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Abstract: The biological response triggered by a tropical cyclone (TC) passage has attracted much
attention due to its possible impacts on regional oceanic, ecological environment, and regional
climate balance. However, the detailed progress of TC-induced chlorophyll-a (Chl-a) responses
(TICRs) remains unclear due to the inherent limitation of observations in ocean color with polar-
orbiting satellites as used in previous studies. The appearance of the Advanced Himawari Imager
(AHI) onboard the Himawari-8 geostationary satellite opens the opportunity of correcting all our
understanding of TICRs due to its hyper temporal image acquisition capability. In this study, the
more real relationship between Chl-a response and TC is further clarified. Results show an essentially
different reacting progress of TICRs given by AHI/Himawari-8. It shows a much quicker response
relative to previous understanding. Chl-a concentrations reached the highest value on the first day
under the severe influences of typhoons. The averaged Chl-a response (0–3 days behind TC passage)
observed by AHI is approximately three (2.95) times stronger than that observed by the Moderate
Resolution Imaging Spectrometer onboard the National Aeronautics and Space Administration
Terra/Aqua satellites. The spatial characteristics of TICRs by AHI show marked differences. Overall,
the rapid and strong response sheds new light on the role of TICRs in influencing the regional oceanic
environment, marine ecosystem, and local climate. Whole new estimations for the impacts of TICRs
on the aforementioned issues are needed urgently.
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1. Introduction

The biological response to tropical cyclone (TC) passage has attracted much attention
due to its impacts on oceanic, ecological environment, and regional climate balance [1–3].
Lin et al. quantified the enhancement of ocean primary production responding to TC
passages by using a suite of satellite data [1]. They indicated that typhoon Kai-Tak induces
about a 30-fold increase in upper-layer chlorophyll-a (Chl-a) concentration relative to
its initial state during its passage over the South China Sea (SCS). The carbon fixation,
sourcing from this event was estimated to be about 0.8 Mt, which is 2–4% of the annual
new production of SCS. This finding implies that the contribution of TCs to the annual new
production of SCS can be as much as 20–30%, with the assumption of an average of 14 TCs
passing over the SCS (per year).

Babin et al. [4] examined the passages of 13 hurricanes through the Sargasso Sea in
the North Atlantic from 1998 to 2001 based on eight-day composite ocean color images.
Their results showed that increased Chl-a within the cold wakes of the hurricanes re-
sponded mainly to the injection of nutrients or biogenic pigments entering the upper-layer
oligotrophic waters. The wake of increased Chl-a coincided with the distribution of sea
surface temperature (SST) cooling. The increase in post storm Chl-a concentration lasted
2–3 weeks before it returned to prehurricane level. These findings by Babin et al. [4] served
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as the baseline for the systematical understanding of Chl-a response to hurricanes or TC
passages [5–10].

Babin et al. [4] also indicated that they cannot ensure their observed changes in
Chl-a due to hurricane-induced nutrient injections or other effects, such as upwelling
or entrainment of waters with pre-existing high Chl-a concentrations. This condition
brings out the importance of a timely and reliable satellite observation that can resolve the
immediate Chl-a response to TC passage, which is mostly inaccessible by using the data
derived from ocean color imagers (OCIs) onboard polar-orbiting satellites. The progression
of Chl-a changes in responding to TC passage remains strongly controversial. Many
previous studies indicated that the Chl-a response behind typhoon passage has a time
delay of 3–6 days [8,11,12]. However, Shropshire et al. [13] indicated that the delay of
Chl-a response is only one day after they filled in the missing values using a method of
Data INterpolating Empirical Orthogonal Function (DINEOF). The immediate responses or
changes of Chl-a underlying TC passages, which have rarely been studied in the past, are
important in contributing to a reduction in this uncertainty.

On the basis of the aforementioned studies, the Chl-a responses tied to TC passages
(TICRs) are particularly important given their possible impacts on upper ocean ecology,
biogeochemical cycling, and global climate change. However, detailed progress of the
generation of TICRs, particularly the immediate response behind TC passage, remains
largely unresolved because of the inherent limitation of observations in ocean color with
polar-orbiting satellites. Given the high spectral and spatial resolutions with hyper temporal
image acquisition capability, the appearance of Advanced Himawari Imager (AHI) on
board the Himawari-8 geostationary satellite opens the opportunity of correcting all our
understanding of TICRs systematically.

In this study, the relationships between Chl-a responses and TC passages are re-
examined by advanced measurements of ocean colors by AHI/Himawari-8. By using AHI
images, the more real relationship between Chl-a responses and TCs is further clarified.
The results help to correct our understanding of TICRs and shed new light on the role of
TICRs play in influencing the regional oceanic environment, marine ecosystem, and local
climate. The rest of this paper is organized as follows. Section 2 describes the data used in
this study and the processing methods used to conduct the analysis. Section 3 presents the
main analysis results. Section 4 provides the conclusions, remarks, and future work.

2. Data and Methods

The study area of this research is the western North Pacific, which is the region with
the most TCs striking in the world. The typhoon screening range is 0–60N and 80–180E
(Figure 1). Our research period is designed to be from 2016 to 2021 to match the operation
period of Himawari-8. Typhoon data, including the latitude, longitude of typhoon centers,
and maximum sustained wind speed corresponding to every 3 h intervals were derived
from the International Best Track Archive for Climate Stewardship (IBTrACS) Project
(through https://www.ncdc.noaa.gov/ibtracs/, accessed on 11 September 2022) and used
here. Saffir–Simpson hurricane wind scale from 1 to 5 was used as the intensity category.
During the study period, 158 typhoons with Saffir–Simpson wind scale category greater
than 0 passed the study area. The intensities and central positions of all typhoon cases are
shown in Figure 1.

In this study, daily Chl-a concentrations were retrieved from two different sources of
AHI/Himawari-8 and Moderate Resolution Imaging Spectrometer (MODIS) for compari-
son. The level 3 daily composite product of Himawari-8, the geostationary meteorological
satellite [14,15], was collected with a spatial resolution of 5 km. Before the AHI, geostational
meteorological sensors hardly observed ocean color because of only one broadband in
visible wavelengths and relatively large radiometric noise. However, in addition to ten
thermal infrared bands, AHI has six spectral bands from visible to shortwave infrared
wavelengths. Thus, their radiometric noise can be essentially reduced by temporal average
since AHI observes the full disk by every 10 minutes [15].

https://www.ncdc.noaa.gov/ibtracs/
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(in 3 h intervals) used in this study.

The Chl-a concentration observed by AHI was provided by the P-Tree System, Japan
Aerospace Exploration Agency (JAXA) through https://earth.jaxa.jp, accessed on 11
September 2022. The Chl-a concentration retrieved from MODIS was composed of the daily
level-3 Chl-a products of Terra and Aqua, with 4 km spatial resolution. The Chl-a concentra-
tion by Aqua and Terra was provided by NASA Goddard Space Flight Center, Ocean Ecol-
ogy Laboratory, Ocean Biology Processing Group (https://oceandata.sci.gsfc.nasa.gov/,
accessed on 11 September 2022). It is worth noting that the optical telemetry of Chl-a is not
only susceptible to cloud factors, but also to instrument noise and imperfect atmospheric
correction (e.g., sun glint, whitecap corrections, and stray light contamination). The default
chlorophyll algorithm for both MODIS and AHI data employs the standard OCx band
ratio algorithm with the color index algorithm (CIA) to reduce artifacts and biases resulting
from residual glint, stray light, white or spectrally linear bias, and atmospheric correction
errors [15]. The temporal resolution of Chl-a by AHI/Himawari-8 is 10 times more than
that of sensors onboard polar-orbiting satellites (e.g., MODIS) [9]. Given its hyper temporal
image acquisition capability, the missing values in a daily composited AHI image are
remarkably reduced relative to MODIS products (Figure 2).

SST was obtained from daily optimally interpolated SST released by REMSS through
ftp.remss.com/sst/daily/mw_ir/v05.0/netcdf, accessed on 11 September 2022. The prod-
uct combines microwave data with 25 km resolution and infrared data with 9 km resolution.
It has a more complete daily coverage (~9 km resolution) because it retains the capability
of cloud penetration and higher spatial resolution simultaneously.

Equations 1 and 2 are used to represent the certain daily change rates of Chl-a and
SST (δCHLn and δSSTn) in the region relative to pre-typhoon conditions. Equations 3 and
4 are used to represent the average TICRs and SST responses responding to TC passages
by calculating the differences in Chl-a and SST in the area before (average of 5 days before
typhoon arrives) and after (temporal average of 0–3 days after the typhoon passage) the
typhoon passages (δCHLdiff and δSSTdiff).

δCHLn =
(
CHLn − CHL5b

)
/CHL5b (1)

δSSTn =
(
SSTn − SST5b

)
/SST5b (2)

https://earth.jaxa.jp
https://oceandata.sci.gsfc.nasa.gov/
ftp.remss.com/sst/daily/mw_ir/v05.0/netcdf
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δCHLdi f f =
(
CHL0−3 − CHL5b

)
/CHL5b (3)

δSSTdi f f =
(
SST0−3 − SST5b

)
/SST5b (4)

where CHLn is the spatial average calculated by taking the area of 2◦ from the center
of typhoon. Subscript n represents the days after typhoon from 0 to 14 (0 denotes the
moment underlying the impact of typhoon). CHL5b and SST5b represent the background
value calculated from the temporal average of 5 days before the typhoon arrives. CHL0–3
and SST0–3 are the values corresponding to the temporal average of 0–3 days after the
typhoon passage.

4CH(i, j) was calculated to represent the spatial characteristic of daily Chl-a response
responding to typhoon passage (Equation (5)).

4 CHLn(i, j) = CHLn(i, j)− CHL5b(i, j) (5)

CH(i, j) is the Chl-a concentration at a certain position (i, j) on the nth day, and
CHL5b(i, j) is the averaged Chl-a concentration 5 days before the typhoon passage at (i, j).
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3. New Understanding of TICRs by AHI
3.1. Why Does AHI Help?

The time-varying ratios of daily missing values to all pixels are calculated by using
Equation (5) and subtracting the missing values of land area, as shown in Figure 3. AHI and
MODIS have the highest missing ratio on the 0th day. This finding is intuitively attributed
to the severe weather condition underlying the typhoon center passage. The eye-wall
region has strong thunderstorms and deep convective clouds [16]. The ratio of the missing
value of MODIS is close to one on day 0, that is, no observation by MODIS is available that
day. On the contrary, AHI/Himawari-8 provides ~30–50% data coverage for the period
we are interested in (0–1 day). This condition is because Himawari-8 is a geostationary
meteorological satellite with hyper-temporal image acquisition capability. The daily image
provides sufficient spatial coverage with fewer missing values after compositing. MODIS
retrieves data twice a day and is affected seriously by heavy clouds surrounding the eye
center tied to the TC passage.
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and MODIS images (bars in yellow). The error bars represent the 95% confidence intervals from the
mean values on different days for the two datasets.

Although the missing ratio of MODIS decreased in the next few days, it is approxi-
mately 60% higher relative to AHI observations. The hyper temporal image acquisition
capability of sensor AHI largely improves the data coverage in the temporal and spatial
frames. With the 10 times repeated observations, our results suggest that the results given
by AHI are statistically more robust.

3.2. Continuous Progression of Chl-A Changes Responding to Typhoon Passage

As noted in previous sections, satellite-observed TICRs are either the result of TC-
induced nutrient injections or effects, such as entrainment or upwelling of waters with pre-
existing high Chl-a concentrations cannot be identified adequately due to the limitation of
observations in ocean color with sensors onboard polar-orbiting satellites used in previous
studies [4]. The real progression of Chl-a changes in responding to TC passages is still
strongly controversial due to the inherent limitation of observations in ocean color with
polar-orbiting satellites. Given its hyper-temporal image acquisition capability, AHI images
with a large improvement in temporal and spatial coverages (as shown in previous sections)
open the opportunity to quantify the Chl-a changes in responding to TC passages, in
particular the immediate responses underlying the TC passages.

Figure 4 shows the composited temporal progressions of Chl-a (and SST) changes
in response to TC passage with different reacting times (0–14 days after the typhoon
passage). The black solid line shows the results calculated by AHI observations. The
dashed line shows the progression reflected by MODIS observations. The blue line shows
the corresponding progression of physical responses (sea surface cooling). Shading in
different colors denotes the 95% confidence intervals from the mean values of δCHLn (by
AHI and MODIS) and δSSTn corresponding to different days. The δCHLn value of MODIS
peaks at ~3–4 days after the typhoon passage with an increase of 40% relative to its original
state. The progression of Chl-a change by MODIS composites (dashed line) shows great
consistency with those results demonstrated in previous studies [4,11,12]. For the period of
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3–14 days after the TC passage, the Chl-a responses shown by MODIS and AHI composites
demonstrate great consistency.
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reacting times. The black solid line shows the results of Himawari-8 AHI observations. The dashed
line shows the progression calculated by MODIS observations. The blue line shows the correspond-
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denotes the 95% confidence intervals of δCHLn (by AHI and MODIS) and δSSTn corresponding to
different days.

For the period of 0–3 days (the immediate response behind the TC passage), the
TICRs from AHI and MODIS show totally different scenarios. The marked differences
are attributed to the poorer data coverage tied to OCIs onboard polar-orbiting satellites
(e.g., MODIS) inherently relative to the observations by AHI (Figures 2 and 3 and previous
studies, such as Babin et al. [4]; Chen et al. [7]; Liu et al. [8]; Iwasaki [9]). The δCHLn value
of AHI peaks at 0–1 day after the typhoon passage with an increase of 95% relative to its
original state. The rapid response of δCHLn is consistent with the result shown in Shropshire
et al. [13] but in an indirect manner of bad values filling with DINEOF. The TICR by AHI
composites shows a much quicker response relative to the previous understanding (e.g.,
Zheng and Tang [11]; Liu et al. [8]; Wang [12]). The immediate enhancement of TICR behind
the TC passage (0–3 days) by AHI is approximately three (2.95) times stronger than that
observed by the MODIS. The total increase in δCHLn to a certain TC event passage retrieved
by AHI is approximately 1.5 times stronger than that estimated by MODIS composites.
The quick and strong Chl-a response reaches the highest value on the first day under
the severe influences of a typhoon, implying that the long-pending uncertainty noted in
previous studies [4,17] that the TICRs observed is whether the result of TC-induced nutrient
injections or effect, such as entrainment (or upwelling) bringing waters with pre-existing
high Chl-a concentrations entering the euphotic zone is unveiled. This finding suggests
that the observed TICRs are more similar to the product of a direct pump or injection of
waters with pre-existing higher Chl-a concentration or pigment rather than an influx of
nutrients that need the consequential biological process to convert them into new Chl-a.
This condition is because the conversion of nutrients into Chl-a takes time [11,18]. The
results demonstrated in this section provide a whole new understanding of the strength
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and the temporal progression in responding to TC passages, which supports the notion
that the appearance of AHI largely opens the opportunity of correcting our understanding
of TICRs.

In terms of SST (blue line in Figure 4), δSSTn reaches its maximum value one day
after the typhoon passage. The cooling progression of SST shows good agreement with
previous findings [19–21]. The above inference that the observed TICRs are mainly the
product of direct pump or injection of waters with higher pre-existing Chl-a concentration
or pigment rather than an influx of nutrients and consequential biological process is
supported by comparing the progression of physical response (SST cooling) to that of Chl-a.
For the physical response to TC, the key mechanisms triggering sea surface cooling can
be either entrainment mixing or upwelling, depending on the translation speed of certain
TC cases [22,23]. The two mechanisms need a longer reacting time for causing sea surface
cooling (shown in SST drops) relative to pumping or injecting higher Chl-a concentration
waters below the euphotic zone entering the euphotic water column, which is the scanned
zone of ocean color imagers.

3.3. Updated Understanding of the Spatial Characteristics of TICRs

The rightward bias (in the northern hemisphere) of enhanced TICR in the wake of a TC
was well documented in previous studies [1,4,10,24,25]. Vertical mixing and upwelling were
hypothesized as the mechanisms for enhanced TICRs [1,4,24,26,27]. However, the majority
of aforementioned studies made their conclusions with multiday composites retrieved from
ocean color imagers (polar orbiting) without really immediate measurements (Figure 3). In
other words, the spatial characteristics and corresponding temporal progression of TICRs
were never resolved completely.

With the AHI images, the spatial characteristic of TICRs with immediate response
(underlying the severe impacts of TCs) and their temporal progression were re-examined.
To reveal the normalized spatial characteristics of TICR, we corrected4CH(i, j) with the
typhoon path and rotated it into a polar coordinate with typhoon moving toward due
north. The correction was processed by taking the center of the typhoon as the criterion.
Subsequently, the image was converted into the polar coordinate in accordance with
the direction of the typhoon. All observations were filled back into the matrix with the
same resolution for compositing. A schematic plot (taking Typhoon Nepartak in 2016 for
example) of the procedure is shown in Figure 5. Corresponding products of the spatial
characteristic of TICRs in polar coordinates are demonstrated in Figure 6.

Figure 6 shows the complete progression of the spatial characteristic of TICRs in
polar coordinates processed and calculated from4CHL(i, j) (Equation (5)) responding to
typhoon passages in different stages. Dots mark the areas with statistically significant
values, satisfying the two-tailed t-test at a 95% confidence level. The spatial composites of
TICRs retrieved from AHI images show marked differences relative to the results derived
from MODIS, in particular, for the period of 0–3 days behind the TC passages. For AHI, the
average Chl-a concentration peaks on the 0–1st day with a concentration of ~0.085mg/m3,
and the influence range is wider than on other days. Subsequently, the composited TICR
decreases gradually over the next 2 weeks and recovers to its initial state before the TC
passage. The spatial characteristic of TICRs in AHI composites shows distinct rightward
bias, as shown in previous studies [1,4,10,25].
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The 4CH(i, j) value of MODIS peaks on the fourth day after the typhoon passage
with a concentration of 0.0476 mg/m3. The composited TICR gradually reduces back to the
initial state. The temporal progression of TICR by MODIS is consistent with those shown in
previous studies derived from multiday composites [4,10,17] that peak Chl-a concentration
attains to maximum about four days after a certain TC passage (e.g., Wang and Xiu [10]).
The rightward bias is observed in the MODIS TICR spatial composites from days 3 to 6
after the typhoon passages. The spatial peaks of TICRs in AHI and MODIS composites
shift from the right side to the left side consistently after day 7. Such spatial distributed
pattern shows a consistent scenario as reported in Lin and Oey [28], who concluded that
the migration of enhanced blooming can be due to heavier (left-side) rainfall freshening
the near-surface water. The most marked differences between the spatial characteristics
of AHI and MODIS are observed from day 0 to day 3 after the TC passage, which is the
period of images collected from sensors onboard polar-orbiting satellites with the worst
spatial coverages due to severe weather conditions shortly after the TC passages.

3.4. TICRs Versus Wind Forcing

In previous studies, vertical mixing and upwelling were considered the key mecha-
nisms for TC triggering stronger phytoplankton bloom [1,4,24,26,27]. The two mechanisms
are tightly related to TC wind forcing. Stronger wind forcing leads to stronger mixing and
upwelling, and consequential TICRs (e.g., Lin et al. [1]; Babin et al. [4]; Zheng et al. [24]).
The TICRs corresponding to different wind forcing strengths in the AHI and MODIS
datasets are calculated by using Equation (3) to further explore the more real relationship
between wind forcing and consequential TICRs with updated AHI composites, as shown
in Figure 7a,b. In accordance with the characteristics and differences of AHI and MODIS
shown in previous analyses, the averaged Chl-a change in the period of 0–3 days after
typhoon passage was considered the change in Chl-a due to typhoon influences.

Referring to Figure 7a,b, the ratios of averaged TICRS calculated from AHI and MODIS
corresponding to different wind forcing strengths are 5.7 (30–40 knots), 2.8 (40–50 knots), 2.1
(50–60 knots), 1.6 (60–70 knots), 1.6 (70–80 knots), 1.6 (80–90 knots), and 1.5 (90–100 knots).
This finding implies that the impacts of wind forcing on the generations of TICRs are
largely underestimated in previous assessments by MODIS, in particular for weaker wind
situations. Despite the trends of stronger wind forcing leading to stronger TICRs, which are
consistent with previous understanding (e.g., Lin et al. [1]; Babin et al. [4]; Zheng et al. [24]),
they are well documented in AHI and MODIS results.

The TICRs increase with wind speed strengths (under 100 knots) linearly in the
two datasets. However, they stop rising with wind speeds above 100 knots. Similar
scenarios can be observed in Babin et al. [4] and Iwasaki [9]. The rising slopes of δCHLdiff
(corresponding to wind forcing strengths from 30 knots to 100 knots) for MODIS and AHI
are 0.08 and 0.09, respectively. Similar upper limits can be observed in the SST responses
to TCs (e.g., Black [20]; Dare and McBride [21]). Mei et al. [29] pointed out that such an
upper limit is because the translation speed increases with the increase in the intensity, and
a higher translation speed suppresses the cooling of the SST. However, more investigations
on this issue are needed.

The same analysis was applied to SST responses (Figure 7c). The SST drop shows the
same turning point corresponding to wind forcing of 100 knots. The synchronized responses
of Chl-a (δCHLdiff ) and SST (δSSTdiff ) to different wind forcing strengths demonstrate the
tight relationship between Chl-a changes and physical processes (leading to SST drops),
and can serve as indirect evidence supporting the inference that the immediate Chl-a
response to TC passage is mainly the product of physical driven processes (e.g., direct
pump or injection of waters with high Chl-a concentration or pigment) rather than an influx
of nutrients needing extra help from the biological process that occur subsequently.
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Figure 7. Typhoon-induced Chl-a changes (δCHLdiff ) corresponding to different wind forcing
strengths calculated on the basis of Equation (3) for (a) AHI and (b) MODIS composites. The
change rate of SST (δSSTdiff) corresponding to different wind forcing is shown in (c). The lowest and
highest sides of the blue rectangles denote the lower quartile (25th percentile) and upper quartile
(75th percentile), respectively. The red line in the rectangles denotes the median. The minimum and
maximum bars denote the lower quartile −1.5 × IQR and upper quartile +1.5 × IQR, respectively,
where IQR denotes the upper quartile–lower quartile. The red plus signs denote the outliers. Light
blue lines connect the means of each interval removing outliers.

4. Conclusions and Remarks

TICRs have attracted much attention due to their possible impacts on regional oceanic,
ecological environment, and regional climate balance. However, the detailed progress of
TICRs remains unclear due to the inherent limitation of observations in ocean colors with
sensors onboard polar-orbiting satellites as used in previous studies. The appearance of the
AHI on board the Himawari-8 geostationary satellite opens the opportunity to systemati-
cally correct all our understanding of TICRs given its hyper temporal image acquisition
capability, which is 10 times more than that of sensors onboard polar-orbiting satellites.

In this study, the more real relationship between Chl-a responses and TCs is further
clarified by using AHI images. The results show an essentially different reacting progress of
TICRs given by AHI relative to that by MODIS, showing a much quicker response relative
to previous understanding. The spatial characteristics of TICRs demonstrate marked
differences. New understandings of TICRs by AHI are summarized as follows.

1. The maximum Chl-a response peaks at 0–1 day after the typhoon passage by compen-
sating for the lack of observations with high temporal resolution observations. The
immediate increase in TICR behind the TC passage (0–3 days) is 2.95 times stronger
than that estimated by MODIS composites. The total increase in TICR to a certain
TC event passage retrieved by AHI is approximately 1.5 times stronger than that
estimated by MODIS. This finding implies that whole new estimations of the impacts
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of TICR on the regional oceanic environment, ecological system, and climate are
needed urgently.

2. The comparison of all TICRs responding to different wind forcing strengths indicates
that the impacts of wind forcing on the generations of TICRs are largely underesti-
mated in previous assessments by MODIS, in particular for weaker wind situations.
This condition implies the short-term Chl-a changes caused by typhoons in the past
are underestimated remarkably, that is, typhoons have a much more remarkable
impact on regional Chl-a changes.

3. The quick response of TICR revealed by updated AHI composites is slightly faster
than the peak of SST response. Such evidence tends to support that the rapid change of
Chl-a after typhoons is caused mainly by direct pump or injection of waters with high
Chl-a concentration or pigment rather than an influx of nutrients and consequential
biological process, which is a long-pending issue due to the inherent observation
limitation tied to ocean color imagers on board polar-orbiting satellites.

Overall, the results shown in this study help to correct our understanding of TICRs.
The unexpected rapid and almost three times stronger response sheds a whole new light on
the role of TICRs play in influencing the regional oceanic environment, marine ecosystem,
and local climate. Recall the key role of TICRs play in annual new production and regional
climate balance through carbon fixation [1]. Oceanic primary production is extraordinarily
important in the earth system because it is the base of the ocean food chain. In addition, it
affects the uptake of carbon dioxide, which is an important greenhouse gas tied to climate
change [1]. This indicates that a whole new and comprehensive estimation for the long-
underestimated contribution of TICRs on the aforementioned issues is needed urgently.

On the other hand, with comprehensive and sufficient AHI image coverage as new
inputs, a reliable coupled physical–biological ocean modeling system becomes possible. In
this way, more detailed information helping the interpretation of typhoon-induced upper
ocean biological response can be retrieved. Further understanding of the physical process
leading to the Chl-a changes in responding to typhoon passage is realized. The integration
of advanced CubeSat (with eight times the spatial resolution of SeaWiFS) for ocean color
measurement gives another possibility for a better understanding of TICR variations given
its ultrahigh spatial resolutions, which can serve as a complement to AHI images with
hyper temporal image acquisition capability but relatively lower spatial resolution.
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