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Abstract: Short-term changes in shallow bathymetry affect the coastal zone, and therefore their
monitoring is an essential task in coastal planning projects. This study provides a novel approach
for monitoring shallow bathymetry changes based on drone multispectral imagery. Particularly, we
apply a shallow water inversion algorithm on two composite multispectral datasets, being acquired
five months apart in a small Mediterranean sandy embayment (Chania, Greece). Initially, we perform
radiometric corrections using proprietary software, and following that we combine the bands from
standard and multispectral cameras, resulting in a six-band composite image suitable for applying
the shallow water inversion algorithm. Bathymetry inversion results showed good correlation and
low errors (<0.3 m) with sonar measurements collected with an uncrewed surface vehicle (USV).
Bathymetry maps and true-color orthomosaics assist in identifying morphobathymetric features
representing crescentic bars with rip channel systems. The temporal bathymetry and true-color data
reveal important erosional and depositional patterns, which were developed under the impact of
winter storms. Furthermore, bathymetric profiles show that the crescentic bar appears to migrate
across and along-shore over the 5-months period. Drone-based multispectral imagery proves to be an
important and cost-effective tool for shallow seafloor mapping and monitoring when it is combined
with shallow water analytical models.

Keywords: drones; multispectral; bathymetry; geomorphology; bedforms; shallow water

1. Introduction

The shallow coastal seafloor is constantly under the influence of waves and currents,
thus its surface changes rapidly over different spatio-/temporal scales. At the same time,
shallow seafloor covers a wide area globally where major economic and other activities
take place. Consequently, mapping and monitoring of shallow seafloor bathymetry is a fun-
damental strategy for several projects including, but not limited to, maritime safety, coastal
vulnerability [1–3] and coastal planning [4–6]. However, obtaining bathymetry data at the
coastal zone is not as straightforward as it is in continental shelf mapping, and it depends on
many environmental factors. This is thought to be due to the fact that: (a) shallow seafloor
changes quickly, and thus bathymetry collected today is often no longer valid even after a
short period of time; and (b) traditional sonar surveying is unable to provide full coverage
at high spatial resolution (<1 m) in a time- and cost-effective way. Therefore, new tech-
niques were introduced for efficient shallow bathymetry mapping, covering broad shallow
areas at frequent (i.e., daily, weekly) time intervals [7–9]. These techniques include active or
passive optical sensors deployed on airborne or satellite platforms. Such data are suitable
for mapping areas with increased water transparency where seafloor is visible [8,10]. In the
case of turbid waters, bathymetry inversion based on wave geometry and celerity has also
been applied as an alternative technique to sonar mapping [11,12]. The most recognized
optical technique for shallow seafloor mapping is light detection and ranging (LIDAR).
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LIDAR sensors have been widely applied in shallow seafloor mapping studies due to their
increased spatial resolution and data density, along with their extensive coverage [13–16].
Particularly, airborne bathymetric LIDAR is the leading technology for studying nearshore
bathymetry, providing meter-scale horizontal accuracy and centimeter-scale vertical accu-
racy over large areas of coastal seafloor [15,17]. However, the cost of LIDAR sensors and the
costs and logistic effort for acquiring bathymetric LIDAR data are often limiting factors [18]
that hinder the accessibility of this kind of technology to low-budget projects. Applications
based on multi- or hyperspectral imagery are considered as an alternative to LIDAR for
shallow bathymetry retrieval. Deriving shallow bathymetry using passive optical imagery
is a field of ongoing research, which has been greatly expanded in recent years as it provides
extended scale coverage and at relatively low-cost compared to LiDAR or sonar surveying.
Consequently, the technique of satellite-derived bathymetry (SDB) has seen significant
growth with plentiful applications, including mainly the models suggested by [19,20].
These are implemented in various contexts [21–25], and rely on the availability of ground-
truth depth measurements for model calibration compared to the analytical methods. The
empirical methods do not necessarily require absolute radiometric and atmospheric correc-
tions [22,26], and depending on model performance they can be applied on datasets with
similar seafloor types [27]. In contrast, analytical methods account for any seafloor type
included as model input [28–31]. The analytical algorithms have been developed using
in situ calibrated spectral data which are fitted with radiative-transfer models [28,32,33].
These algorithms are considered more suitable for imagery with increased radiometric
resolution across a wide range of the visible and near infrared (NIR) spectra [28]. Analytical
algorithms do not require input of a priori depth information, and they account for the
inherent optical properties (IOPs) of water and bathymetric uncertainty as well, in contrast
with the empirical methods. Although several studies exist about the development and
performance of various SDB algorithms, there is still a limited number of studies exploiting
SDB products on specific geospatial applications. For example, [34] utilized medium resolu-
tion SPOT-1/5 satellite imagery in order to monitor the evolution of subtidal inlets over the
course of 26 years. Ref. [18] applied multi-temporal SDB for identifying zones with high
dynamic behavior, while [35] derived bathymetry from Sentinel-2 imagery and applied it
to wave modelling for baseline studies for offshore wind farm installations. In addition, [5]
utilized SDB from medium resolution Landsat-8 multi-spectral imagery for monitoring
coastal geomorphology, and [36] applied SDB on high-resolution WorldView imagery for
mapping geomorphological features at the wider coastal area of Chania (Crete, Greece).
Though openly available Landsat and Sentinel-2 imagery has been applied successfully in
large scale mapping of shallow seafloor [5,27,37], the spatial resolution is not sufficient for
resolving morphobathymetric features and changes at landscape scale. Moreover, multi-
temporal bathymetry mapping with satellite imagery is limited by atmospheric factors
such as cloud cover, and the increased cost of very high-resolution, commercial satellite
image acquisitions that are required for monitoring nearshore bathymetric features at fine
spatial and temporal scales.

The recent developments in drone technology provide new opportunities for the
development of novel geospatial applications. Drones are becoming increasingly popular
in remote sensing studies since they are low-cost platforms; they provide a centimeter-scale
spatial resolution that is suitable for observing objects and/or processes in unique detail;
they require negligible logistic effort, allowing for frequent deployment on demand, thus
increasing the temporal resolution of imagery; and they operate in close range without being
influenced by clouds or other atmospheric effects [38–40]. Until recently, there have been a
few recent studies applying SDB algorithms on drone-based multispectral imagery [40–45]
showing relatively good results with up to 40 cm vertical errors. Furthermore, there
have been studies applying structure-from-motion (SfM) techniques on drone imagery
for bathymetry retrieval [46,47]. SfM produces significant results with low errors, but
only in cases where the seafloor surface is texture-rich so that the SfM algorithm can
identify corresponding matching points on the images. Thus, the SfM method is suitable



Remote Sens. 2022, 14, 6035 3 of 19

for bathymetry extraction over rocky or rugged seafloor areas. However, significant
morphobathymetric changes occur mainly in smooth (texture-less) seafloor comprising of
soft sediment types, which are more susceptible to hydrodynamic activity than rocky areas.
Consequently, monitoring shallow bathymetric changes over smooth seafloor areas is not
an applicable field for drone-based SfM approaches.

Considering the particular limitations of satellite imagery regarding monitoring shal-
low bathymetry at high spatio-temporal resolution, along with the restricted application of
LiDAR, we examine the application of a drone-based approach for monitoring short-term
bathymetric changes in a Mediterranean coastal site. To our knowledge, there have not
been any studies published at present that focus on bathymetry monitoring using drone
imagery. Temporal bathymetry data are required as input to coastal engineering projects for
decision-making about dredging or taking counter-erosion measures [6], wave modelling
and sediment transport predictions [4,48]. The goal of this study is to capture and quantify
small-scale bathymetric features and changes occurring at short-term scales as a result of
nearshore hydrodynamic activity. In order to achieve this, we produce centimeter resolution,
temporal bathymetric datasets from drone-based multispectral imagery using the approach
from [41], and then we analyze their results using geospatial tools. The analytical approach
employed here assists in minimizing the need for in situ data collection, which could be a
limiting factor in long-term monitoring projects. Bathymetry predictions are validated using
in situ sonar measurements from an Uncrewed Surface Vehicle (USV).

2. Methodology
2.1. Study Area and Fieldwork

The wider study area (Figure 1) is located west of Chania city (Crete, Greece) and com-
prises of north-facing, sandy embayments with shallow, relatively smooth seafloor, covered
with rocky reefs and exposed bedrock in places. The coastline in the Chania area stretches
for at least 8 km and it is highly exposed to incoming waves from the north, which is the
prevailing direction in the local wind regime [49], while significant along-shore sediment
transport is expected due to incoming waves from various incidence angles [50]. The Chania
area is characterized by increased water transparency due to low concentrations of chlorophyll
(CHL-a) and suspended particulate matter (SPM), as a result of the oligotrophic character of
the eastern Mediterranean Sea [51], and the absence of major input from adjacent drainage
systems. A typical Secchi-depth for the study areas reaches at least ten meters. In addition,
the average tidal range in Crete is at the scale of 10–20 cm.
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Figure 1. Temporal, true-color orthomosaics of the study area: (A) Imagery acquired on 4 November
2021; (B) Imagery acquired on 31 March 2022; (C) Legend map of the wider study area. The red
rectangles show the processing boundaries of bathymetry inversion, and the white dots correspond
to the track of USV sonar measurements.

Drone images were collected on 4 November 2021 and 31 March 2022, using a DJI
Phantom 4 Pro drone. The drone was mounted with a 1-inch, 20-megapixel CMOS sensor
and a MicaSense RedEgde-MX© multispectral camera. Both sensors were set to collect
images at nadir, with two-second intervals, along parallel flight tracks at 150 m altitude
above sea level. Flying at high altitude assists in minimizing noise resulting from secondary
reflections on the seafloor and on the sea surface. In order to avoid the sun glint effect on
imagery, flights took place early in the morning when the sun elevation was lower than
30 degrees from horizon and the sea state was calm. Although the MS sensor records five
spectral bands simultaneously (Blue, Green, Red, Red edge and Near infrared), in this
study we only considered the Blue, Green and Red bands from the visible spectrum. These
bands are more favorable in optical bathymetry studies [52,53], and their spectral character-
istics are complementary with the built-in Red-Green-Blue (RGB) sensor of DJI Phantom 4
(Figure 2A; Table A1, Appendix A). Depth measurements (Figure A1, Appendix A) were
acquired on the same date as each drone survey, using an Ohmex BTX single-beam sonar
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with an operating frequency of 235 kHz. The sonar is integrated with a Real-Time Kinemat-
ics (RTK) GPS sensor for collecting attitude-corrected bathymetry points at 2 Hertz rate.
The RTK-GPS measurements provide high spatial accuracy (<10 cm), which is essential in
processing drone-based imagery with a pixel resolution of a few centimeters. The sonar
were data acquired with a remotely controlled USV. The USV depth measurements were
used for validating the outputs of bathymetry inversion by: (a) calculating the coefficient
of determination (R2) as a measure of agreement between the sonar data and the pre-
dicted depth; (b) calculating the mean average error (MAE) and the root-mean-square error
(RMSE) as metrics of the spread of the residuals; and (c) comparing the corresponding
bathymetric profiles at each area.

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 21 
 

 

 
Figure 2. (A) Spectral responses of both RGB and MS sensors (Source: [41]); (B) Spectral signatures 
of the two end-member spectra used for bathymetry inversion. 

2.2. Pre-Processing of Drone-Based Imagery 
The overall processing steps of drone images followed in this study are described in 

[54]. Initially, we produced one orthomosaic for each RGB and MS band (six in total) by 
applying RTK-GPS measurements of seven onshore ground-control points, and by per-
forming the following radiometric and geometric corrections in Pix4D© software. [54] 
suggest that radiometric corrections of drone RGB imagery are required for improving 
shallow bathymetry results. Both RGB and MS images were adjusted for radial lens dis-
tortion using the respective camera models included in the Pix4D© software. The MS sen-
sor was integrated with an external Downwelling Light Sensor (DLS-2) module, which 
records sun illumination parameters (i.e., angle, radiance) that are stored in the image 
metadata. These recordings are required during radiometric correction processing of mul-
tispectral imagery in Pix4D© software. In addition, the DLS-2 module provides GPS and 
attitude information for each acquired image, assisting the georeferencing and orthomo-
saicking of processed imagery using the Pix4D© software. Initially, the pixel values are 
compensated for sensor bias such as sensor black-level, sensitivity, gain and exposure set-
tings, and lens vignette effects, and then they are converted to radiance values (i.e., in 
units Wm−2sr−1nm−1, meaning watts per square meter per steradian per nanometer). Fol-
lowing this, the radiance values are converted to spectral reflectance for each band by 
incorporating the information from the reflectance panel and the DLS-2 sensor (available 

Figure 2. (A) Spectral responses of both RGB and MS sensors (Source: [41]); (B) Spectral signatures of
the two end-member spectra used for bathymetry inversion.

2.2. Pre-Processing of Drone-Based Imagery

The overall processing steps of drone images followed in this study are described
in [54]. Initially, we produced one orthomosaic for each RGB and MS band (six in to-
tal) by applying RTK-GPS measurements of seven onshore ground-control points, and
by performing the following radiometric and geometric corrections in Pix4D© software.
Ref. [54] suggest that radiometric corrections of drone RGB imagery are required for im-
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proving shallow bathymetry results. Both RGB and MS images were adjusted for radial
lens distortion using the respective camera models included in the Pix4D© software. The
MS sensor was integrated with an external Downwelling Light Sensor (DLS-2) module,
which records sun illumination parameters (i.e., angle, radiance) that are stored in the
image metadata. These recordings are required during radiometric correction processing
of multispectral imagery in Pix4D© software. In addition, the DLS-2 module provides
GPS and attitude information for each acquired image, assisting the georeferencing and
orthomosaicking of processed imagery using the Pix4D© software. Initially, the pixel values
are compensated for sensor bias such as sensor black-level, sensitivity, gain and exposure
settings, and lens vignette effects, and then they are converted to radiance values (i.e.,
in units Wm−2sr−1nm−1, meaning watts per square meter per steradian per nanometer).
Following this, the radiance values are converted to spectral reflectance for each band by in-
corporating the information from the reflectance panel and the DLS-2 sensor (available only
for the MS images). In order to convert the pixel values to reflectance values, we acquired
images of a spectral calibration panel which is specifically provided for the MS sensor and
has a known reflectance coefficient for each band. The reference reflectance panel was also
used for radiometric calibration of RGB images. A reference reflectance value of 0.51 was set
for all bands (both RGB and MS), considering that this value accounts for all wavelengths
in the visible spectrum (MicaSense©, personal communication by email, 3 November 2020).
In this way, the final processed data are suitable for quantitative analysis. After the pre-
processing stage, both RGB and MS reflectance orthomosaics were resampled at 15 cm pixel
size and stacked together resulting in a six-band composite cube. The cube was converted
to ENVI standard format for processing with the open-source WASI (WAtercolor SImulator)
software. In this study, atmospheric correction of drone-based imagery was not performed.
This is due to the fact that the drone surveys took place at significantly low altitude and
with optimal weather conditions, thus atmospheric effects on recorded reflectance are
minor. Following shallow water inversion (see next section) the output bathymetry maps
were adjusted for tidal offsets by using tidal information from the Poseidon forecast website
(“[55], https://poseidon.hcmr.gr/, accessed on 1 April 2022” n.d.).

2.3. Shallow Bathymetry Inversion in WASI-2D

The WASI software is one of the few open-source tools for analyzing the spectral
properties of aquatic environments. The WASI tool was initially designed for studying the
water properties of fresh water environments, and it has been applied on a limited number
of bathymetry studies, mainly in lake environments so far [56–58], while recently [59]
applied WASI on PRISMA data from two Caribbean sites. The software is based on earlier
bio-optical models developed by [52,60,61]. These models are applied on optically deep
waters for estimating water-column constituents such as CHL-a and SPM, while they are
also applied on optically shallow waters (i.e., where the influence of the seafloor is apparent)
for deriving seafloor cover and water depth. WASI supports atmospherically corrected
radiance and reflectance spectra, and it uses a down-welling irradiance model for estimating
the effect of sun-glint and sky reflectance on the spectral signatures [57]. WASI includes
a 2D module that allows for image analysis on a per-pixel basis [62]. This is particularly
useful for analyzing imagery from multi- or hyper-spectral sensors. Regarding bathymetry
retrieval, the WASI tool considers the influence of water-column constituents along with
combinations of end-member seafloor reflectance spectra on water-leaving reflectances. For
the current study we applied the end-member spectra of sand and brown algae (Figure 2B),
which are more representative of the seafloor types that occur in our area than the default,
end members provided by WASI. The sand spectrum was measured at Falassarna beach
(50 km west of the study area) using a hand-held spectroradiometer (Alevizos and Alexakis,
2019, unpublished dataset). This type of sand consists of medium-sized, white grains with
colored foraminifera fragments, which can be found in various coastal areas in the region
of Chania. The brown algae spectrum was extracted from the project report of [63]. In
their work, they measured underwater spectra using a spectroradiometer and a reference
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reflectance panel at various coastal locations in the southwest Indian Ocean. Suitable initial
values of geometric (i.e., sun zenith angle) and irradiance model parameters are required
for accurate fitting of the spectral signatures. Regarding datasets from both dates, we
applied 0.1 mg/L for CHL-a and SPM concentrations and a sun zenith angle of 40 degrees.
Ideally, in situ water column data should be applied for tuning these parameters; however,
collecting such data was not practical in this study. Once the model is tuned, the depth and
seafloor type are fitted using the least squares method iteratively. The modelled spectral
signature showing the lowest residual with the observed signature is used to determine
the depth and seafloor type for each pixel. A detailed description of the WASI tool can
be found in [62]. The remote sensing reflectance in WASI is modelled according to the
equations of [52,60]:

Rsh−
rs (λ) = Rdeep−

rs (λ) ∗ [1− Ars,1 ∗ exp{−(Kd(λ) + KuW(λ)) ∗ Zb}] + Ars,2 ∗ Rb
rs(λ) ∗ exp{−(Kd(λ) + KuB(λ)) ∗ Zb} (1)

The superscript sh indicates shallow water, deep deep water, b bottom, and the symbol
λ indicates the wavelength. The first term on the right-hand side is the contribution of
water column with depth zb, the second term represents the contribution of the bottom
albedo. Light attenuation is described by the attenuation coefficients Kd for down-welling
irradiance, KuW for upwelling radiance originating from the water layer, and KuB for
upwelling radiance from the bottom surface. These three coefficients are calculated as
a function of the sun zenith angle, viewing direction and the concentrations of water
constituents using equations also derived by [52,60]. Ars,1 and Ars,2 are empirical constants.
The WASI algorithm iterates the spectral signatures on a per pixel basis, trying to fit an
optimal spectrum given the constant values of model parameters. Inverse modeling takes
place by approximating the remote sensing reflectance (Rrs) spectra (of each pixel) with
suitable WASI spectra for different depths. The best fit with the observed image spectrum
is obtained by minimizing a cost function that calculates the correlation between the Rrs
and the WASI spectra. The inversion algorithm employs the absolute difference function in
order to identify an optimal set of fit parameters (depth and seafloor type), which minimize
the residual of the cost function [58,61,62].

3. Results
3.1. Bathymetry Validation

The bathymetry inversion outputs were validated with in situ sonar measurements
from the USV platform. We compared the predicted versus the actual depth (tidally cor-
rected) at each temporal dataset, and produced linear regression scatterplots from which the
overall R2, mean average error (MAE) and root-mean-square error (RMSE) were calculated
as useful metrics for assessing the accuracy of each bathymetry dataset. The bathymetry
inversion results show excellent agreement with in situ sonar measurements, and thus a
temporal change analysis can be further performed. Specifically, the scatterplot for the
November-2021 dataset (Figure 3B) shows optimal correspondence between the predicted
and actual depths with R2 = 0.94, and low error (MAE = 0.22 m; RMSE = 0.30 m). There
are only a few instances of localized errors, and these are related to some seagrass patches,
the depth of which was significantly overestimated by the WASI algorithm (Figure 3A).
Regarding the March-2022 dataset, it shows a very good correlation coefficient between the
predicted and the measured depth at R2 = 0.93, and low error as well with MAE = 0.18 m
and RMSE = 0.21 m (Figure 3D). We further examined the bathymetry residuals as per
depth category (Table 1). The residual statistics show a small increase in the error with
increasing depth; however, this never exceeds 10% of the depth at each depth category.
Figure 4 shows the spatial distribution of bathymetry residuals, providing further insight
about the localized character of some outlier points. Regarding the data of November 2021,
these points occur towards the deeper part of the area, and they are possibly related to
abrupt changes in substrate. In March 2022 the residuals are lower, without any extreme
outliers, and they have a 0.20 m bias. Box-plots in Figure 4C show that the majority (75%)
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of validation points have less than 0.30 m residual values, suggesting that the bathymetry
maps are overall reliable for temporal change analysis.

The predicted bathymetry datasets show nearshore bedform features, matching those
identified by [36] in the same area using high-resolution WorldView-3 imagery. These
features appear somewhat clustered, forming a continuous “chain” along the coastline in
the November-2021 bathymetry. In contrast, these features appear more interrupted in the
March-2022 bathymetry dataset (Figure 3A,C).
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Table 1. Descriptive statistics of bathymetry residuals per depth category.

4 November 21 0–1 m 1–2 m 2–3 m 3–4 m 4–5 m

Samples 498 573 597 423 177
MAE (m) 0.13 0.22 0.21 0.29 0.38
RMSE (m) 0.16 0.27 0.29 0.37 0.45
St.dev. (m) 0.16 0.26 0.28 0.35 0.40

31 March 22 1–2 m 2–3 m 3–4 m
Samples 434 113 14
MAE (m) 0.16 0.24 0.29
RMSE (m) 0.18 0.29 0.39
St.dev. (m) 0.10 0.19 0.30
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Figure 4. Absolute residual values over bathymetry map for: (A) November 2021 bathymetry inversion;
(B) March 2022 bathymetry inversion; (C) Box-plots of residual values for each date. The black horizontal
line inside each box indicates the median value of each sample and the whiskers extend from the 1st to
the 3rd quartile.

3.2. Short-Term Bathymetric Changes

The temporal drone imagery captured significant shallow seafloor changes that oc-
curred within a five-month period. In order to facilitate a more objective comparison
between the drone-based bathymetric datasets, we apply the combined RMSE metric that
is the root of the squared sum of both RMSEs (November 2021 and March 2022). This
metric suggests that bathymetric changes greater than the combined RMSE threshold of
±0.37 m are considered valid for a 68% confidence interval. Stark morphobathymetric
changes are apparent, both on the RGB orthomosaics and on the differential bathymetry
map (Figure 5). The differential bathymetry map was created by subtracting the March-
2022 dataset from the November-2021 dataset (Figure 5A). In this way, we obtain a better
idea of how bathymetry changed over this short period. The most prominent features on
the bathymetric difference map are the development of two “channels” that are perpen-
dicular to the coast (Figure 5E). They correspond to areas of intense erosion, resulting in
uncovering of coarse seafloor sediments which are not apparent in the RGB orthomosaic of
November-2021 dataset (Figure 5D). These features have an average width of 20 m, they
are approximately 70 m long, and they are approximately 100 m apart. Further erosional
features are observed in the west part of the scene close to a gravelly shoal (Figure 5B,C)
where a larger portion of underlying seafloor is revealed in the March-2022 orthomosaics.
A comparison of temporal bathymetric profiles, along and across these erosional features,
shows 0.5–1 m difference within five months (Figure 6). Moreover, the along-shore profiles
(Figure 6B) indicate that the rip channels are shifted ca. 25 m to the west, parallel to the
shore, over the five-month period.



Remote Sens. 2022, 14, 6035 11 of 19
Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 21 
 

 

 
Figure 5. (A) Bathymetric difference map (November-2021 minus March-2022); (B,C) True-color or-
thomosaic subsets showing the temporal changes within the left polygon area; (D,E) True-color or-
thomosaic subsets showing the temporal changes within the right rectangle area. 

Figure 5. (A) Bathymetric difference map (November-2021 minus March-2022); (B,C) True-color
orthomosaic subsets showing the temporal changes within the left polygon area; (D,E) True-color
orthomosaic subsets showing the temporal changes within the right rectangle area.



Remote Sens. 2022, 14, 6035 12 of 19

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 21 
 

 

 
Figure 6. Temporal bathymetric profiles: (A) across-shore (i–ii); and (B) along-shore (iii–iv); (C) Leg-
end map showing the profiles on the bathymetry difference map.  

4. Discussion 
4.1. Interpretation of Nearshore Bathymetry Change 

Figure 6. Temporal bathymetric profiles: (A) across-shore (i–ii); and (B) along-shore (iii–iv);
(C) Legend map showing the profiles on the bathymetry difference map.



Remote Sens. 2022, 14, 6035 13 of 19

4. Discussion
4.1. Interpretation of Nearshore Bathymetry Change

Change analysis between the temporal bathymetry datasets revealed geomorphologi-
cal patterns that are typical for sandy coastal areas exposed to wave action from normal
incidence angles [64,65]. These patterns are characterized as crescentic bar systems, and
they are linked to processes that distribute large volume of sediments in the nearshore
seafloor. Crescentic bars are apparent in both temporal RGB orthomosaics and bathymetry
outputs (Figures 3 and 5), and the bathymetry difference map highlights the paths of bar
reorganization under the influence of enhanced wave and current activity during the winter
months. Bathymetry data (Figure 3A,C) show that crescentic bars with secondary channel
systems cover the entire nearshore part of the beach. Refs. [64,65] have reported that the
development of the crescentic bar is linked to a self-organizing mechanism, which depends
on the feedback between the seafloor geometry and the distribution of wave energy. Thus,
we created a conceptual model representing coastal hydrodynamic activity based on the
bathymetry difference map (Figure 7). The bathymetry difference map indicates two nar-
row corridors (rip channels) within which intense erosion occurred. The perpendicular
orientation of the channels relative to the coastline suggests that the prevailing incidence
angles of waves were directly from the north. This pattern of erosion process corresponds
to rip-current action, which is part of the wider coastal cell circulation [66] (Figure 7). Rip
channels are developed under the combination of wave focusing (due to refraction) and
nearshore bathymetric variability [64,65]. The transported sediment is redeposited follow-
ing the rhythmic pattern of the crescentic bar. Sediment deposition is controlled by the
depth-averaged sediment concentration profiles [65]. Persistent rip-current action removes
large volumes of sediments from the surf zone and deposits them further offshore [67],
as shown in Figure 5E. Using the two bathymetric datasets, we estimated the volume of
sediment that was eroded through the rip channels and found that more than 1500 cubic
meters were removed during the 5-month period. The shape of nearshore bedforms is
further controlled by the geometric characteristics of the beach (i.e., length) [68] and the
occurrence of hard seafloor areas that influence sediment deposition.
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It has been suggested that the crescentic bar oscillates between straight and crescentic
form at various time scales, depending on the intensity and incidence angle of waves [69].
Usually a straight bar is developed during increased wave-energy events, while the cres-
centic bar is formed by a decrease in wave energy following these events [65]. When wave
energy is increasing, the crescentic bar becomes straight again, through a process which
is called a morphological reset [65]. Recent studies have shown that the crescentic bar is
formed preferentially under normal wave incidence angles to the shore, while oblique wave
angles lead mainly to morphological reset [68,70–72]. Such a behavior was not observed in
the duration of the study. However, the crescentic bar appears to have migrated further
offshore in the March-2022 bathymetry dataset, while in the November-2021 bathymetry
dataset appears to be closer to the coastline. It is hypothesized that wave action during
the winter storms resulted in dissociation of the “summer” structure of the bar, and a slow
build-up of the deeper part of the bar as usually happens with typical beach profiles [73].
The only difference here is that this change occurs on a crescentic bar instead of a standard
straight bar. This type of across-shore migration has also been reported in the studies
of [48,67]. The bathymetric profile comparison in Figure 6 provides evidence that there is
also a lateral migration of the crescentic bar (i.e., along shore). Drone-based bathymetry
with high temporal resolution should assist in further understanding of the along-shore
displacement of the crescentic bar.

4.2. Implications in Coastal Seafloor Monitoring

The presented study introduces a novel approach for monitoring small-scale nearshore
seafloor change in areas with sufficient water transparency. This approach provides a robust
alternative to LiDAR and multibeam surveying, for capturing fine-scale geomorphological
features and short-term changes of shallow seafloor. The main advantage of this study is
the effectiveness of multispectral imagery for mapping shallow bathymetry over seafloor
consisting of loose sediments. Typically, drone imagery from such seafloor areas is not
suitable for applying photogrammetric 3D reconstruction techniques since smooth seafloor
does not hold enough texture. Consequently, multispectral data are required for overcoming
this issue along with optical modelling. Although the drone-based bathymetry does not
achieve the vertical accuracy of a multi-beam echo-sounder, it is considered sufficient for
rapid bathymetry assessment and geomorphological mapping applications where area
coverage is the primary goal. In this study, we exploited the effectiveness of a WASI shallow-
water inversion model for producing bathymetry without utilizing input depth data. This
is a very important aspect in shallow bathymetry mapping, where several studies rely on a
large volume of in situ depth measurements for building accurate empirical models [9,30].
Obtaining extensive in situ data requires additional costs and logistical effort, which can
be problematic for long-term bathymetry monitoring projects [34]. The presented study
shows that radiometrically corrected, multispectral imagery from drones (with several
bands in the visible range) is suitable for producing bathymetry outputs with significant
detail. Thus, drone-based bathymetry provides a cost-effective approach that is suitable for
shallow bathymetry change monitoring. Shallow water inversion models work well when
imagery with suitable radiometric/atmospheric corrections is used, and when the model
parameters (e.g., water-column constituents, end-member spectra) are representative of
the study area. A particular advantage of drone imagery over satellite/airborne imagery
regarding shallow water inversion is the fact that the first does not require atmospheric
correction. The atmospheric effects on drone-based imagery are considered minor for bright
targets in the visible spectrum, and when images are taken from less than 150 m altitude
under favorable weather conditions [74]. However, the use of a calibration reflectance panel
is required for obtaining reflectance values adjusted for incoming radiance. Regarding
water-column and seafloor spectra data for model tuning, this information can be extracted
from various sources. Information about the concertation of water-column constituents
according to water-type is found in current literature, and can be retrieved from large-scale
satellite products (e.g., CHL-a and SPM from Copernicus missions). Seafloor end-member
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spectra covering various locations (e.g., temperate, tropical) have been published as well,
providing a useful alternative to collecting these data in situ [63]. These studies were
based on the method of [41] about integrating RGB and MS data into a single image-
cube. Thus, we recommend that a standard type of MS sensor and data pre-processing
should be developed in the future, targeting particularly shallow bathymetry applications.
A potential sensor for drone-based bathymetry mapping should comprise at least five
narrow spectral bands spanning in the visible range. Five spectral bands are considered
to provide an acceptable radiometric resolution that is required for shallow bathymetry
inversion [29,53,75]. Additionally, a dedicated radiometric calibration procedure should be
implemented for this particular type of sensor in order to convert pixel values to reflectance.
The availability of such a sensor would enable a wider variety of shallow seafloor mapping
applications to be realized. Particularly, high temporal resolution bathymetry datasets
will allow us to visualize better the geometric and migration characteristics of rip channel
systems, and thus assist in a better understanding of nearshore seafloor change. Drone-
based bathymetry is expected to cover a significant gap in coastal modelling studies [76],
and act synergistically with other in situ methods (i.e., GPS drifters) for improving the
knowledge about nearshore features and processes.

4.3. Sources of Error and Method Limitations

The presented datasets and methods show promising results in shallow seafloor
geomorphological mapping. However, there are some points where particular attention is
required in order to avoid or minimize potential sources of error. Drone imagery is usually
prone to lower signal-to-noise (S/N) ratio compared to satellite imagery [77], due to
image noise related to sun glint, wave-focusing or shadowing. Thus, specific requirements
should be met for RGB and multispectral image acquisition and processing. In order to
improve the S/N ratio it is suggested that drone imagery is acquired at low sun elevation
angles (<30 degrees) [78]. When the sun is closer to the horizon, sun-glint and unwanted
reflections are minimized and seafloor albedo is more uniform. In case that image noise is
present, then image-filtering methods should be applied in post-processing. The simplest
approach is to resample the imagery at greater pixel size so that noise is suppressed, and
reflectance values are more homogenous. Another potential limitation is the maximum
depth for applying optical models for inversion. In general, bathymetry inversion using
radiative-transfer models works better for depths up to 10 m [30] with vertical errors
increasing beyond this value. The main reason behind this behavior is related to the very
low, water-leaving reflectance values that introduce spectral matching problems during
inversion [30,77].

5. Conclusions

The application of shallow bathymetry inversion on drone-based imagery provided an
efficient approach for mapping nearshore geomorphological features and short-term bathy-
metric changes at a small sandy bay in Greece. A composite image cube with increased
spectral resolution in the visible spectrum resulted from the combination of radiometrically
corrected drone-based RGB and MS orthomosaics used for bathymetry inversion. Pre-
dicted bathymetry showed <0.3 m average vertical errors when compared with USV sonar
bathymetry. Nearshore bedforms identified on drone-based temporal bathymetry datasets
are characterized as crescentic bars and rip channel systems. Evidence on differential
bathymetry and true-color orthomosaics suggests that two main rip channels developed
during a period of five months, driven by the impact of wave action in winter. Temporal
bathymetric profiles suggest that the crescentic bar system transforms from summer to
winter geometry and migrates along-shore at a short-term time-scale. In general, the drone-
based bathymetry assisted in capturing the geographic boundaries of local hydrodynamic
patterns. Future improvements in drone sensors are expected to lead to a greater variety of
shallow bathymetry applications.
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Appendix A

Table A1. Spectral characteristics of standard RGB and multispectral bands used for building the
composite 6-band cube. * full width at half maximum.

Band Name Central Wavelength (nm) Fwhm * (nm)

Blue 462 40

Green 525 50

Red 592 25

MS-Blue 480 10

MS-Green 560 10

MS-Red 671 5

Remote Sens. 2022, 14, x FOR PEER REVIEW 17 of 21 
 

 

hydrodynamic patterns. Future improvements in drone sensors are expected to lead to a 
greater variety of shallow bathymetry applications.  

Author Contributions: Conceptualization, E.A.; Methodology, E.A.; Software, E.A.; Validation, 
E.A.; Formal analysis, E.A.; Investigation, E.A.; Resources, D.D.A.; Data curation, E.A.; Writing–
original draft, E.A.; Writing–review & editing, E.A. and D.D.A.; Visualization, E.A.; Supervision, 
D.D.A.; Project administration, E.A. and D.D.A.; Funding acquisition, D.D.A. All authors have read 
and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Data Availability Statement: Data available on request from the authors. 

Acknowledgments: This study is part of the ACTYS project (https://actys.ims.forth.gr/ (accessed on 
1 April 2022) that has received funding from a 2020 FORTH-Synergy Grant. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

Table A1. Spectral characteristics of standard RGB and multispectral bands used for building the 
composite 6-band cube. * full width at half maximum. 

Band Name Central Wavelength (nm)  Fwhm * (nm) 
Blue 462 40 

Green 525 50 
Red 592 25 

MS-Blue 480 10 
MS-Green 560 10 
MS-Red 671 5 

 
Figure A1. Boxplots of the sonar depth measurements collected at each survey. The black horizontal 
line inside each box indicates the median value of each sample and the numbers at the horizontal 
axis indicate the number of measurements. 

References 

Figure A1. Boxplots of the sonar depth measurements collected at each survey. The black horizontal
line inside each box indicates the median value of each sample and the numbers at the horizontal
axis indicate the number of measurements.

https://actys.ims.forth.gr/


Remote Sens. 2022, 14, 6035 17 of 19

References
1. Davidson, M.; Van Koningsveld, M.; de Kruif, A.; Rawson, J.; Holman, R.; Lamberti, A.; Medina, R.; Kroon, A.; Aarninkhof, S.

The CoastView Project: Developing Video-Derived Coastal State Indicators in Support of Coastal Zone Management. Coast. Eng.
2007, 54, 463–475. [CrossRef]

2. de Swart, H.E.; Zimmerman, J.T.F. Morphodynamics of Tidal Inlet Systems. Annu. Rev. Fluid Mech. 2009, 41, 203–229. [CrossRef]
3. van Dongeren, A.; Plant, N.; Cohen, A.; Roelvink, D.; Haller, M.C.; Catalán, P. Beach Wizard: Nearshore Bathymetry Estimation

through Assimilation of Model Computations and Remote Observations. Coast. Eng. 2008, 55, 1016–1027. [CrossRef]
4. Jackson, D.W.T.; Short, A.D.; Loureiro, C.; Cooper, J.A.G. Beach Morphodynamic Classification Using High-Resolution Nearshore

Bathymetry and Process-Based Wave Modelling. Estuar. Coast. Shelf Sci. 2022, 268, 107812. [CrossRef]
5. Misra, A.; Ramakrishnan, B. Assessment of Coastal Geomorphological Changes Using Multi-Temporal Satellite-Derived

Bathymetry. Cont. Shelf Res. 2020, 207, 104213. [CrossRef]
6. Toodesh, R.; Verhagen, S.; Dagla, A. Prediction of Changes in Seafloor Depths Based on Time Series of Bathymetry Observations:

Dutch North Sea Case. J. Mar. Sci. Eng. 2021, 9, 931. [CrossRef]
7. Agrafiotis, P.; Karantzalos, K.; Georgopoulos, A.; Skarlatos, D. Correcting Image Refraction: Towards Accurate Aerial Image-Based

Bathymetry Mapping in Shallow Waters. Remote Sens. 2020, 12, 322. [CrossRef]
8. Gao, J. Bathymetric Mapping by Means of Remote Sensing: Methods, Accuracy and Limitations. Prog. Phys. Geogr. Earth Environ.

2009, 33, 103–116. [CrossRef]
9. Salameh, E.; Frappart, F.; Almar, R.; Baptista, P.; Heygster, G.; Lubac, B.; Raucoules, D.; Almeida, L.P.; Bergsma, E.W.J.; Capo, S.;

et al. Monitoring Beach Topography and Nearshore Bathymetry Using Spaceborne Remote Sensing: A Review. Remote Sens. 2019,
11, 2212. [CrossRef]

10. Lee, Z.; Casey, B.; Arnone, R.A.; Weidemann, A.D.; Parsons, R.; Montes, M.J.; Gao, B.-C.; Goode, W.; Davis, C.O.; Dye, J. Water
and Bottom Properties of a Coastal Environment Derived from Hyperion Data Measured from the EO-1 Spacecraft Platform. J.
Appl. Remote Sens. 2007, 1, 011502. [CrossRef]

11. Bergsma, E.W.J.; Almar, R. Video-Based Depth Inversion Techniques, a Method Comparison with Synthetic Cases. Coast. Eng.
2018, 138, 199–209. [CrossRef]

12. Collins, A.M.; Geheran, M.P.; Hesser, T.J.; Bak, A.S.; Brodie, K.L.; Farthing, M.W. Development of a Fully Convolutional Neural
Network to Derive Surf-Zone Bathymetry from Close-Range Imagery of Waves in Duck, NC. Remote Sens. 2021, 13, 4907.
[CrossRef]

13. Costa, B.M.; Battista, T.A.; Pittman, S.J. Comparative Evaluation of Airborne LiDAR and Ship-Based Multibeam SoNAR
Bathymetry and Intensity for Mapping Coral Reef Ecosystems. Remote Sens. Environ. 2009, 113, 1082–1100. [CrossRef]

14. Janowski, L.; Wroblewski, R.; Rucinska, M.; Kubowicz-Grajewska, A.; Tysiac, P. Automatic Classification and Mapping of the
Seabed Using Airborne LiDAR Bathymetry. Eng. Geol. 2022, 301, 106615. [CrossRef]

15. Klemas, V. Beach Profiling and LIDAR Bathymetry: An Overview with Case Studies. J. Coast. Res. 2011, 277, 1019–1028. [CrossRef]
16. Taramelli, A.; Cappucci, S.; Valentini, E.; Rossi, L.; Lisi, I. Nearshore Sandbar Classification of Sabaudia (Italy) with LiDAR Data:

The FHyL Approach. Remote Sens. 2020, 12, 1053. [CrossRef]
17. Brock, J.C.; Purkis, S.J. The Emerging Role of Lidar Remote Sensing in Coastal Research and Resource Management. J. Coast. Res.

2009, 53, 1–5. [CrossRef]
18. Freire, R.; Pe’eri, S.; Madore, B.; Rzhanov, Y.; Alexander, L.; Parrish, C.; Lippmann, T. Monitoring Near-Shore Bathymetry Using a

Multi-Image Satellite-Derived Bathymetry Approach. In Proceedings of the US Hydrographic Conference 2015, National Harbor,
MD, USA, 16–19 March 2015.

19. Lyzenga, D.R. Passive Remote Sensing Techniques for Mapping Water Depth and Bottom Features. Appl. Opt. 1978, 17, 379–383.
[CrossRef] [PubMed]

20. Stumpf, R.P.; Holderied, K.; Sinclair, M. Determination of Water Depth with High-Resolution Satellite Imagery over Variable
Bottom Types. Limnol. Oceanogr. 2003, 48, 547–556. [CrossRef]

21. Geyman, E.C.; Maloof, A.C. A Simple Method for Extracting Water Depth from Multispectral Satellite Imagery in Regions of
Variable Bottom Type. Earth Space Sci. 2019, 6, 527–537. [CrossRef]

22. Gholamalifard, M.; Kutser, T.; Esmaili-Sari, A.; Abkar, A.A.; Naimi, B. Remotely Sensed Empirical Modeling of Bathymetry in the
Southeastern Caspian Sea. Remote Sens. 2013, 5, 2746–2762. [CrossRef]

23. Ma, S.; Tao, Z.; Yang, X.; Yu, Y.; Zhou, X.; Li, Z. Bathymetry Retrieval from Hyperspectral Remote Sensing Data in Optical-Shallow
Water. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1205–1212. [CrossRef]

24. Traganos, D.; Poursanidis, D.; Aggarwal, B.; Chrysoulakis, N.; Reinartz, P. Estimating Satellite-Derived Bathymetry (SDB) with
the Google Earth Engine and Sentinel-2. Remote Sens. 2018, 10, 859. [CrossRef]

25. Wei, C.; Zhao, Q.; Lu, Y.; Fu, D. Assessment of Empirical Algorithms for Shallow Water Bathymetry Using Multi-Spectral Imagery
of Pearl River Delta Coast, China. Remote Sens. 2021, 13, 3123. [CrossRef]

26. Kibele, J.; Shears, N.T. Nonparametric Empirical Depth Regression for Bathymetric Mapping in Coastal Waters. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 2016, 9, 5130–5138. [CrossRef]

27. Caballero, I.; Stumpf, R.P. Retrieval of Nearshore Bathymetry from Sentinel-2A and 2B Satellites in South Florida Coastal Waters.
Estuar. Coast. Shelf Sci. 2019, 226, 106277. [CrossRef]

http://doi.org/10.1016/j.coastaleng.2007.01.007
http://doi.org/10.1146/annurev.fluid.010908.165159
http://doi.org/10.1016/j.coastaleng.2008.04.011
http://doi.org/10.1016/j.ecss.2022.107812
http://doi.org/10.1016/j.csr.2020.104213
http://doi.org/10.3390/jmse9090931
http://doi.org/10.3390/rs12020322
http://doi.org/10.1177/0309133309105657
http://doi.org/10.3390/rs11192212
http://doi.org/10.1117/1.2822610
http://doi.org/10.1016/j.coastaleng.2018.04.025
http://doi.org/10.3390/rs13234907
http://doi.org/10.1016/j.rse.2009.01.015
http://doi.org/10.1016/j.enggeo.2022.106615
http://doi.org/10.2112/JCOASTRES-D-11-00017.1
http://doi.org/10.3390/rs12071053
http://doi.org/10.2112/SI53-001.1
http://doi.org/10.1364/AO.17.000379
http://www.ncbi.nlm.nih.gov/pubmed/20174418
http://doi.org/10.4319/lo.2003.48.1_part_2.0547
http://doi.org/10.1029/2018EA000539
http://doi.org/10.3390/rs5062746
http://doi.org/10.1109/TGRS.2013.2248372
http://doi.org/10.3390/rs10060859
http://doi.org/10.3390/rs13163123
http://doi.org/10.1109/JSTARS.2016.2598152
http://doi.org/10.1016/j.ecss.2019.106277


Remote Sens. 2022, 14, 6035 18 of 19

28. Dekker, A.G.; Phinn, S.R.; Anstee, J.; Bissett, P.; Brando, V.E.; Casey, B.; Fearns, P.; Hedley, J.; Klonowski, W.; Lee, Z.P.; et al.
Intercomparison of Shallow Water Bathymetry, Hydro-Optics, and Benthos Mapping Techniques in Australian and Caribbean
Coastal Environments. Limnol. Oceanogr. Methods 2011, 9, 396–425. [CrossRef]

29. Klonowski, W.M. Retrieving Key Benthic Cover Types and Bathymetry from Hyperspectral Imagery. J. Appl. Remote Sens. 2007, 1,
011505. [CrossRef]

30. Kutser, T.; Hedley, J.; Giardino, C.; Roelfsema, C.; Brando, V.E. Remote Sensing of Shallow Waters—A 50 Year Retrospective and
Future Directions. Remote Sens. Environ. 2020, 240, 111619. [CrossRef]

31. Leiper, I.A.; Phinn, S.R.; Roelfsema, C.M.; Joyce, K.E.; Dekker, A.G. Mapping Coral Reef Benthos, Substrates, and Bathymetry,
Using Compact Airborne Spectrographic Imager (CASI) Data. Remote Sens. 2014, 6, 6423–6445. [CrossRef]

32. Lee, Z.; Carder, K.L.; Mobley, C.D.; Steward, R.G.; Patch, J.S. Hyperspectral Remote Sensing for Shallow Waters: 2. Deriving
Bottom Depths and Water Properties by Optimization. Appl. Opt. 1999, 38, 3831–3843. [CrossRef] [PubMed]

33. Mobley, C.D.; Sundman, L.K.; Davis, C.O.; Bowles, J.H.; Downes, T.V.; Leathers, R.A.; Montes, M.J.; Bissett, W.P.; Kohler, D.D.R.;
Reid, R.P.; et al. Interpretation of Hyperspectral Remote-Sensing Imagery by Spectrum Matching and Look-up Tables. Appl. Opt.
2005, 44, 3576–3592. [CrossRef] [PubMed]

34. Capo, S.; Lubac, B.; Marieu, V.; Robinet, A.; Bru, D.; Bonneton, P. Assessment of the Decadal Morphodynamic Evolution of a
Mixed Energy Inlet Using Ocean Color Remote Sensing. Ocean Dyn. 2014, 64, 1517–1530. [CrossRef]

35. Bolaños, R.; Hansen, L.B.; Rasmussen, M.L.; Golestani, M.; Mariegaard, J.S.; Nielsen, L.T. Coastal Bathymetry from Satellite and
Its Use on Coastal Modelling. Coast. Eng. Proc. 2018, 1, 98. [CrossRef]

36. Alevizos, E.; Roussos, A.; Alexakis, D. Geomorphometric Analysis of Nearshore Sedimentary Bedforms from High-Resolution
Multi-Temporal Satellite-Derived Bathymetry. Geocarto Int. 2021, 1–17. [CrossRef]

37. Pacheco, A.; Horta, J.; Loureiro, C.; Ferreira, Ó. Retrieval of Nearshore Bathymetry from Landsat 8 Images: A Tool for Coastal
Monitoring in Shallow Waters. Remote Sens. Environ. 2015, 159, 102–116. [CrossRef]

38. Alevizos, E. How to Create High Resolution Digital Elevation Models of Terrestrial Landscape Using Uav Imagery and Open-Source
Software; Research Gate: Berlin, Germany, 2019. [CrossRef]

39. Román, A.; Tovar-Sánchez, A.; Olivé, I.; Navarro, G. Using a UAV-Mounted Multispectral Camera for the Monitoring of Marine
Macrophytes. Front. Mar. Sci. 2021, 8, 722698. [CrossRef]

40. Rossi, L.; Mammi, I.; Pelliccia, F. UAV-Derived Multispectral Bathymetry. Remote Sens. 2020, 12, 3897. [CrossRef]
41. Alevizos, E.; Oikonomou, D.; Argyriou, A.V.; Alexakis, D.D. Fusion of Drone-Based RGB and Multi-Spectral Imagery for Shallow

Water Bathymetry Inversion. Remote Sens. 2022, 14, 1127. [CrossRef]
42. Kabiri, K.; Rezai, H.; Moradi, M. A Drone-Based Method for Mapping the Coral Reefs in the Shallow Coastal Waters—Case Study:

Kish Island, Persian Gulf. Earth Sci. Inform. 2020, 13, 1265–1274. [CrossRef]
43. Parsons, M.; Bratanov, D.; Gaston, K.; Gonzalez, F. UAVs, Hyperspectral Remote Sensing, and Machine Learning Revolutionizing

Reef Monitoring. Sensors 2018, 18, 2026. [CrossRef]
44. Slocum, R.K.; Parrish, C.E.; Simpson, C.H. Combined Geometric-Radiometric and Neural Network Approach to Shallow

Bathymetric Mapping with UAS Imagery. ISPRS J. Photogramm. Remote Sens. 2020, 169, 351–363. [CrossRef]
45. Starek, M.J.; Giessel, J. Fusion of Uas-Based Structure-from-Motion and Optical Inversion for Seamless Topo-Bathymetric Mapping.

In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28
July 2017; pp. 2999–3002.

46. Agrafiotis, P.; Skarlatos, D.; Georgopoulos, A.; Karantzalos, K. Shallow water bathymetry mapping from uav imagery based on
machine learning. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W10, 9–16. [CrossRef]

47. Dietrich, J.T. Bathymetric Structure-from-Motion: Extracting Shallow Stream Bathymetry from Multi-View Stereo Photogrammetry.
Earth Surf. Process. Landf. 2017, 42, 355–364. [CrossRef]

48. Biausque, M.; Guisado-Pintado, E.; Grottoli, E.; Jackson, D.W.T.; Cooper, J.A.G. Seasonal Morphodynamics of Multiple Intertidal
Bars (MITBs) on a Meso- to Macrotidal Beach. Earth Surf. Process. Landf. 2022, 47, 839–853. [CrossRef]

49. Foteinis, S.; Synolakis, C.; Tsoutsos, T. Numerical Modelling for Coastal Structures Design and Planning. A Case Study of the
Venetian Harbour of Chania, Greece. Int. J. Geoengin. Case Hist 2018, 4, 232. [CrossRef]

50. Tsoukala, V.K.; Katsardi, V.; Hadjibiros, K.; Moutzouris, C.I. Beach Erosion and Consequential Impacts Due to the Presence of
Harbours in Sandy Beaches in Greece and Cyprus. Environ. Process. 2015, 2, 55–71. [CrossRef]

51. Ignatiades, L. The Productive and Optical Status of the Oligotrophic Waters of the Southern Aegean Sea (Cretan Sea), Eastern
Mediterranean. J. Plankton Res. 1998, 20, 985–995. [CrossRef]

52. Albert, A. Inversion Technique for Optical Remote Sensing in Shallow Water. Optische Fernerkundung von Flachwasserzonen.
Ph.D. Thesis, University of Hamburg, Hamburg, Germany, 2004.

53. Marcello, J.; Eugenio, F.; Martín, J.; Marqués, F. Seabed Mapping in Coastal Shallow Waters Using High Resolution Multispectral
and Hyperspectral Imagery. Remote Sens. 2018, 10, 1208. [CrossRef]

54. Alevizos, E.; Alexakis, D.D. Evaluation of Radiometric Calibration of Drone-Based Imagery for Improving Shallow Bathymetry
Retrieval. Remote Sens. Lett. 2022, 13, 311–321. [CrossRef]

55. Poseidon System. Available online: https://poseidon.hcmr.gr/ (accessed on 1 April 2022).

http://doi.org/10.4319/lom.2011.9.396
http://doi.org/10.1117/1.2816113
http://doi.org/10.1016/j.rse.2019.111619
http://doi.org/10.3390/rs6076423
http://doi.org/10.1364/AO.38.003831
http://www.ncbi.nlm.nih.gov/pubmed/18319990
http://doi.org/10.1364/AO.44.003576
http://www.ncbi.nlm.nih.gov/pubmed/16007858
http://doi.org/10.1007/s10236-014-0762-1
http://doi.org/10.9753/icce.v36.papers.98
http://doi.org/10.1080/10106049.2021.2007296
http://doi.org/10.1016/j.rse.2014.12.004
http://doi.org/10.13140/RG.2.2.25616.25603
http://doi.org/10.3389/fmars.2021.722698
http://doi.org/10.3390/rs12233897
http://doi.org/10.3390/rs14051127
http://doi.org/10.1007/s12145-020-00507-z
http://doi.org/10.3390/s18072026
http://doi.org/10.1016/j.isprsjprs.2020.09.002
http://doi.org/10.5194/isprs-archives-XLII-2-W10-9-2019
http://doi.org/10.1002/esp.4060
http://doi.org/10.1002/esp.5288
http://doi.org/10.4417/IJGCH-04-04-01
http://doi.org/10.1007/s40710-015-0096-0
http://doi.org/10.1093/plankt/20.5.985
http://doi.org/10.3390/rs10081208
http://doi.org/10.1080/2150704X.2022.2030068
https://poseidon.hcmr.gr/


Remote Sens. 2022, 14, 6035 19 of 19

56. Gege, P. A Case Study at Starnberger See for Hyperspectral Bathymetry Mapping Using Inverse Modeling. In Proceedings of
the 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lausanne,
Switzerland, 24–27 June 2014; pp. 1–4.

57. Dörnhöfer, K.; Göritz, A.; Gege, P.; Pflug, B.; Oppelt, N. Water Constituents and Water Depth Retrieval from Sentinel-2A—A First
Evaluation in an Oligotrophic Lake. Remote Sens. 2016, 8, 941. [CrossRef]

58. Niroumand-Jadidi, M.; Bovolo, F.; Bruzzone, L.; Gege, P. Physics-Based Bathymetry and Water Quality Retrieval Using Plan-
etScope Imagery: Impacts of 2020 COVID-19 Lockdown and 2019 Extreme Flood in the Venice Lagoon. Remote Sens. 2020, 12,
2381. [CrossRef]

59. Alevizos, E.; Le Bas, T.; Alexakis, D. Assessment of PRISMA Level-2 Hyperspectral Imagery for Large Scale Satellite-Derived
Bathymetry Retrieval. Mar. Geod. 2022, 45, 251–273. [CrossRef]

60. Albert, A.; Mobley, C.D. An Analytical Model for Subsurface Irradiance and Remote Sensing Reflectance in Deep and Shallow
Case-2 Waters. Opt. Express 2003, 11, 2873–2890. [CrossRef] [PubMed]

61. Gege, P.; Albert, A. A tool for inverse modeling of spectral measurements in deep and shallow waters. In Remote Sensing of
Aquatic Coastal Ecosystem Processes; Remote Sensing and Digital Image Processing; Richardson, L.L., Ledrew, E.F., Eds.; Springer:
Dordrecht, The Netherlands, 2006; pp. 81–109. ISBN 978-1-4020-3968-3.

62. Gege, P. WASI-2D: A Software Tool for Regionally Optimized Analysis of Imaging Spectrometer Data from Deep and Shallow
Waters. Comput. Geosci. 2014, 62, 208–215. [CrossRef]

63. Mouquet, P.; Quod, J.-P. Spectrhabent-OI-Acquisition et Analyse de la Librairie Spectrale Sous-Marine; Archimer: Plouzane, France,
2010.

64. Castelle, B.; Ruessink, B.G.; Bonneton, P.; Marieu, V.; Bruneau, N.; Price, T.D. Coupling Mechanisms in Double Sandbar Systems.
Part 1: Patterns and Physical Explanation. Earth Surf. Process. Landf. 2010, 35, 476–486. [CrossRef]

65. Ribas, F.; Falqués, A.; de Swart, H.E.; Dodd, N.; Garnier, R.; Calvete, D. Understanding Coastal Morphodynamic Patterns from
Depth-Averaged Sediment Concentration. Rev. Geophys. 2015, 53, 362–410. [CrossRef]

66. Castelle, B.; Scott, T.; Brander, R.W.; McCarroll, R.J. Rip Current Types, Circulation and Hazard. Earth-Sci. Rev. 2016, 163, 1–21.
[CrossRef]

67. Andreeva, N.; Saprykina, Y.; Valchev, N.; Eftimova, P.; Kuznetsov, S. Influence of Wave Climate on Intra and Inter-Annual
Nearshore Bar Dynamics for a Sandy Beach. Geosciences 2021, 11, 206. [CrossRef]

68. Holman, R.A.; Symonds, G.; Thornton, E.B.; Ranasinghe, R. Rip Spacing and Persistence on an Embayed Beach. J. Geophys. Res.
Oceans 2006, 111, C01006. [CrossRef]

69. Garnier, R.; Falqués, A.; Calvete, D.; Thiébot, J.; Ribas, F. A Mechanism for Sandbar Straightening by Oblique Wave Incidence.
Geophys. Res. Lett. 2013, 40, 2726–2730. [CrossRef]

70. Price, T.D.; Ruessink, B.G. State Dynamics of a Double Sandbar System. Cont. Shelf Res. 2011, 31, 659–674. [CrossRef]
71. Splinter, K.D.; Holman, R.A.; Plant, N.G. A Behavior-Oriented Dynamic Model for Sandbar Migration and 2DH Evolution. J.

Geophys. Res. Oceans 2011, 116, C01020. [CrossRef]
72. Thornton, E.B.; MacMahan, J.; Sallenger, A.H. Rip Currents, Mega-Cusps, and Eroding Dunes. Mar. Geol. 2007, 240, 151–167.

[CrossRef]
73. Dean, R. Equilibrium Beach Profiles: Characteristics and Applications. J. Coast. Res. 1991, 7, 53–84.
74. Suomalainen, J.; Oliveira, R.A.; Hakala, T.; Koivumäki, N.; Markelin, L.; Näsi, R.; Honkavaara, E. Direct Reflectance Transforma-

tion Methodology for Drone-Based Hyperspectral Imaging. Remote Sens. Environ. 2021, 266, 112691. [CrossRef]
75. Hedley, J.D.; Roelfsema, C.; Brando, V.; Giardino, C.; Kutser, T.; Phinn, S.; Mumby, P.J.; Barrilero, O.; Laporte, J.; Koetz, B. Coral

Reef Applications of Sentinel-2: Coverage, Characteristics, Bathymetry and Benthic Mapping with Comparison to Landsat 8.
Remote Sens. Environ. 2018, 216, 598–614. [CrossRef]

76. Holman, R.; Haller, M.C. Remote Sensing of the Nearshore. Annu. Rev. Mar. Sci. 2013, 5, 95–113. [CrossRef]
77. Dierssen, H.M.; Ackleson, S.G.; Joyce, K.E.; Hestir, E.L.; Castagna, A.; Lavender, S.; McManus, M.A. Living up to the Hype of

Hyperspectral Aquatic Remote Sensing: Science, Resources and Outlook. Front. Environ. Sci. 2021, 9, 649528. [CrossRef]
78. Hovis, W.A.; Clark, D.K.; Anderson, F.; Austin, R.W.; Wilson, W.H.; Baker, E.T.; Ball, D.; Gordon, H.R.; Mueller, J.L.; El-Sayed, S.Z.;

et al. Nimbus-7 Coastal Zone Color Scanner: System Description and Initial Imagery. Science 1980, 210, 60–63. [CrossRef]

http://doi.org/10.3390/rs8110941
http://doi.org/10.3390/rs12152381
http://doi.org/10.1080/01490419.2022.2032497
http://doi.org/10.1364/OE.11.002873
http://www.ncbi.nlm.nih.gov/pubmed/19471407
http://doi.org/10.1016/j.cageo.2013.07.022
http://doi.org/10.1002/esp.1929
http://doi.org/10.1002/2014RG000457
http://doi.org/10.1016/j.earscirev.2016.09.008
http://doi.org/10.3390/geosciences11050206
http://doi.org/10.1029/2005JC002965
http://doi.org/10.1002/grl.50464
http://doi.org/10.1016/j.csr.2010.12.018
http://doi.org/10.1029/2010JC006382
http://doi.org/10.1016/j.margeo.2007.02.018
http://doi.org/10.1016/j.rse.2021.112691
http://doi.org/10.1016/j.rse.2018.07.014
http://doi.org/10.1146/annurev-marine-121211-172408
http://doi.org/10.3389/fenvs.2021.649528
http://doi.org/10.1126/science.210.4465.60

	Introduction 
	Methodology 
	Study Area and Fieldwork 
	Pre-Processing of Drone-Based Imagery 
	Shallow Bathymetry Inversion in WASI-2D 

	Results 
	Bathymetry Validation 
	Short-Term Bathymetric Changes 

	Discussion 
	Interpretation of Nearshore Bathymetry Change 
	Implications in Coastal Seafloor Monitoring 
	Sources of Error and Method Limitations 

	Conclusions 
	Appendix A
	References

