various types of features. Thirdly, based on the shortcomings
of the LRCA-Net proposed in previous studies, an improved LNCA-Net is proposed,
which can effectively integrate global information in the spatial dimension by performing
autocorrelation on the global feature map to improve segmentation performance. Fourthly,
the proposed EPCP method is an excellent solution to the problem of splicing traces’ indirect
prediction. Finally, evaluated on the public datasets BDCI 2017 and ISPRS Potsdam, the
mIoU achieved 83.17% and 88.86%, respectively, and the inference time was 0.0271 s per
256 × 256 patch map, which confirms the superiority of LPASS-Net. This helps to promote
the application of algorithms for remote sensing image processing and provides a direction
for the research of lightweight neural networks.

Author Contributions: H.L.: Conceptualization, Methodology, Writing—original draft, Software,
Formal analysis. S.S.: Supervision, Funding, Writing—review and editing, Resources, Formal analysis.
All authors have read and agreed to the published version of the manuscript.
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