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Abstract: Seismic impedance inversion is one of the most commonly used techniques for reser-
voir characterization. High accuracy and high resolution seismic impedance is a prerequisite for
subsequent reservoir interpretation. The data-driven approach offers the opportunity for accurate
impedance prediction by establishing a nonlinear mapping between seismic data and impedance.
However, existing data-driven methods take the raw seismic data directly as input, making it difficult
for the network to learn high frequency weak signal information and resulting in low resolution
inversion results. In order to mitigate the above issues, a data-driven seismic impedance inversion
method based on multi-scale strategy is proposed. The method first obtains seismic data at different
scales using frequency division techniques and do normalization on the extracted multi-scale data
to ensure the consistency of the seismic signal energy in different frequency bands. The multi-scale
seismic data will then be fed into the network, which helps the network to learn the high frequency
information features more easily, and ultimately obtain higher resolution inversion results. We use
the most commonly used convolutional neural network (CNN) as an example to demonstrate that the
proposed multi-scale data-driven seismic impedance inversion method can improve the resolution of
the inversion results. In addition, since the above seismic impedance inversion method is executed
trace-by-trace, the f-x prediction filtering technique is introduced to improve the lateral continuity of
the inversion results and obtain more geologically reliable impedance profiles. The validity of the
proposed method is verified in the application of synthetic model data as well as an actual data set.

Keywords: seismic inversion; deep learning; multi-scale data; f-x filtering; transfer learning

1. Introduction

Seismic impedance, the product of density and seismic velocity, directly reflects the
nature of subsurface rocks and can be used to indicate oil and gas, calculate reserves,
and guide well placement, etc. Compared with the original seismic data, the impedance
profile obtained by seismic impedance inversion methods eliminates the tuning effect
and improves the vertical resolution of seismic data, which is an important parameter
for reservoir prediction in the field of oil and gas exploration [1,2]. Accurate impedance
parameters are a prerequisite for subsequent reservoir interpretation. The interpretation of
complex and unconventional reservoirs places greater demands on impedance accuracy
and resolution. However, from a mathematical point of view, seismic impedance inversion
is an inverse problem and is ill-posed. Due to the limitations of incompleteness, noise,
and wavelet band limitations of the observed data, multiple geological models can usually
be obtained to match the observed data. Moreover, if the given data and the established
geophysical-mathematical model do not perfectly match the actual geological model during
the inversion process, the solution in the specific geological sense will not exist or the
solution will be unstable. Because the Earth medium is complex and variable [3], it is often
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difficult to accurately establish the relationship between seismic data and subsurface model
parameters with a limited number of geophysical parameters and associated mathematical
physical models. Although the theory and technology of these seismic inversion methods
have been continuously improved, they are not as effective as desired in practical reservoir
prediction and lithology characterization [4–11].

Unlike traditional seismic impedance inversion based on a known physical model
(i.e., model-driven inversion method), the data-driven inversion method does not require a
known physical model as a prerequisite. Deep learning, currently one of the most popu-
lar data-driven algorithms, can use a given training dataset to learn a mapping function
between the model space and the data space to solve the inverse problem. Deep learning
methods, represented by convolutional neural network (CNN), have been very successful in
many real-world areas, (e.g., computer vision, image recognition and natural language pro-
cessing) benefiting from the increase in computing power and the continuous improvement
of algorithms [12–14]. This has led to a boom in the application of deep learning methods
in geophysics and has led to many promising results. For instance, Zhang, et al. [15] use
convolutional neural network combined with wavelet transform to achieve lithology/fluid
prediction from seismic data. Zhang, et al. [16] further introduce priori information con-
taining Markov chain and Markov random field in deep learning-based lithology/fluid
prediction to improve the continuity of the prediction results. Wu, et al. [17] use a single
convolutional neural network to predict fault probabilities, strikes and dips. Bi, et al. [18]
implement simultaneous 3D seismic horizon and fault interpretation based on the deep
learning approach. Deep learning-based seismic horizon and fault interpretation tech-
niques have greatly improved efficiency with no less accuracy than manual interpretation.
Saad and Chen [19] propose a fully unsupervised deep learning method to accomplish
the suppression of random noise in seismic data. Kaur, et al. [20] implement seismic data
interpolation using deep learning with generative adversarial network.

In addition to the above applications, deep learning-based seismic inversion is also
a hot topic of research. Das, et al. [21] predict a seismic impedance model from recorded
normal-incidence seismic data based on the convolutional neural network. Li, et al. [22]
propose an end-to-end seismic inversion network to achieve deep learning based seismic
inversion. Puzyrev, et al. [23] compare the performance of different deep learning methods
(e.g., convolutional neural network, recurrent neural network, and fully connected network)
for velocity estimation and demonstrate the potential of data-driven methods for seismic
inversion. Zhang, et al. [24] introduce the initial model in deep learning-based seismic
inversion to achieve stable post-stack and pre-stack inversions using hybrid deep neural
networks as an example. Kazei, et al. [25] utilize a convolutional neural network to compute
seismic velocity using multiple common-mid-point gathers as input. Cao, et al. [26] develop
a deep learning multi-parameter pre-stack seismic inversion method based on sparse
reflection coefficient constraints. Zhang, et al. [27] combine the full-wave field simulation
method and the deep learning method to obtain higher accuracy inversion results. These
methods ignore the energy differences of seismic data in different frequency bands. When
raw seismic data is fed directly into the network, the network has difficulty learning high
frequency weak signal information resulting in low resolution inversion results.

The multi-scale inversion strategy is a good choice to make full use of the high fre-
quency information. This method can effectively reduce the nonlinearity of the inverse
problem and avoid the solution falling into local minima. Some scholars use the Hamming
window, Wiener filter and wavelet transform to perform multi-scale decomposition of
seismic data for full waveform inversion, which improves both the global convergence of
the inversion and the resolution of the predicted subsurface parameters effectively [28–31].
Inspired by this, we introduce the multi-scale inversion strategy into deep learning-based
seismic impedance inversion. In this paper, we propose to obtain seismic data with dif-
ferent scales using frequency division techniques and do normalization on the extracted
multi-scale seismic data to ensure the consistency of the seismic signal energy in different
frequency bands, which will then be used as input to the network so that the network can
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learn the high frequency information features more easily. Then, we validate the effective-
ness of the multi-scale strategy using a convolutional neural network as the underlying
network on synthetic model data and real case. In addition, since the proposed method
performs seismic impedance inversion trace-by-trace, we further introduce the f-x predic-
tive filtering technique to improve the lateral continuity of the inversion results and thus
obtain more geologically reliable impedance profiles.

The main contribution of this paper is that a data-driven seismic impedance inver-
sion method based on a multi-scale strategy is proposed to help the network learn high-
frequency weak signal features more easily and thus improve the resolution of the inversion
results. In addition, the f-x predictive filtering technique is introduced to improve the lat-
eral continuity of the inversion results and obtain more geologically reliable impedance
profiles. Meanwhile, the proposed method is compared with a data-driven method using
raw seismic data as the input and a model-driven seismic impedance method. This paper
is organized as follows: we begin with an introduction to the principles of training dataset
construction, network building and f-x filtering. Next, we perform numerical experiments
on the model and real data to verify the validity of the proposed method. Some conclusions
and outlooks are reported in Section 4.

2. Methods

The proposed method still belongs to the category of supervised learning, where the
training dataset and the network are two key factors. In this section, we first introduce
traditional forward modeling based on known physical models to construct sufficient
training datasets. Next, the multi-scale strategy and the proposed deep learning seismic
impedance inversion method are reported. Then, a brief description of how the transfer
learning strategy is introduced to extend the proposed method to field data with limited
well-logs data is presented. Finally, we give a brief report on the principles of the f-x
filtering technique.

2.1. Forward Model

The seismic signals in the post-stack profile can be modeled approximately by the
convolution of seismic wavelet with reflection coefficients as follows:

s(t) =
∫ +∞

−∞
w(τ)r(t− τ)dτ + n(t) (1)

where s(t) represents synthetic post-stack seismogram, w(τ) is the seismic wavelet, r(τ)
is the reflection coefficient, n(t) represents observation noise, t represents two-way travel
time and τ denotes a point in time at a given moment. The reflection coefficient r(τ) can be
generated by using the difference and summation operators on the impedance model, as
expressed in Equation (2):

r(t) =
zt+1 − zt

zt+1 + zt
(2)

where zt+1 and zt represent the seismic impedance of the layer t + 1 and t, respectively.
Given the impedance model and seismic wavelet, the corresponding synthetic seismic
records can be calculated by combining Equations (1) and (2). Then, most deep learning
based seismic impedance inversion methods take synthetic seismic data as input and
impedance models as output and combined with optimization algorithms can build a
mapping function to achieve conversion of seismic data to impedance. Although this is
an effective method, this ignores the energy differences in different frequency bands in
the seismic data, increasing the difficulty for the network to learn the information of weak
signals at high frequency, thus leading to insufficient resolution of the inversion results.

2.2. Inversion Framework of Multi-Scale Strategy

Figure 1 shows the schematic diagram of multi-scale seismic data extraction. Take a
three-layer model containing two reflective interfaces as an example. When the synthesized
signal (yellow curve shown in Figure 1a) contains both a strong energy low frequency
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signal (sky blue curve shown in Figure 1a) and a low energy high frequency signal (red
curve in Figure 1a), it can be seen that it is almost impossible to distinguish the position of
the interface in the synthesized signal (yellow curve shown in Figure 1a). In other words, if
we take that synthesized signal as the input of the network, it is difficult for the network
to learn the features of the high frequency information at that point. In order to decrease
the difficulty of the network to learn high frequency information features, it is necessary to
separate the data in different frequency bands from the synthesized signal. Figure 2 shows
the amplitude spectrum corresponding to the synthesized signal (yellow curve shown in
Figure 1a). It can be seen that the signal of different frequency bands in the amplitude
spectrum can be well separated. Therefore, we split the amplitude spectrum of the signal
with different windows (green dashed lines shown in Figure 1b) and obtain the multi-scale
seismic data by inverse Fourier transform, as shown in Figure 1c. It can be seen that the
extracted multi-scale seismic data can match well with the low and high frequency signals
contained in the original synthetic signal. After obtaining the multiscale seismic data, we
normalize the different frequency band data to ensure that the contribution of different
frequency band signals in the network learning process is the same. This can improve the
effectiveness of the network for feature extraction of high-frequency signals and improve
the resolution of the final prediction results.
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Based on the above strategy, we can obtain multi-scale seismic data in different
frequency bands from the original seismic data. In this paper, multi-scale seismic data is
extracted from the original seismic data in three frequency bands, called low-frequency,
mid-frequency and high-frequency seismic data, respectively. It is worth noting that
when extracting high-frequency seismic data, the high cut-off frequency does not exceed
80 Hz to prevent high frequency noise from interfering with the results. Different high
cutoff frequency will be set for different data based on the main frequency of the seismic
data. Low-frequency initial model is a kind of data often used in conventional seismic
impedance inversion methods, which can compensate the problem of insufficient low-
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frequency information in seismic data and, at the same time, can reduce the multi-solution
of inversion results and improve the stability of inversion results. The original seismic
data contains all acquisition information. After obtaining the multi-scale seismic data,
therefore, it is fed into the deep neural network along with the original seismic data and
the low-frequency initial impedance model, as shown in Figure 2. The output, or label,
of the network is true seismic impedance model. Given seismic impedance models, we
can construct sufficient training data sets by combining forward modeling theory and
multi-scale data extraction strategy. The constructed training dataset is fed into a deep
neural network to pre-train the network, thus establishing a non-linear mapping function
between input and output. The trained network then enables seismic impedance inversion.
The proposed method is not limited to a particular deep neural network framework, but
can be directly applied to most of the deep neural networks, such as convolutional neural
networks, fully connected networks and long short-term memory neural networks, etc.

2.3. Convolutional Neural Network

In this paper, we use the most general convolutional neural network as an example to
verify the effectiveness of the proposed method. CNNs are developed and inspired by the
structure of the visual system and are centered on extracting features from the input data
using filters. The deeper the network depth, the deeper the level of features extracted from
the input data. From its beginning to now, 1D, 2D and 3D CNNs have been developed.
The tasks processed by different methods are usually different. For example, 1D CNN
is suitable for processing sequence data, while 2D and 3D CNNs are usually applied to
problems such as images, videos and texts [32]. Since the seismic impedance inversion
is a multi-sequence input problem and contains coupling between different curves, the
convolution of the CNN network used in this study is 1D structures.

Figure 3 shows the detailed architecture of the convolutional neural network used
in this paper to facilitate the reader to reproduce the results of the subsequent numerical
experiments. The multi-scale data acquired in the previous section is used as input for
feature extraction by the convolutional neural network. CNNs can be used for local features
processing as they take into account the correlation of local input data. The framework used
here consists of two convolutional layers, which have the same parameters (32, 3× 1, 1).
ReLu activation functions [33] are connected after each convolutional layer to accomplish
the nonlinear task. In addition, a dropout layer is added after the second convolutional
layer to prevent the network from overfitting. After going through the convolutional neural
network for feature extraction, the extracted features are flattened and then fed into the
fully connected layer. Finally, the output of the fully connected layer is given to the final
output layer to obtain the final prediction of the network. We utilize the mean square error
to measure the loss between the network outputs and the given labels, and then the Adam
optimizer [34] is adopted to optimize the network parameters (i.e., weights and biases) to
obtain a deep neural network that can perform seismic impedance inversion. In this paper,
we obtain the relatively optimal network parameters, including the number of layers, the
number of neurons per layer and the size of the convolutional kernel, etc., through iterative
experiments. This relies heavily on the experimenter’s experience, and it might be good to
combine the choice of network parameters with an optimization algorithm.

2.4. Transfer Learning Strategy

Based on the above theory and strategy, we can obtain satisfactory results when the
training dataset is sufficient (e.g., synthetic model data). However, in practice, it is difficult,
if not impossible, to have sufficient training datasets (i.e., well-logs data) to be used directly
for network training. Transfer learning is a research problem in machine learning that
focuses on using the knowledge gained in solving one problem and applying it to another
different but related problem for the purpose of accomplishing the task of a different
problem [35]. The physical system (i.e., seismic forward modeling) used for the synthesized
model data is an approximate representation of the actual problem, which is consistent with
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the conditions applied for transfer learning. Therefore, we introduce the transfer learning
strategy for practical data applications to alleviate the problem that data-driven methods
cannot achieve good application performance due to the limited amount of training data.
The closer the simulated data is to the actual data, the more reliable the pre-trained network
will be. In this paper, we first pre-train the network with synthetic model data to obtain
a robust network and use the synthetic data for testing and validation. Then, the layers
other than the fully connected layers in the pre-trained network are fixed [36] and the
network parameters of the non-fixed layers are fine-tuned using the well-logs data so that
the updated network is applicable to the actual data. In this way, the proposed method can
be easily extended to practice case to obtain reliable seismic impedance.
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2.5. f-x Filtering Technique

Since the proposed method performs seismic impedance inversion trace-by-trace, we
further introduce the f-x prediction filtering technique to improve the lateral continuity
of the inversion results, based on the assumption that the signal can be represented as a
superposition of events with linear time differences. For a linear event, the signal in the
trace n at any temporal frequency f can be expressed by: [37]

Sn( f ) = Sn−1( f )e−i·2π f ·ϑ·∆x (3)

where Sn( f ) represent Fourier transform of the nth trace of the original signal Sn(t), ϑ and
∆x represent apparent slowness and spatial interval of adjacent trace, respectively, and
i =
√
−1. If p linear times are superimposed in the t-x domain, the following equation can

be obtained:
Sn( f ) = a1Sn−1( f ) + a2Sn−2( f ) + · · ·+ apSn−p( f ) (4)

Equation (4) can be written in the form of a prediction error as follows:
p

∑
k=0

gkSn−k( f ) = 0 (5)

where gk represents the coefficients of prediction error filter and g0 = 1. The filtering
operator gk is obtained by solving Equation (5), which can then be applied to the spatial
trace to obtain the filtered results for frequency f. Once all frequencies have been filtered,
inverse Fourier transform is performed to obtain the filtered t-x domain data.
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3. Results

To verify the effectiveness of the proposed method, we apply the method to a bench-
mark Marmousi model and an actual data set, respectively. The seismic impedance inver-
sion results of the multi-scale strategy are compared with those using conventional seismic
data as input and those based on the model-driven method. For the validity and fairness of
the result comparison, the deep neural networks used in the different methods are identi-
cal in the numerical experiments. In the subsequent experiments, the proposed method
in this paper is called multi-scale seismic impedance inversion (MSII) and the conven-
tional method is called single-scale seismic impedance inversion (SSII). The model-driven
impedance inversion method is denoted MDII. In addition, to quantitatively evaluate the
goodness of the inversion results, the root mean square error (RMSE) is introduced as a
criterion to evaluate them with the following expression:

RMSE =

√
1
n

n

∑
i=1

(yi − Ỹi)
2

(6)

where yi and Ỹi denote reference values and predicted values, respectively. n indicates the
total number of data points.

3.1. Synthetic Data Test

The validity of the proposed method is first tested on a benchmark Marmousi model.
The model contains 3201 traces and 600 time samples with a time interval of 2 ms, as shown
in Figure 4a. Then, synthetic seismic records can be obtained using the forward modeling
method described in the theoretical section. Figure 4b shows the seismogram with a signal-
to-noise ratio of two, which will be used in subsequent tests to verify the performance of
the method. The seismic wavelet used here is a 20 Hz zero-phase Ricker wavelet. The
initial model of low-frequency impedance obtained from the true impedance model using
the low-pass filtering method is shown in Figure 4c. Figure 5 shows the multi-scale seismic
data extracted using the multi-scale strategy. We randomly select 50 traces from the true
impedance models to construct the training dataset, and 15% of this training dataset is used
as the validation set. The network is pre-trained using the constructed training dataset, and
then the pre-trained network is used in the 2D Marmousi model to implement the seismic
impedance inversion of the entire profile.
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Figure 6a,c,e shows the inversion results of SSII, MSII and MDII without f-x filtering,
respectively. It can be seen that the inversion results of data-driven methods (i.e., SSII
and MSII) outperform those of model-driven methods (i.e., MDII). The inversion results
of MSII are more stable and have better continuity compared to the inversion results of
SSII. Moreover, in some localized regions (black arrows), the inversion results of MSII
reveal more details than those of SSII and are more consistent with the reference model.
Figure 6b,d,f shows the normalized residuals between the inversion results of SSII, MSII
and MDII and the true values. It can be seen that the residuals of the inversion results
of data-driven methods are smaller compared to those of model-driven methods. The
residuals of the inversion results of the data-driven methods are concentrated around the
value of 0, which indicates the effectiveness of the methods, but the residuals of the MSII-
based inversion results are smaller compared to the residuals of the SSII-based inversion
results. However, since these methods perform impedance inversion trace-by-trace, their
inversion results have poor lateral continuity, which increases the difficulty of subsequent
interpretation. For this reason, we further introduce the f-x filtering technique to improve
the continuity of the inversion results. Figure 7a,c,e show the inversion results of SSII, MSII
and MDII with f-x filtering, respectively. It shows that the inversion results with f-x filtering
can effectively improve the lateral stability. The normalized residual profiles (Figure 7b,d,f)
of inversion results without and with f-x filtering show that the filtering process does not
damage the effective signal and also show the better stability of MSII compared to SSII
and MDII. In addition, the validity of the proposed method is verified quantitatively by
comparing the RMSEs recorded in Table 1.

Table 1. The RMSE of the inversion results (Marmousi model) of SSII, MSII and MDII combined with
and without f-x filtering.

Without f-x Filtering With f-x Filtering

SSII 0.59 0.50
MSII 0.48 0.44
MDII 0.90 0.85

3.2. Field Data Example

Based on the success of the MSII method on synthetic model data, we further apply
it to real data to confirm the applicability of the proposed method to real problems. A
small 2D actual seismic data is used to test the effectiveness of the method, as shown in
Figure 8a. In addition to the seismic traces, the data set contains data from four wells.
The initial model of low-frequency impedance obtained based on the known well-logs
data and the horizon information picked up from the seismic data is shown in Figure 8b.
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Figure 9 shows the multi-scale seismic data extracted using the multi-scale strategy. We
select three of the four well-logs data to construct the training dataset, while the other
well-log data is used as a blind well to validate the inversion results. Due to the limited
well-logs data, it is difficult to obtain a robust network by using them directly for network
training. We introduce the transfer learning strategy to overcome this problem. First, the
layers of the network pre-trained using model data are fixed except for the fully connected
layer. We then fine-tune the network pre-trained from the model data using the training
dataset constructed from the well-logs data to ensure the stability of the network and make
the updated network applicable to the actual data. Multi-scale data including multi-scale
seismic data and low-frequency initial models are used as network inputs to finally realize
seismic impedance inversion and obtain 2D seismic impedance profiles.
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Figure 6. (a) The inverted impedance using SSII without f-x filtering. (b) The residual profiles
between SSII inversion results without f-x filtering and reference values. (c) The inverted impedance
using MSII without f-x filtering. (d) The residual profiles between MSII inversion results without f-x
filtering and reference values. (e) The inverted impedance using MDII without f-x filtering. (f) The
residual profiles between MDII inversion results without f-x filtering and reference values.
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Figure 7. (a) The inverted impedance using SSII with f-x filtering. (b) The residual profiles of SSII
inversion results without and with f-x filtering. (c) The inverted impedance using MSII with f-x
filtering. (d) The residual profiles of MSII inversion results without and with f-x filtering. (e) The
inverted impedance using MDII with f-x filtering. (f) The residual profiles of MDII inversion results
without and with f-x filtering.
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Figure 9. Multi-scale seismic data: (a) Low frequency data. (b) Medium frequency data. (c) High
frequency data.

Figure 10a–e show the inversion results of SSII, MSII and MDII without and with f-x
filtering, respectively. Blind well-log curves are also projected on the inversion results at
the same time to facilitate comparison. The inversion results from all three methods can be
well matched to the well-log curves at the blind well location. The data-driven approach
yields higher resolution inversion results than the model-driven approach. In addition,
the MSII results reveal more details and have better lateral continuity (black arrows) than
the those of SSII. The continuity of the inversion results of SSII, MSII and MDII is further
improved by the f-x filtering technique, as shown in Figure 10b,d,f. The normalized residual
profiles (Figure 11a–c) of inversion results without and with f-x filtering show that the
filtering process does not damage the effective signal. It also indicates that MSII has better
stability compared to SSII and MDII. These findings are consistent with the conclusions
of the synthetic model numerical experiments, which further validates the validity and
applicability of the proposed method. Table 2 lists the RMSE between the blind well-log and
the inversion results of SSII, MSII and MDII without and with f-x filtering. It is clear that
the RMSE of inverted impedance from MSII with f-x filtering is the smallest. In summary, a
series of numerical tests show that MSII has the best performance.
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Figure 10. (a) The inverted impedance using SSII without f-x filtering. (b) The inverted impedance
using SSII with f-x filtering. (c) The inverted impedance using MSII without f-x filtering. (d) The
inverted impedance using MSII with f-x filtering. (e) The inverted impedance using MDII without f-x
filtering. (f) The inverted impedance using MDII with f-x filtering.
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Figure 11. (a) The residual profiles of SSII inversion results without and with f-x filtering. (b) The
residual profiles of MSII inversion results without and with f-x filtering. (c) The residual profiles of
MDII inversion results without and with f-x filtering.
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Table 2. The RMSE of the inversion results (blind well) of SSII, MSII and MDII combined with and
without f-x filtering.

Without f-x Filtering With f-x Filtering

SSII 1.41 1.25
MSII 1.27 1.22
MDII 1.51 1.40

4. Conclusions

We developed a data-driven seismic impedance inversion method based on multi-scale
strategy, which improves the resolution and stability of the inversion results of the data-
driven method. The proposed method (MSII) is first applied to model data for impedance
inversion and the inversion results are compared with those based on SSII and MDII. It is
shown that the inversion results based on the data-driven approach (i.e., SSII and MSII)
outperform the inversion results based on the model-driven approach (i.e., MDII), while
MSII is optimal. In addition, we introduced the f-x filtering technique to improve the
continuity of the inversion results and thus obtain a more geologically reliable impedance
profile. Then, the transfer learning algorithm was introduced to overcome the limitation
of limited training dataset in real data, thus successfully applying the proposed method
to real data with satisfactory results. Overall, both synthetic model testing and practical
data application qualitatively and quantitatively validate the effectiveness of the proposed
method. However, the proposed approach is still fully data-driven and still relies heavily
on the training dataset, although the transfer learning strategy alleviates the problem to
some extent. Our next work will aim to establish a closed-loop data-driven framework for
label-free MSII by introducing a known physical system, and to capture the uncertainty of
the inversion results to achieve reliability evaluation of the inversion results.

Author Contributions: G.Z.: Conceptualization, methodology, code, writing—original draft prepa-
ration; X.C.: Supervision, software; J.L.: Validation, investigation; K.G.: Writing—Reviewing and
editing. All authors have read and agreed to the published version of the manuscript.

Funding: Please add: This work was financially supported by the National Natural Science Founda-
tion of China under Grant 41774131 and 41774129, supported in part by the National Key Research
and Development Program of China under Grant 2019YFC0312000, supported in part by R&D De-
partment of China National Petroleum Corporation (Investigations on fundamental experiments and
advanced theoretical methods in geophysical prospecting applications) under Grant 2022DQ0604-04.

Data Availability Statement: The original contributions presented in the study are included in the
article; further inquiries can be directed to the corresponding author.

Acknowledgments: We would like to thank the State Key Laboratory of Petroleum Resources and
Prospecting, and National Engineering Laboratory for Offshore Oil Exploration for supporting
this work.

Conflicts of Interest: The authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Hamid, H.; Pidlisecky, A. Multitrace impedance inversion with lateral constraints. Geophysics 2015, 80, M101–M111. [CrossRef]
2. Zhang, J.; Li, J.; Chen, X.; Li, Y. Geological structure-guided hybrid MCMC and Bayesian linearized inversion methodology. J. Pet.

Sci. Eng. 2021, 199, 108296. [CrossRef]
3. Wang, N.; Xing, G.; Zhu, T.; Zhou, H.; Shi, Y. Propagating Seismic Waves in VTI Attenuating Media Using Fractional Viscoelastic

Wave Equation. J. Geophys. Res. Solid Earth 2022, 127, e2021JB023280. [CrossRef]
4. Farfour, M.; Yoon, W.J.; Kim, J. Seismic attributes and acoustic impedance inversion in interpretation of complex hydrocarbon

reservoirs. J. Appl. Geophys. 2015, 114, 68–80. [CrossRef]
5. Kemper, M.; Gunning, J. Joint impedance and facies inversion–seismic inversion redefined. First Break 2014, 32, 89–95. [CrossRef]
6. Li, K.; Yin, X.; Liu, J.; Zong, Z. An improved stochastic inversion for joint estimation of seismic impedance and lithofacies.

J. Geophys. Eng. 2019, 16, 62–76. [CrossRef]

http://doi.org/10.1190/geo2014-0546.1
http://doi.org/10.1016/j.petrol.2020.108296
http://doi.org/10.1029/2021JB023280
http://doi.org/10.1016/j.jappgeo.2015.01.008
http://doi.org/10.3997/1365-2397.32.9.77968
http://doi.org/10.1093/jge/gxy005


Remote Sens. 2022, 14, 6056 14 of 15

7. Madiba, G.B.; McMechan, G.A. Seismic impedance inversion and interpretation of a gas carbonate reservoir in the Alberta
Foothills, western Canada. Geophysics 2003, 68, 1460–1469. [CrossRef]

8. Riedel, M.; Bellefleur, G.; Mair, S.; Brent, T.A.; Dallimore, S.R. Acoustic impedance inversion and seismic reflection continuity
analysis for delineating gas hydrate resources near the Mallik research sites, Mackenzie Delta, Northwest Territories, Canada.
Geophysics 2009, 74, B125–B137. [CrossRef]

9. She, B.; Wang, Y.; Liu, Z.; Cai, H.; Liu, W.; Hu, G. Seismic impedance inversion using dictionary learning-based sparse
representation and nonlocal similarity. Interpretation 2019, 7, SE51–SE67. [CrossRef]

10. Zhou, L.; Liu, X.; Li, J.; Liao, J. Robust AVO inversion for the fluid factor and shear modulus. Geophysics 2021, 86, R471–R483.
[CrossRef]

11. Zhou, L.; Li, J.; Yuan, C.; Liao, J.; Chen, X.; Liu, Y.; Pan, S. Bayesian Deterministic Inversion Based on the Exact Reflection
Coefficients Equations of Transversely Isotropic Media With a Vertical Symmetry Axis. IEEE Trans. Geosci. Remote Sens. 2022,
60, 5915715. [CrossRef]

12. Traore, B.B.; Kamsu-Foguem, B.; Tangara, F. Deep convolution neural network for image recognition. Ecol. Inform. 2018, 48,
257–268. [CrossRef]

13. Hu, B.; Lu, Z.; Li, H.; Chen, Q. Convolutional neural network architectures for matching natural language sentences. Adv. Neural
Inf. Process. Syst. 2014, 27, 1–9.

14. Khan, S.; Rahmani, H.; Shah, S.A.A.; Bennamoun, M. A Guide to Convolutional Neural Networks for Computer Vision. In
Synthesis Lectures on Computer Vision; Springer Nature: Cham, Switzerland, 2018; Volume 8, pp. 1–207.

15. Zhang, G.; Wang, Z.; Chen, Y. Deep learning for seismic lithology prediction. Geophys. J. Int. 2018, 215, 1368–1387. [CrossRef]
16. Zhang, J.; Li, J.; Chen, X.; Li, Y.; Tang, W. A spatially coupled data-driven approach for lithology/fluid prediction. IEEE Trans.

Geosci. Remote Sens. 2020, 59, 5526–5534. [CrossRef]
17. Wu, X.; Shi, Y.; Fomel, S.; Liang, L.; Zhang, Q.; Yusifov, A. FaultNet3D: Predicting Fault Probabilities, Strikes, and Dips With a

Single Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9138–9155. [CrossRef]
18. Bi, Z.; Wu, X.; Geng, Z.; Li, H. Deep Relative Geologic Time: A Deep Learning Method for Simultaneously Interpreting 3-D

Seismic Horizons and Faults. J. Geophys. Res. Solid Earth 2021, 126, e2021JB021882. [CrossRef]
19. Saad, O.M.; Chen, Y. A fully unsupervised and highly generalized deep learning approach for random noise suppression. Geophys.

Prospect. 2021, 69, 709–726. [CrossRef]
20. Kaur, H.; Pham, N.; Fomel, S. Seismic data interpolation using deep learning with generative adversarial networks. Geophys.

Prospect. 2021, 69, 307–326. [CrossRef]
21. Das, V.; Pollack, A.; Wollner, U.; Mukerji, T. Convolutional neural network for seismic impedance inversionCNN for seismic

impedance inversion. Geophysics 2019, 84, R869–R880. [CrossRef]
22. Li, S.; Liu, B.; Ren, Y.; Chen, Y.; Yang, S.; Wang, Y.; Jiang, P. Deep-learning inversion of seismic data. arXiv 2019, arXiv:1901.07733.

[CrossRef]
23. Puzyrev, V.; Egorov, A.; Pirogova, A.; Elders, C.; Otto, C. Seismic inversion with deep neural networks: A feasibility analysis. In

Proceedings of the 81st EAGE Conference and Exhibition 2019, London, UK, 3–6 June 2019; pp. 1–5.
24. Zhang, J.; Li, J.; Chen, X.; Li, Y.; Huang, G.; Chen, Y. Robust deep learning seismic inversion with a priori initial model constraint.

Geophys. J. Int. 2021, 225, 2001–2019. [CrossRef]
25. Kazei, V.; Ovcharenko, O.; Plotnitskii, P.; Peter, D.; Zhang, X.; Alkhalifah, T. Mapping full seismic waveforms to vertical velocity

profiles by deep learning. Geophysics 2021, 86, R711–R721. [CrossRef]
26. Cao, D.; Su, Y.; Cui, R. Multi-parameter pre-stack seismic inversion based on deep learning with sparse reflection coefficient

constraints. J. Pet. Sci. Eng. 2022, 209, 109836. [CrossRef]
27. Zhang, J.; Sun, H.; Zhang, G.; Zhao, X. Deep Learning Seismic Inversion Based on Prestack Waveform Datasets. IEEE Trans.

Geosci. Remote Sens. 2022, 60, 4511311. [CrossRef]
28. Boonyasiriwat, C.; Valasek, P.; Routh, P.; Cao, W.; Schuster, G.T.; Macy, B. An efficient multiscale method for time-domain

waveform tomography. Geophysics 2009, 74, WCC59–WCC68. [CrossRef]
29. Bunks, C.; Saleck, F.M.; Zaleski, S.; Chavent, G. Multiscale seismic waveform inversion. Geophysics 1995, 60, 1457–1473. [CrossRef]
30. Pan, X.; Li, L.; Zhang, G. Multiscale frequency-domain seismic inversion for fracture weakness. J. Pet. Sci. Eng. 2020, 195, 107845.

[CrossRef]
31. Ren, Z.; Liu, Y.; Zhang, Q. Multiscale viscoacoustic waveform inversion with the second generation wavelet transform and

adaptive time–space domain finite-difference method. Geophys. J. Int. 2014, 197, 948–974. [CrossRef]
32. Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE

Trans. Neural Netw. Learn. Syst. 2021, in press. [CrossRef]
33. Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for activation functions. arXiv 2017, arXiv:.05941.
34. Sun, S.; Cao, Z.; Zhu, H.; Zhao, J. A survey of optimization methods from a machine learning perspective. IEEE Trans. Cybern.

2019, 50, 3668–3681. [CrossRef] [PubMed]
35. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359. [CrossRef]

http://doi.org/10.1190/1.1620619
http://doi.org/10.1190/1.3159612
http://doi.org/10.1190/INT-2018-0196.1
http://doi.org/10.1190/geo2020-0234.1
http://doi.org/10.1109/TGRS.2022.3176628
http://doi.org/10.1016/j.ecoinf.2018.10.002
http://doi.org/10.1093/gji/ggy344
http://doi.org/10.1109/TGRS.2020.3022368
http://doi.org/10.1109/TGRS.2019.2925003
http://doi.org/10.1029/2021JB021882
http://doi.org/10.1111/1365-2478.13062
http://doi.org/10.1111/1365-2478.13055
http://doi.org/10.1190/geo2018-0838.1
http://doi.org/10.1109/TGRS.2019.2953473
http://doi.org/10.1093/gji/ggab074
http://doi.org/10.1190/geo2019-0473.1
http://doi.org/10.1016/j.petrol.2021.109836
http://doi.org/10.1109/TGRS.2022.3195858
http://doi.org/10.1190/1.3151869
http://doi.org/10.1190/1.1443880
http://doi.org/10.1016/j.petrol.2020.107845
http://doi.org/10.1093/gji/ggu024
http://doi.org/10.1109/TNNLS.2021.3084827
http://doi.org/10.1109/TCYB.2019.2950779
http://www.ncbi.nlm.nih.gov/pubmed/31751262
http://doi.org/10.1109/TKDE.2009.191


Remote Sens. 2022, 14, 6056 15 of 15

36. Zhang, C.-L.; Luo, J.-H.; Wei, X.-S.; Wu, J. In defense of fully connected layers in visual representation transfer. In Proceedings of
the Pacific Rim Conference on Multimedia, Harbin, China, 28–29 September 2017; pp. 807–817.

37. Chen, K.; Sacchi, M.D. Making Fx Projection Filters Robust to Erratic Noise. In SEG Technical Program Expanded Abstracts 2014;
Society of Exploration Geophysicists: Houston, TX, USA, 2014; pp. 4371–4375.


	Introduction 
	Methods 
	Forward Model 
	Inversion Framework of Multi-Scale Strategy 
	Convolutional Neural Network 
	Transfer Learning Strategy 
	f-x Filtering Technique 

	Results 
	Synthetic Data Test 
	Field Data Example 

	Conclusions 
	References

