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Abstract: The variability of surface roughness may lead to relatively large dynamic of backscatter
coefficient observed by the synthetic aperture radar (SAR), which complicates the soil moisture (SM)
retrieval process based on active remote sensing. The effective roughness parameters are commonly
used for parameterizing the soil scattering models, the values of which are often assumed to be
constant during different study periods for the same site. This paper investigates the reasonableness
of this hypothesis from the perspective of backscatter coefficient simulation and SM retrieval using
high resolution SAR data. Three years of Sentinel-1A data from 2016 to 2018 were collected over a
sparsely vegetated field within the REMEDHUS SM monitoring network. The advanced integral
equation model (AIEM) and Dobson dielectric mixing model were combined for optimizing the
effective roughness parameters, as well as simulating the backscatter coefficient and retrieving the
SM. The effective roughness parameters were optimized at different temporal periods, such as 2016,
2017, 2018, 2016 + 2017, 2017 + 2018, and 2016 + 2017 + 2018, to analyze their temporal dynamics.
It was found that: (1) the effective roughness parameters optimized at different temporal periods
are very close to each other; (2) the simulated backscatter from AIEM is consistent with Sentinel-1A
observation with root mean square errors (RMSEs) between 1.133 and 1.163 dB and correlation
coefficient ®value equals to 0.616; (3) the seasonal dynamics ofin situ SM is well-captured by the
retrieved SM with R values floating at 0.685 and RMSEs ranging from 0.049 to 0.052 m3/m3; and
(4) inverse of the AIEM with the implementation of effective roughness parameters achieves better
performance for SM retrieval than the change detection method. These findings demonstrate that the
assumption on the constant effective roughness parameters during the study period of at least three
years is reasonable.

Keywords: SM retrieval; Sentinel-1; AIEM; effective roughness; change detection

1. Introduction

Soil moisture (SM) plays a key role in various hydrological applications, such as the
partitioning of precipitation between infiltration and runoff [1–3]. The former determines
the water available for vegetation growth, while the latter has a strong influence on the rate
of soil erosion and river process [4–6]. In agricultural applications, SM is a key variable
for indicating crop condition monitoring, yield estimation, and water resources utilization
and management [7]. Due to strong spatial and temporal heterogeneity of SM, it is difficult
to provide spatial distribution information of SM at large scale by using the traditional
sampling methods [8–10]. Recent rapid development of earth observation technologies
has led to significant progresses in quantifying SM content using different sensors [11,12].
Among of them, passive and active microwave remote sensing have been widely used
due to their high sensitivities to SM, all-weather and all-time observation capacity, and
strong penetration ability [13,14]. Specifically, the high spatial resolution synthetic aperture
radar (SAR) has been widely adopted for providing high-resolution SM at field scale in the
application of precision agriculture [1,15].
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A number of satellites equipped with SAR have been launched, such as the X-band
TandDEM-X, TerraSAR-X, and COSMO-SkyMed satellites, the C-band Radarsat-2, Sentinel-
1A/B and Gaofen-3, and the L-band ALOS-2. Among these satellites, the Sentinel-1 mission
comprised of twin Sentinel-1A and Sentinel-1B satellites launched on 3 April 2014 and
25 April 2016 by the European Space Agency (ESA) provides the chance for mapping SM
with high temporal and spatial resolution [16,17]. Bai et al. [18] used Sentinel-1A data to esti-
mate SM with 1 km over the Tibetan Plateau prairie areas. Ma et al. [19] combined Sentinel-1
and Sentinel-2 data to estimate SM at 100 m spatial resolution. Ezzahar et al. [20] retrieved
SM with 30 m from Sentinel-1 data over bare agricultural soil. Bauer-Marschallinger
et al. [17] developed the first globally deployable SM product at spatial resolution of 1 km
based on the Sentinel-1 satellites using a well-established change detection algorithm.
Balenzano et al. [21] further provided an assessment of the pre-operational SM product
at spatial resolution of 1 km obtained from the Sentinel-1 satellites, leading to an intrinsic
RMSE of ~0.07 m3/m3 globally. These results are helpful for developing high spatial
resolution SM product in precision agriculture using Sentinel-1 data.

Concurrent to the development of sensor technology, many surface backscatter models
are developed and refined to model the observed microwave signal of land surface. Over
the bare soil, the semi-empirical Oh model [22–24] and Dubois model [25] are established
from a ground-based scatterometer datasets with multi-polarization, multi-frequency, and
multi-incidence. The integral equation model (IEM) [26] and improved advanced IEM
(AIEM) [27,28] are physically based models, which can be used for simultaneously simulat-
ing the co-polarization backscatter within the wide range of soil conditions. In vegetated
areas, the total backscatter can be simulated by the theoretical Michigan microwave canopy
scattering (MIMICS) model [29] or Tor Vergata (TVG) model [30–33], and the semi-empirical
Ratio method [34,35] or water cloud model (WCM) [36]. Nevertheless, in these models, the
surface roughness is strongly coupled with SM, which hampers the SM retrieval. Therefore,
the surface roughness has been carefully parameterized for the SM retrieval.

To date, there have been four types of methods proposed to solve the problem of
SM retrieval caused by the absence of surface roughness parameters. One conceivable
method is to use the ground measured roughness parameters directly. For instance, in situ
roughness parameters were used by Bai et al. [37] as input of the soil scattering model
in an arid prairie. Nevertheless, conventional measurement of roughness parameters
is time-consuming and labor intensive, and it is impractical to obtain surface roughness
measurements at large scales [38,39]. Another possible method is to eliminate the roughness
parameters by increasing the number of satellite observations. Bai et al. [40] used the HH-
and VV-polarized backscatter to remove the impact of root mean square (RMS) height.
This method relies on the co-polarization data, which is difficult to satisfy for Sentinel-1.
As known, the surface roughness is quantitatively expressed by the correlation length (l)
and RMS height (s). To address above deficiencies, Zhu et al. [41,42] and Zhu et al. [43]
developed the multi-frequency and the multi-angular framework to retrieve the SM from
multi-SAR-mission, respectively. The third possible method is to combine these two
roughness parameter into one roughness parameter, which can reduce the number of
unknowns. Zribi and Dechambre [44] used the s2/l to characterize the surface roughness.
Taking less concern on the absolute values of roughness parameters, the method of effective
roughness parameters was proposed by Su et al. [45] to parameterize the soil scattering
models, which is based on the hypothesis that the surface roughness remains unchanged
during the study period. This method has been widely used for backscatter simulation
and soil moisture retrieval [18,38,39,46], which all use the concept of effective roughness to
approximate the time-invariant roughness.

Concerning the assumption of invariant effective roughness parameters during the
study period, it may be argued that this assumption will be invalid due to tillage practices
or heavy rainfall event in agricultural fields. For example, Baghdadi et al. [47–49] reported
that usage of different SAR acquisitions to estimate the effective roughness parameters
may diverge significantly even at the same site. In applications, it is often assumed that the



Remote Sens. 2022, 14, 6020 3 of 17

effective roughness parameters are unchanged during the study period. The assumption
of invariant effective roughness parameters may fail due to (i) potential changes of soil
surface being either smooth changes or abrupt changes, or/and (ii) variation of effective
roughness for the same soil surface caused by the uncertainty of SAR observations [50],
the variation of incidence angle [43], and/or frequency [41,42]. Accordingly, a few studies
have investigated whether this assumption is reasonable and whether this method can
still be used for backscatter simulation and soil moisture retrieval using SAR data in
relatively long time series. For instance, Notarnicola [51] proposed a Bayesian method for
SM change detection under different roughness conditions. Zhu et al. [50] developed an
unsupervised change detection method for multi-temporal SM retrieval considering time-
variant roughness parameters. To further contribute to this emerging research topic, three-
year Sentinel-1A data are used to test this assumption from the perspective of backscatter
simulation and SM retrieval over a sparsely vegetated field. To evaluate the time effect of
the optimized parameters, we compute the effective roughness parameters for the same site
at different temporal scales. It should be noted that this study only focuses on investigating
the changes of effective roughness parameters caused by potential changes of soil surface.

The structure of this paper is as follows. The details of the study area, in situ data, and
Sentinel-1A data are presented in Section 2. Section 3 introduces the formulation of the
methodology for backscatter simulation and SM retrieval using the AIEM in combination
with effective roughness parameters. In addition, the change detection method is also
presented as reference for the SM retrieval results. The results of selected effective roughness
parameters, backscatter simulation, and SM retrieval are provided in Section 4. The
optimized and effective roughness parameters for SM retrieval are compared in Section 5. In
addition, the vegetation influence is also considered. Section 6 summarizes the conclusions.

2. Study Area and Data
2.1. Study Area

A relatively sparsely vegetated field within the REMEDHUS (REd de MEDiciòn de la
HUmedad del Suelo) SM monitoring network (41◦8′56”–41◦27′21” N, 5◦13′29”–5◦35′31” W) [52]
located in the central Douro Basin of Spain was chosen as the study area in this paper. The
area of the REMEDHUS is about 1300 km2 with altitude ranging from 700 to 900 m. It
belongs to the continental semi-arid Mediterranean climate with annual precipitation of
385 mm, potential evaporation of 908 mm, and average temperature of 12 ◦C. 78% of the
vegetation types is the rain-fed cereals, which are generally sowed in autumn, and become
mature in early summer.

About 24 ground monitoring stations (Figure 1) were set up from 1999 to 2009, which
measure SM and soil temperature at 0–5 cm (Stevens Hydra probe) automatically with
a time interval of one hour. As shown in Figure 1, the spatial distribution of in situ sites
is uneven. The REMEDHUS network is an important part of the International Soil Mois-
ture Network, and the in situ SM has been widely used to calibrate/validate various
satellite SM products. The SM data used in this study are downloaded from the ISMN
(https://ismn.geo.tuwien.ac.at, accessed on 8 November 2022). In this study, only the SM
data from the station Las Bodegas are selected for the analysis, since this station can repre-
sent the typical vegetation and soil surface conditions in the REMEDHUS network [53,54].
Figure 2a displays the in situ SM (blue line) of station Las Bodegas from 1 January 2016 to
31 December 2018 recorded around the imaging time of Sentinel-1A (Section 2.2). The SM
generally shows seasonal variations (e.g., deceased in May and increased in August). The
topsoil composition includes about 21% clay, 36% sand, and a bulk density of 1.41 g/cm3.

https://ismn.geo.tuwien.ac.at
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2.2. Sentinel-1A Data and Preprocessing

Three-year Sentinel-1A data ranging from 1 January 2016 to 31 December 2018 with
descending orbit are used in this study, which were downloaded from the website of NASA
EARTHDATA (https://search.asf.alaska.edu/#/, accessed on 8 November 2022). The
reason for only choosing the Sentinel-1A data in the descending orbit is due to the fact
that this study only focuses on investigating the changes of effective roughness parameters
caused by potential changes of soil surface. In other words, usages of Sentinel-1A data in
both descending and ascending orbits or/and from multiple relative orbits may also lead
to change of roughness for the same soil surface caused by the variation of incidence angle
of Sentinel-1A observations. Table 1 lists the specific parameters of the Sentinel-1A data.
The preprocessing of the Sentinel-1A data included thermal noise removal, radiometric
calibration, speckle filtering, geometric corrections, radiometric normalization, resample
(1 km width) and reprojection (datum: UTM WGS84). The Lee sigma method was used
to remove the speckle noise of Sentinel-1A data with sigma value of 0.9 and windows
size of 7. The Range-Doppler terrain correction was applied to correct the geometric
distortion during Sentinel-1A imaging. The bilinear sampling technique was used to
resample the Sentinel-1A data into 1 km. Once the preprocessing was complete, the
backscatter (in dB) corresponding to the selected station was extracted. According to
Bauer-Marschallinger et al. [17], backscatter measurements with very high and very low
values are highly unlikely to carry any SM information and thus can be removed. The
threshold for the Sentinel-1A VV polarization was restrained within [–20,–5] dB in this
study. Figure 2 shows that the Sentinel-1A backscatter (black line) almost follows the
dynamic trend of SM (blue line).

Table 1. Information of the Sentinel-1A data.

Parameters Description

Product type Ground range detected
Acquisition mode Interferometric wide swath
Processing level Level-1

Frequency 5.405 GHz
Polarization mode VV, VH

Looks for the azimuth and range directions 1 and 5
Grid spacing for the azimuth and range 10 m

Orbit Descending
Incidence angles 30.56◦ to 46.42◦

Temporal range 1 January 2016–31 December 2018
Temporal resolution 12 days

UTC times 06:25–06:26

2.3. Other Data

In the discussion section, the leaf area index (LAI) was used to parameterize the WCM
for quantitatively evaluate the vegetation influence to the results. In this study, the LAI 8-
day products obtained from the Terra MODIS were used, which were downloaded from the
NASA Goddard Space Flight Center (http://ladsweb.nascom.nasa.gov/data/search.html,
accessed on 8 November 2022). The product was projected to WGS 1984 UTM coordinates
from the original 1 km SIN Grid data, and the spatial resolution was 1 km. The HANTS
filter [55] was employed to smooth the original LAI data in order to suppress the effect of
cloud cover. The cubic spline interpolation technique was used on the smoothed LAI data
to estimate the LAI values of the dates of Sentinel-1A acquisitions. Figure 2b shows the
LAI of station Las Bodegas from 1 January 2016 to 31 December 2018 recorded around the
imaging time of Sentinel-1A. It was found that the LAI is generally lower than 1, indicating
sparse vegetation condition.

https://search.asf.alaska.edu/#/
http://ladsweb.nascom.nasa.gov/data/search.html
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3. Methodology
3.1. Bare Soil Backscattering Modeling

The AIEM was used to simulate the soil backscatter, which is an analytical backscatter
model [27,28]. This model can simulate co-polarized backscatter at a given frequency and
incidence angle. The autocorrelation function (ACF), correlation length, RMS height, soil
dielectric constant (ε), and sensor parameters (wavelength λ and incidence angle θ) are
needed to drive the AIEM. The Dobson dielectric mixing model [56] was used to compute
the soil dielectric constant from the SM with input of soil texture parameters. The AIEM
has been proven to be capable of simulating soil backscatter accurately in relatively wider
range of radar configurations and ground conditions [57] than semi-empirical soil models.
In general, it is deemed that the validation range is constrained within ks < 3.0 [39], which
is suitable for most grassland and agricultural areas without periodical features. The AIEM
is conceptually expressed as,

(σo
HH , σo

VV) = AIEM(λ, θ, ε, s, l, ACF, sand, cllay, density) (1)

where σo
HH and σo

VV represent the HH- and VV-polarized backscatter and the ACF is
characterized by the exponential correlation function. Since the Sentinel-1A provides the
VV and VH backscatter and the AIEM can only simulate co-polarized backscatter accurately
due to no inclusion of the multiple scattering effects in the model [27,28], the results were
limited only to the VV polarization. By comprehensive consideration of the effective range
of the AIEM and the sensor configuration of Sentinel-1A, the RMS height was set from 0.1
to 2.6 cm with 0.1 cm interval, and the correlation length varied from 1 to 30 cm with 1.0 cm
interval (see Table 2). The reason to set these ranges was to fulfil the valid range of applying
the AIEM. The exponential autocorrelation function was adopted in this study due to the
fact that this function has mostly been applied to sparse vegetation condition [14,58,59].

Table 2. Parameters needed for the AIEM.

Satellite configuration Frequency (f ) 5.405 GHz
Incidence angle (θ) 40◦

Surface

SM In situ measurements
RMS height (s) Optimized parameter

Correlation length (l) Optimized parameter
Autocorrelation function exponentiial

Soil texture
Clay 21%
Sand 36%

Bulk density 1.41 g/cm3

3.2. Backscatter Simulation and SM Retrieval Based on AIEM

The AIEM was used to test the assumption on the constant effective roughness param-
eters from the perspective of backscatter simulation and SM retrieval from Sentinel-1A data
over a sparsely vegetated field. In this study, the effect of vegetation was ignored due to the
fact that the vegetation coverage is sparse (see Section 2.3). The validity of this assumption
is further discussed in Section 5.2. The procedures for selecting the effective roughness
parameters, simulating backscatter, and retrieving SM are listed in the following steps.

Step 1: Sentinel-1A data grouping. Three-year Sentinel-1A data were separated as six
different temporal periods, that is “2016”, “2017”, ”2018”, ”2016 + 2017”, ”2017 + 2018”, and
”2016 + 2017 + 2018”, to compute the effective roughness parameters at different temporal
scales. For example, the “2016” stands for the parameters of effective roughness optimized
based on the Sentinel-1A observations acquired in 2016 and “2017 + 2018” represents the
optimized roughness parameters computed from the Sentinel-1A data acquired in 2017
and 2018.

Step 2: Estimation of soil scattering. The VV-polarized backscatter of bare soil was
simulated by the AIEM. The frequency (5.405 GHz) and incidence angle (40◦) were referred



Remote Sens. 2022, 14, 6020 7 of 17

to the sensor configuration of Sentinel-1A (Table 1). The RMS height varies from 0.1 to
2.6 cm with an interval of 0.1 cm and the correlation length varied from 1 to 30 cm with an
interval of 1 cm. The Dobson dielectric mixing model [56] was used to compute the soil
dielectric constant from the in situ SM measured in 2016 with input of soil texture.

Step 3: Computation of root mean square error (RMSE) matrix. The RMSE between
Sentinel-1A observation and AIEM simulation (RMSES1-AIEM) was computed for each
pair of RMS height and correlation length. The size of the RMSES1-AIEM matrix is 26 × 30.

RMSES1_AIEM =

√
1
n ∑n

i=1

(
σo

S1A,i − σo
AIEM,i

)2 (2)

Step 4: Selection of effective roughness parameters. There were two restrictions on the
selection of effective roughness parameters. On one hand, the ratio between RMS height
and correlation length should be less than 0.086, which ensured the effective roughness
parameters below the diagonal line. Under this premise satisfied, the pair of RMS height
and correlation length making the values of RMSES1-AIEM to its minimum were considered
as the final effective roughness parameters in “2016”.

{s, l}e f f ective =

{
s/l < 0.086

min{RMSES1_AIEM}
(3)

Step 5: Steps 2–4 were repeated with the other temporal periods of Sentinel-1A data,
“2017”, “2018”, “2016 + 2017”, “2017 + 2018”, and “2016 + 2017 + 2018”. This means the
effective roughness parameters were selected for each temporal period.

Step 6: Backscatter simulation. With the effective roughness parameters selected at
different temporal periods, the AIEM was implemented to simulate the backscatter from
2016 to 2018. The input parameters of the AIEM were the same under different simulation
cases, and only the roughness parameters were different.

Step 7: SM retrieval. Based on the AIEM implemented with optimized effective
roughness parameters, we used a look-up-table (LUT) method to retrieve SM from Sentinel-
1A data. The LUT was built using calibrated AIEM with SM ranging from 0.01 m3/m3 to
0.35 m3/m3 with 0.01 m3/m3 interval. The maximum value of SM referred to the dynamic
range of in situ SM. The cost function C is written in Equation (4). The SM corresponding
to the minimum S was considered as the retrieved SM.

C = min
{(

σo
S1A,i − σo

AIEM,i
)2
}

(4)

3.3. Change Detection Method for SM Retrieval

The TU Wien Change Detection Model [60] was adopted for Sentinel-1 SM retrieval,
which interprets the changes of backscatter as changes in SM, and the vegetation structure
and surface roughness are treated as static parameters. This method was established based
on relatively long time series backscatter data. For the SM estimation, the Sentinel-1A
observation at time t and observation angle (θ) were normalized to a reference angle (Θ)
and linearly scaled between wet and dry reference values,

SSM(t) =
∆σo(Θ, t)

σo
wet(Θ)− σo

dry(Θ)
(5)

where ∆σo(Θ, t) is the change in normalized backscatter (relative to dry conditions). It is
worth pointing out that the SM estimation from (5) is not the volumetric SM but the relative
surface soil water saturation, and it is written as SSM. The reference angle was chosen as
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40◦ as it is close to the center location in the range of local incidence angle in Sentinel-1A
observations [17]. The above Equation (5) can be re-written as,

SSM(t) =
σo(40, t)− σo

dry(40)

σo
wet(40)− σo

dry(40)
[%] (6)

In (6), the backscatter values were normalized to the reference 40◦ as follows,

σo(40, t) = σo(40, t)− βr(θ − 40◦)[dB] (7)

βr = aS + bσo + c [dB/◦] (8)

where S stands for the sensitivity (S = σo
wet(40)− σo

dry(40)), σo is the mean backscatter for
the selected study period. The coefficients were constant as [17],a

b
c

 =

−0.01725
0.00553
0.02546

 (9)

For each grid point, the dry and wet reference backscattering coefficients were esti-
mated through the 10% and 90% of the normalized backscatter time series as,

σo
dry(40) =

0%− d
k

[dB] (10)

σo
wet(40) =

100%− d
k

[dB] (11)

k =
90%− 10%

σo
P90

(40)− σo
P10

(40)
(12)

d = 90%− kσo
P90

(40) (13)

Finally, the relative soil moisture SSM was transferred to the volumetric soil moisture
based on the minimum and maximum values of the in situ measurements.

SM = SSM× [max(SMin−situ)−min(SMin−situ)] + min(SMin−situ) (14)

3.4. Accuracy Evaluation

The following errors metrics, i.e., Bias, RMSE, ubRMSE, and R, were adopted to assess
the accuracy of backscatter simulation and SM retrieval.

Bias =
1
n

(
∑n

i=1 Vest −∑n
i=1 Vobs

)
(15)

RMSE =

√
1
n ∑n

i=1(Vest −Vobs)
2 (16)

ubRMSE =
√

RMSE2 − Bias2 (17)

R =
∑n

i=1
(
Vest −Vest

)(
Vobs −Vobs

)√
∑n

i=1
(
Vest −Vest

)2
√

∑n
i=1
(
Vobs −Vobs

)2
(18)

where Vobs indicates the Sentinel-1A backscatter or the in situ SM, Vest indicates the AIEM
simulation or the retrieved SM, Vobs and Vest are their average values, and n is the number
of sample data.
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4. Results
4.1. Effective Roughness Parameters

The effective roughness parameters are selected during different temporal periods
complying with the two restrictions in Equation (3). Figure 3 displays the distribution of
the RMSES1_AIEM between the Sentinel-1A observation and AIEM simulation along the
directions of RMS height and correlation length at different temporal periods. Figure 4
displays all the optimized parameters at different temporal periods. Table 3 lists the final
selected effective roughness parameters.

Figure 3 shows that the distributions and changing trends of the RMSES1_AIEM com-
puted at different temporal periods are similar. As RMS height and correlation length
increase, the RMSES1_AIEM decreases first and increases later on. This indicates that the op-
timized values for the RMS height and correlation length are located at the inflection points.
In addition, it is noticed that there are some contours distributed in the RMSES1_AIEM.
On one hand, the combination of RMS height and correlation length on the contours can
achieve the same RMSES1_AIEM, which means there are multiple solutions. On the other
hand, the combination of RMS height and correlation length on the contours verifies that
the impact of increased RMS height caused to the RMSES1_AIEM can be balanced by in-
creased correlation length. Taking into account the interaction between the RMS height and
correlation length, only the combinations of RMS height and correlation length below the
diagonal line (Figure 4) are considered as the possible optimization results. The changes of
the RMSES1_AIEM located outside the defined range are not discussed here.
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From Figure 4, it can be seen that the possible effective roughness parameters (corre-
sponding to the five smallest RMSES1_AIEM are distributed into two different sub-spaces,
which is divided by diagonal, which can also be found in Figure 3. Only the sub-space
below the diagonal is considered as the possible optimization results. It is interesting
that the optimized possible roughness parameters gather together. The minimum and
maximum of optimized RMS height are 0.9 to 1.3 cm, and the optimized correlation length
varies from 14 to 30 cm. Table 3 lists the final effective roughness parameters optimized at
different temporal periods, which are very close to each other (circles with red edge). The
optimized value of RMS height equals 1.3 cm except in 2018 (1.2 cm) and the correlation
length ranges from 27 to 30 cm. It can be said that the effective roughness parameters
optimized at different temporal periods tends to be consistent. Though the roughness
parameters may be changed at adjacent acquisitions due to tillage practices or heavy rainfall
event in agricultural fields [47–49], the effective roughness parameters tend to be consistent
on an annual scale.

Table 3. Effective roughness parameters optimized at different temporal periods.

Period of Calibration Datasets
Effective Roughness

RMS Height (cm) Correlation Length (cm)

2016 1.3 30
2017 1.3 28
2018 1.2 27

2016 + 2017 1.3 29
2017 + 2018 1.3 30

2016 + 2017 + 2018 1.3 30

4.2. Backscatter Simulation Results

The AIEM in combination with the selected effective roughness parameters was im-
plemented to simulate the VV-polarized backscatter with in situ SM from 1 January 2016 to
31 December 2018. Table 4 presents the evaluation metrics between the Sentinel-1A observa-
tion and AIEM simulation. The statistical indicators illustrate that the simulated backscatter
with different combinations of effective roughness parameters was almost the same with
R values all equal to 0.616 and RMSE ranging from 1.133 to 1.163 dB. The Bias values
indicate the simulated backscatter was overestimated with effective roughness parameters
computed in 2017 and 2016 + 2017 and underestimated in 2016, 2018, 2017 + 2018, and
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2016 + 2017 + 2018. Analyzed by the evaluation metrics, the effective roughness parameters
computed at different temporal periods achieved similar simulation results.
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Table 4. Evaluation metrics between the Sentinel-1A backscatter and AIEM simulation.

Period of Calibration Datasets Bias (dB) RMSE (dB) RMSE (dB) R (-)

2016 −0.019 1.133 1.133 0.616
2017 0.260 1.163 1.133 0.616
2018 −0.252 1.162 1.135 0.616

2016 + 2017 −0.118 1.139 1.133 0.616
2017 + 2018 −0.019 1.133 1.133 0.616

2016 + 2017 + 2018 −0.019 1.133 1.133 0.616

Figure 5 displays the Sentinel-1A observation and AIEM simulation with different
effective roughness parameters acquired at different temporal periods. The plots show that
the backscatter simulated by the calibrated AIEM generally captures well the dynamics
of Sentinel-1A observation. The influences of RMS height and correlation length on the
backscatter simulation have also been distinguished. The RMS height equals 1.2 cm when
the Sentinel-1A data in 2018 are used, which is slightly lower than others (1.3 cm). This
leads to the lower simulated backscatter (green line in Figure 5). With the increase of
optimized correlation length, the simulated backscatter decreases. Nevertheless, there is
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little difference between the simulated backscatter with different optimized RMS height and
correlation length, which is also reflected in the evaluation metric (Table 4). The computed
Bias, RMSE, and R are very close to each other for the six cases. These results validate that
assumption of the constant of effective roughness parameters is reasonable, which can be
adopted for parameterizing the roughness in the AIEM for backscatter simulation at least
in three years. It should be noted that the simulated backscatter for 2017 seems to have
much larger error than the other 2 years using various effectiveness roughness, which is
mainly due to the fact that the in situ SM does not well represent the actual condition of
satellite scale.
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4.3. SM Retrieval

The SM was directly retrieved from Sentinel-1A data from 1 January 2016 to 31 Decem-
ber 2018 using the established LUT with the calibrated AIEM. Table 5 presents the statistical
errors computed between the in situ data and SM retrievals. It can be found that there
are few differences noted between different effective roughness parameters with R values
floating at 0.685 and RMSEs ranging from 0.049 to 0.052 m3/m3. Overall, the error metrics
obtained with the calibrated AIEM are comparable with the results recently reported for
SAR-based SM retrievals. For example, Ma et al. [19] combined Sentinel-1 and Sentinel-2 for
retrieving SM with RMSE ranging between 0.039 m3/m3 and 0.078 m3/m3. Bai et al. [18]
obtained the SM retrievals from Sentinel-1A data with RMSE varying from 0.076 m3/m3 to
0.103 m3/m3. In addition, the evaluation metrics show this method achieved better perfor-
mance for SM retrieval than the change detection method. It is concluded that the accuracy
of retrieved SM is in line with the state-of-the-art retrieval results from Sentinel-1 data.

Table 5. Statistical errors computed between the in situ measurement and SM retrievals.

Retrieval Method Period of
Calibration Datasets Bias (m3/m3) RMSE (m3/m3) RMSE (m3/m3) R (-)

AIEM

2016 0.006 0.052 0.052 0.685
2017 −0.008 0.049 0.049 0.684
2018 0.017 0.056 0.053 0.689

2016 + 2017 −0.001 0.050 0.050 0.684
2017 + 2018 0.006 0.052 0.052 0.685

2016 + 2017 + 2018 0.006 0.052 0.052 0.685
Change detection 2016 + 2017 + 2018 0.036 0.065 0.054 0.658
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Figure 6 presents the in situ and retrieved SM based on calibrated AIEM with different
effective roughness parameters and the retrieval results of the change detection method.
The plots illustrate that the retrieved SM captures well the seasonal dynamics of in situ SM.
The SM decreases from spring to the later summer and then increases toward to the winter.
The retrieved SM measurements using different effective roughness parameters are very
close to each other, and their amplitude and dynamic change are very similar. However,
it is worth pointing out that the retrieved SM is overestimated on some dates. This also
confirmed the possible change of roughness parameters at adjacent acquisition of Sentinel-
1A, which is not against with the assumption on the effective roughness parameters. The
dynamics of SM retrieved from change detection method almost follow the change of the
ones from the AIEM, while some values are overestimated. From the dynamics analysis
and statistical indicators, it is concluded that the effective roughness parameters can be
used for parameterizing the AIEM and then used for SM retrieval from Sentinel-1A data at
least three years over sparsely vegetated fields.
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5. Discussion
5.1. Comparison between Optimized and Effective Values

During the process of searching for optimization roughness parameters, the RMS
height and correlation length located above the diagonal are ignored. For example, the
best results optimized for 2017 are 1.7 and 2.0 cm for RMS height and correlation length,
respectively, and the selected effective parameters are 1.3 cm and 28 cm for RMS height and
correlation length, which is the second-best result. For another example, the best results
optimized for 2016 + 2017 are 2.6 cm and 5.0 cm for RMS height and correlation length
and the selected effective parameters are 1.3 cm and 29 cm for RMS height and correlation
length, which is the second-best result, respectively. The statistical metric between the
Sentinel-1A backscatter and AIEM simulation with the best optimization parameters are
listed in Table 6. It is found that the results of backscatter simulation and SM achieved from
the effective roughness parameters are almost the same as the results achieved with the
best optimization parameters. This proves the rationality of the constraint condition on the
selection of effective roughness parameters.
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Table 6. Statistical metric between Sentinel-1A observation (in situ SM) and AIEM simulation
(retrieved SM) with the best optimization parameters.

Period of
Calibration Datasets

Backscatter Simulation SM Retrieval

Bias (dB) RMSE (dB) RMSE (dB) R (-) Bias (m3/m3) RMSE
(m3/m3)

RMSE
(m3/m3) R (-)

2017 −0.200 1.149 1.132 0.616 0.005 0.050 0.050 0.683
2016 + 2017 −0.152 1.142 1.132 0.616 0.002 0.050 0.050 0.683

5.2. Vegetation Effect

The assumption on the effective roughness parameters was tested over a sparsely
vegetated field in this study, and the impact of vegetation was ignored. To further test
whether the assumption is valid, the AIEM was coupled with the WCM to investigate the
contributions of soil and vegetation scattering following previous works [18,46]. The effec-
tive roughness parameters computed at “2016 + 2017 + 2018” were used as the parameter
values of AIEM, and the coefficients A and B of WCM are optimized using the least square
method. The vegetation parameter needed for parameterizing the vegetation scattering
and attenuation in WCM was characterized by the LAI (Section 2.3). A detailed description
of the LAI can be seen in Han et al. [46]. Using the Sentinel-1A data acquired from 2016 to
2018, the computed coefficients A and B were 0.1109 and 0.0248, respectively.

Figure 7 displays the Sentinel-1A backscatter and WCM simulation from 2016 to
2018. It was found that the vegetation contribution complies with the trend of LAI. The
maximum vegetation contribution occurs in May and June, and the minimum occurs
in November and December. The soil contribution is much larger and higher than the
vegetation contribution, which is very close to the total simulate backscatter of WCM. This
confirms that the vegetation contribution can be ignored during the study period, even in
the peak growth of vegetation.
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6. Conclusions

In this study, the AIEM is used to test the assumption on the constant effective
roughness parameters for parameterizing the surface roughness. Three years of Sentinel-1A
data acquired in the REMEDHUS SM network is used. To evaluate the temporal dynamic
of the effective roughness parameters, the effective roughness parameters are computed
at different temporal periods, including 2016, 2017, 2018, 2016 + 2017, 2017 + 2018, and
2016 + 2017 + 2018. During each temporal period, the roughness parameters are assumed
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to be unchanged. The RMSE between Sentinel-1A observation and AIEM simulation
are minimized to find the effective roughness parameters. Once the effective roughness
parameters are determined, they will be used as input of the AIEM for simulating Sentinel-
1A backscatter and retrieving SM from 1 January 2016 to 31 December 2018. The Sentinel-1A
observation is reproduced well by using the calibrated AIEM. In addition, the retrieved
SM is in line with the in situ measurement, and the seasonal trend of SM is well captured.
The effective roughness parameters method achieved better performance for SM retrieval
than the change detection method. The differences between backscatter simulation and SM
retrieval caused by the optimized and effective values have been carefully discussed, which
further validate the feasibility of the effective roughness parameters for describing the
surface conditions. In conclusion, the investigations show that the assumption regarding
the constant effective roughness parameters is reasonable, and this method can be used for
helping backscatter simulation and SM retrieval. It should be noted that only one station of
REMEDHUS network was used for the analysis given the fact that this station can represent
the typical vegetation and soil surface conditions in this area, while other stations can also
be implemented to confirm the finding drawn upon in this study in the future work. In
addition, further studies should be undertaken to validate this method on different land
covers in longer time series by combining Sentinel-1A and Sentinel-1B data.
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