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Abstract: Large-area, artificial floating marine litter (FML) targets were deployed during a controlled
field experiment and data acquisition campaign: the Plastic Litter Project 2021. A set of 22 Sentinel-2
images, along with UAS data and ancillary measurements were acquired. Spectral analysis of the
FML and natural debris (wooden planks) targets was performed, along with spectral comparison and
separability analysis between FML and other floating materials such as marine mucilage and pollen.
The effects of biofouling and submersion on the spectral signal of FML were also investigated under
realistic field conditions. Detection of FML is performed through a partial unmixing methodology.
Floating substances such as pollen exhibit similar spectral characteristics to FML, and are difficult
to differentiate. Biofouling is shown to affect the magnitude and shape of the FML signal mainly in
the RGB bands, with less significant effect on the infrared part of the spectrum. Submersion affects
the FML signal throughout the range of the Sentinel-2 satellite, with the most significant effect in
the NIR part of the spectrum. Sentinel-2 detection of FML can be successfully performed through
a partial unmixing methodology for FML concentrations with abundance fractions of 20%, under
reasonable conditions.

Keywords: marine litter/debris; Sentinel-2; floating marine litter detection; spectral analysis; Plastic
Litter Project; biofouling; submersion

1. Introduction

Between 19 and 23 million tons of plastic waste are deposited in aquatic environments
every year, and if emissions are not curbed, this figure is estimated to reach up to 53 million
tons by 2030 [1]. Macroplastics (i.e., plastic items bigger than 2 cm), can persist for decades
in the marine environment and their accumulation in a wide range of habitats has been
widely reported since the 1990s. The long-term environmental impacts of this contaminant
are still basically unknown [2], however, due to its ubiquitous distribution, plastic pollution
is now acknowledged as a planetary threat and a global ecological crisis, which poses
significant risks to biodiversity, economy and human health [3,4].

Worldwide governments, NGOs and private businesses are rolling out multiple pre-
vention and mitigation strategies, however, monitoring the efficacy of these measures
is still hampered by the lack of harmonized and large-scale monitoring tools [5]. Field
measurements are too scattered in space and time, and no data are available for most of the
ocean surface. There is wide geographical variability in litter abundance, which increases
the difficulty of analysing its spatio-temporal trends [6].
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Floating macroplastics have been traditionally monitored using vessel-based or aerial-
based surveys, with inherent uncertainty in the data obtained because of the different
protocols adopted [7] and meteo-marine conditions. This variability also depends on
meteorological conditions or the presence of relevant ocean dynamics, such as frontal
areas, coastal currents or surface convergence zones enhancing offshore accumulation or
dispersion of plastic items [8]. To refine our understanding of the global plastic budget,
and to support more effective management strategies, sustained observations over larger
spatial scales are urgently required.

Within this framework, satellite observations have the potential to significantly con-
tribute to the global monitoring of floating litter [9]. A number of studies have focused on
the satellite remote sensing of floating marine litter and debris: non-exhaustive examples in-
clude performing controlled lab experiments [10–17], controlled field experiments [18–21],
examining the spectral characteristics of FML and other floating materials [22–26], propos-
ing spectral or AI-based FML detection approaches or supplementary methodologies [27–36],
or generally assessing the feasibility of satellite remote sensing of FML [37,38]. A more
inclusive and concise critical review of state of the art approaches can be found in a recent
publication [39].

In this study we present the spectral analysis results performed on data acquired
through a field acquisition campaign (Plastic Litter Project 2021—PLP2021) using artificial
floating targets. Spectral comparison between the acquired data and other floating features
is performed, along with FML detection using a partial unmixing methodology. Results
show significant spectral similarity between FML and other floating materials, and the
possibility of identification of FML pixels with an abundance fraction of as low as 20%
using partial unmixing.

2. Materials and Methods
2.1. Overview of the Plastic Litter Project 2020–2021

The PLPs are controlled field experiment and data acquisition campaigns using artifi-
cial floating marine litter and natural debris targets. The projects have been running since
2018 with the main goal of understanding the spectral characteristics of FML and other
surface floating materials, producing in situ validated satellite and UAS imagery that can
act as calibration and validation data, and assess the possibility of remote detection and
classification of FML.

The PLP2021 was divided into two main phases. The first phase of the project was
dedicated to the selection of a characteristic reference material to be used in the FML targets
and to the design of the targets, as well as all the licensing and approvals needed for
the long-term acquisition campaign, while the second phase of the project was the actual
acquisition campaign with construction and deployment of the newly developed, circular,
long-term deployment targets and the subsequent analysis of the obtained dataset.

The main project objectives were:

1. To develop long-term deployment targets for extended acquisition campaigns that
would not require re-deployment for each satellite overpass.

2. To acquire the spectral response of a 10 m × 10 m Sentinel-2 pixel that is fully cov-
ered by the target materials, including the FML reference target material, a wooden
target material approximating natural floating debris aggregations and a mixed
target configuration.

3. To run a long-term data acquisition campaign during the summer–autumn period of
2021 and acquire a range of data including Sentinel-2 and high-resolution UAS data.

4. To assess the effects that environmental factors such as biofouling and submersion
depth have on the spectral response of FML.

5. To assess the capability of remote detection of floating marine litter with partial
unmixing methodologies using the Sentinel-2 satellite.
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2.2. Experimental Set-Up–Acquisition Campaign

The PLP2021 acquisition campaign took place during the months of June to early
October 2021 in the Gulf of Gera in the Island of Mytilene in Greece (Figure 1). An
anchoring system designating a 50 m × 100 m deployment area, consisting of 6 large-
volume anchoring buoys attached to concrete blocks set on the seafloor, was put in place.
The anchoring system adhered to all local regulations regarding maritime security, sea
surface occupation and environmental protection. The large-area targets were tethered to
the buoys and remained inside the deployment area throughout the 4-month acquisition
period. The targets’ size was designed so that a 10 m × 10 m Sentinel-2 pixel would be fully
covered by the target materials, regardless of the targets’ position in the Sentinel-2 image.
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Figure 1. Location map showing the study area in the Island of Lesvos. Top right: Sentinel-2 subscene
of the deployment area showing the HDPE (top) and wooden targets. (Bottom) UAS image of the
deployment area showing HDPE and wooden targets.

Two types of targets were deployed for PLP2021, with a third target configuration
resulting from the combination of the two target types:

(a) HDPE mesh target representative of floating marine litter—the target is comprised
of a single 28 m diameter ring, constructed using four 22 m long sections of 63 mm
diameter HDPE irrigation piping, connected using compression fittings. The HDPE
mesh is composed of a series of 1.2 m wide HDPE mesh sheets stitched together and
attached to the target ring using 5 mm thin nylon rope. The HDPE mesh was selected
as a target material to be representative of FML aggregations, after consideration
between a series of materials, since it fulfilled a set of requirements; namely: spectral
signature representative of FML, ability to construct large area targets, durability
for long-term deployment, availability, and cost. The white HDPE mesh colour
was chosen based on the fact that white and transparent are the most common
colours of plastic marine litter [10]. The mesh has a density of 0.955 gr/cm3, it is
produced through extrusion and is coloured using an HDPE-based, food-safe paint at
a 0.8% w/w ratio.

(b) Wooden planks target representative of natural floating woody debris—the wooden
target was constructed using 342 wooden planks, each 4 m long and 22 cm wide. The
planks were tethered together in groups of 9 planks, 38 groups in total, connected
in a rectangular grid pattern, creating a formation that encloses a theoretical 28 m
diameter circle, to achieve the same pixel area coverage as the HDPE mesh target.

(c) Mixed target configuration representative of mixed natural and plastic floating debris—the
mixed target configuration was produced by combining both targets into a single
set-up. The wooden planks target was positioned underneath the HDPE mesh target,
effectively taking up the space of the HDPE mesh holes.
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2.3. Overview of Acquired Data

During the PLP2021 acquisition campaign spanning from the 11 June 2021 to the
4 October 2021, we acquired a large amount of satellite, UAV and in situ ancillary data of
the 3 artificial FML targets. The acquisition campaign was centred around the Sentinel-2
acquisition plan, with additional data acquisition including: very-high-resolution RGB
images using a DJI Phantom 4 RTK drone, hyperspectral data in the range of 400–1000 nm
using a Bayspec OCI-F Hyperspectral Imager (about 3 cm spatial resolution and 240 bands)
on board a UCD S-1000 hexacopter, in situ hyperspectral measurements in the range of
400–900 nm using an Oceanview spectrometer and ancillary data including wind speed
and direction, light intensity and water turbidity using a Secchi disk.

A total of 22 cloud-free Sentinel-2 images of the deployment area were acquired during
the PLP2021 data acquisition campaign. The large amount of acquired data allows for a
comprehensive spectral analysis of the HDPE mesh, wooden and mixed target signatures.
Additionally, the long-term deployment of the targets presents the ability to assess the
effects of biofouling and submersion on the spectral response of floating marine debris.

All acquired Sentinel-2 data are available in the Zenodo repository “Plastic Litter
Project 2021 dataset” (doi 10.5281/ZENODO.7085112, accessed on 22 September 2022) [40].

One of our main goals was the assessment of the effects that a set of parameters have
on the spectral response of FML. An effort was made to assess the different parameters
individually and independently. For this reason, we have categorised the data based on the
conditions during acquisition (see Table 1), and have isolated these in order to account only
for the parameter under investigation (e.g., to assess the effects of biofouling on the target
signatures we do not examine data in which the target was also partially submerged under
the water surface).

2.4. Sentinel-2 Data Pre-Processing

Sentinel-2 Level-1C and Level-2A data are downloaded after each acquisition from
the Copernicus Open Access Hub. All Sentinel-2 L1C images are atmospherically corrected
with the ACOLITE (v. 20210802) atmospheric correction processor for aquatic scenes, using
the dark spectrum fitting (DSF) approach [41]. The DSF works by using two main assump-
tions to estimate the atmospheric path reflectance: (i) the atmosphere is homogeneous over
a certain extent; and (ii) the scene contains pixels with zero reflectance, in at least one of the
sensor bands.

Land pixels are masked through the application of a geography-based land mask of
the study area. This ensures that all land surfaces are correctly removed from the scene,
along with cloud shadow pixels over land surfaces. The land mask includes near-shore
areas of shallow waters (at about 30 m from the coastline) that, due to bottom reflectance,
can significantly affect the detection results.

Cloud masking is performed through the ACOLITE processor which uses the SWIR
Sentinel-2 band 10 at 1375 nm to detect and mask cirrus clouds, based on a given reflectance
threshold (0.005 on default). Additionally, the cloud mask shape files for opaque and cirrus
clouds in the Sentinel-2 L1C products are used as well as the L2A SCL thin cirrus mask.
Both the ACOLITE SWIR threshold and the Sentinel-2 cloud masks can successfully be
used to mask dense clouds, however cloud edges and shadows are not removed from the
scene. Hence, a buffer can be applied to remove cloud edges, with cloud shadows over
land being removed by the land mask.

Sun glint is a significantly restricting factor in remote sensing applications over water,
especially for close-to-nadir viewing satellites such as the Sentinel-2. Additionally, besides
the sun glint produced due to the viewing geometry of the sensor and sun angles, aquatic
scenes from high resolution satellites such as Sentinel-2 are also subject to wave glint that
is produced by the sea surface texture. While wave glint can potentially be corrected for,
strong direct glint needs to be excluded from further processing. Pixels affected by strong
glint are masked out using a brightness threshold on the 2200 nm SWIR2 Sentinel-2 band.
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Glint correction is not performed to avoid interference with the FML signal, since most glint
correction methodologies make use of the SWIR or NIR bands to estimate the glint signal.

Table 1. State of target and environmental conditions for each acquisition.

Acquisition State * Biofouling Wind Secchi Depth

20210611 floating no low -

20210621 floating no no 8 m

20210626 floating no no -

20210701 floating no low 8.5 m

20210706 floating low no 8 m

20210711 floating mid high 6.8 m

20210716 floating mid no 8 m

20210721 floating mid/high low 8 m

20210726 floating mid/high high 6.8 m

20210731 floating high no 8 m

20210805 floating high no 8 m

20210810 floating high low 8 m

20210815 submerged high - -

20210820 submerged high mid -

20210825 part sub high no -

20210830 part sub low low -

20210904 mix floating low mid -

20210909 mix part sub mid mid -

20210914 mix mostly sub mid high 5 m

20210919 mix mostly sub mid mid 7 m

20210924 mostly sub mid/high - -

20211004 mostly sub high high -
* State: floating: on top of surface with parts above, part sub: mostly on surface with parts below at 0.1–0.5 m depth,
mostly submerged: below the surface at depths up to 1 m max, submerged: majority of target at depths greater than
1 m. Biofouling: no, low, mid, high (relative). Wind: no: <3 m/s, low: 3–5 m/s, mid: 5–8 m/s, high: >8 m/s.

2.5. Spectral Analysis

In recent publications, Hu et al. have shown that when working with data from the
Multispectral Instrument (MSI) of the Sentinel-2 satellite, the spectral shapes of floating
matters present artificial distortions [25,26,42], specifically in the 20 m red-edge and NIR
bands. In a nutshell, due to the MSI’s intrinsic properties (different band resolutions
(Table 2), along with band co-registration issues), the generally low abundance fractions of
floating matters in mixed pixels resulting in increased contribution of the water endmember
and the resampling of the MSI bands, the resultant spectral shapes of floating-matter-
containing pixels present unrealistic troughs or peaks at the 20 m band reflectance.

In order to overcome these issues, Hu [42] proposes that the spectral analysis and
visualization should be performed on a 5 × 5 pixel mean, along with the subtraction of the
neighbouring water background pixels, since the water contribution to the overall mixed
pixel spectrum can be significant. Figure 2 below shows the 5 × 5 pixels that are used
to extract the spectral signature of the target materials. It can be seen that a significant
proportion of the 5 × 5 pixels do not contain a target material fraction. Hence, the resultant
spectral profile will correspond better to the correct spectral shape of the given materials,
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however the magnitude of the spectral response will be lower. Equation (1) below, as
presented in [25], is used to calculate ∆R:

∆R = Rtarget − Rwater (1)

where: Rtarget is the 5 × 5 averaged target reflectance for each band and Rwater is the
reflectance of neighbouring water pixels.
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Figure 2. Sentinel-2 cut-out of the PLP2021 deployment area showing the HDPE and wooden planks
targets with the corresponding 5 × 5 pixel averages used for spectral analysis.

Table 2. Sentinel-2 MSI spectral bands characteristics.

Band Central Wavelength (nm) Bandwidth (nm) Resolution (m)

B2 492 65 10

B3 560 35 10

B4 665 30 10

B5 704 15 20

B6 740 15 20

B7 783 20 20

B8 833 115 10

B8a 865 20 20

B11 1610 90 20

B12 2190 180 20

Additionally, the dark spectrum fitting DSF algorithm used here for atmospheric cor-
rection uses the SWIR bands to perform the aerosol correction. This results in unrealistically
lower reflectance values for the target materials in the SWIR region of the spectrum and
hence cannot be assumed to produce a representative spectral signature in that domain. For
this reason, the spectral plots presented in this paper omit the two SWIR bands of the MSI.
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Equation (2) below is used to calculate spectral angles (in degrees) between the differ-
ent spectral profiles [43]:

Spectral angle = cos−1[(
Σxiyi√

Σx2
i

√
Σy2

i

)] (2)

where: x, y are reflectance values of two different spectra for each band.

2.6. Spectral Indices

Spectral indices analysis is performed to assess the spectral separability of the above-
mentioned classes using two spectral indices: FDI [27] and NDVI. The indices are computed
for the 22 Sentinel-2 images acquired during the PLP2021 acquisition campaign and a series
of different images of surface features (marine mucilage off the coast of Lemnos, pollen of
the coast of Mytilene, wakes and sea foam).

FDI = RNIR − R′NIR

R′NIR = RRE2 + (RSWIR1 − RRE2)× (λNIR−λRED)
(λSWIR−λRED)

× 10
(3)

NDVI =
(RNIR − RRED)

(RNIR + RRED)
(4)

2.7. Reversed Spectral Unmixing

Through the large area of the deployed targets, we have achieved a full coverage of a
single 10 m× 10 m Sentinel-2 pixel. However, the target material structure is such that does
not fully cover the area of the target (due to the holes in the HDPE mesh), and this results
in a partial contribution of the water leaving reflectance to the overall target response.
By calculating the coverage of the mesh and performing a reversed spectral unmixing
calculation (Equation (5)) [19] we can produce a signature that is in theory representative of
solely the HDPE material and that can be used as a more suitable endmember for detection
by partial unmixing.

RTarget = χ RHDPE + (1 − χ) RWater => RHDPE = [RTarget − (1 − χ) RWater]/χ (5)

where: RTarget is the central pixel fully covered by the target material, RHDPE is the the-
oretical HDPE spectral signature and RWater is the water reflectance leaving from the
surrounding pixels.

2.8. Partial Unmixing

Figure 3 below presents the processing workflow for the classification of pixels con-
taining FML. FML detection is performed by the matched filtering algorithm. Matched
filtering (MF) is a process commonly used in a variety of applications in order to detect
the presence of a known signal or signature, in a mixed signal of unknown components
and/or noise [44]. MF can be used to calculate the abundance of a known endmember by
performing a partial unmixing, without the need to define all the endmembers present in
a pixel. In our case, only the plastic target signatures (the pure signature from the large
surface target and the calculated signature from reverse spectral unmixing) will be the
endmember in question. Similar to linear spectral unmixing, MF uses a linear model for
sub-pixel analysis, but removes the requirement to determine all the endmembers by max-
imising the response of a known endmember and suppressing the signal of the unknown
background. The main result of the MF processing is a greyscale raster that contains the
values of the abundance fraction of the endmember in question for each image pixel. A
simple band math calculation can be subsequently performed in order to exclude all pixels
with abundance fraction values below a given threshold. Thus, the final result is a binary
classification band containing all pixels above the set MF threshold.
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Any number of available bands can be used on the basis of their significance for the
specific application. Here, we use two different band combinations: one using the four
10 m Sentinel-2 RGB and NIR bands at 492, 560, 665 and 833 nm, one using also the 20 m
red-edge and NIR bands at 704, 740, 783, 865 nm. The two different band combinations
are examined in order to assess their suitability to detect the maximum possible number
of pixels and also to discriminate between FML and other floating matters (such as the
wooden target) and minimise the number of false positives.

3. Results
3.1. Spectral Analysis

Spectral analysis is centred around the Sentinel-2 data. Figure 4 below shows the
mean spectral profiles of the HDPE, wooden planks and mixed targets, after the 5 × 5 pixel
averaging and the water background subtraction. The HDPE spectral plot shows a re-
flectance increase from the blue to the red wavelength and a generally flat profile from the
red to NIR wavelengths. This is consistent with lab-measured profiles presented in relevant
literature [12] and very similar to the hyperspectral data of the HDPE mesh (Figure A1).
An issue that arises with the 5 × 5 pixel averaging and the water background subtraction is
the significant reduction in terms of the magnitude of the spectral profiles of the examined
floating matters, when the coverage area is significantly smaller than the 5 × 5 pixel averag-
ing area, as is the case here (Figure 2). Although the shape of the spectral profile is relevant,
the magnitude shown here is not representative of the materials, if these were to cover the
whole of the 5 × 5 pixel area. The standard deviation between the different acquisition
dates is generally very similar for the different bands, showing a generally stable spectral
profile in terms of spectral shape.

The wooden planks target plot exhibits spectral features representative of woody
debris, with a general increase from the blue to the NIR wavelengths, while the mixed target
presents an intermediate profile more closely resembling the HDPE target spectral profile.
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SWIR bands, error bars standard deviation of HDPE mesh target central pixel reflectance values.

Surface floating features such as floating vegetation and natural debris can have
spectral features very similar to those of floating marine litter [24–27]. Hence, spectral
comparison with these types of floating features is important in order to investigate the
spectral separability of those features against FML. Here, we compare two floating features
most relevant to the Mediterranean and surrounding seas with FML: floating aggregations
of marine mucilage (sea snot) from the 2021 outbreak originating in the Sea of Marmara,
and pollen surface concentrations around the island of Lesvos in April of 2022.

The HDPE mesh target has similar spectral features (Figure 5) to marine mucilage (sea
snot) (2021 outbreak mainly originating in the Sea of Marmara), however the spectral angle
between the mean HDPE signature and sea snot signatures indicates that FML and sea snot
can be distinguished using spectral classification methodologies. However, the spectral
signature of sea-snot-containing pixels presented here exhibits a slightly different spectral
shape from what is shown in [26]. This could be due to the fact that the sea snot examined
here has been floating for an extended period of time, travelling from the Sea of Marmara
to reach the southern and eastern coasts of the Island of Lemnos (see Figure 5). Hence, it is
possible that its spectral characteristics have been altered, specifically with regard to the
presence of photosynthetically active constituents, or a different sea snot composition and
floating matters in the sea-snot-containing pixels altogether. Additionally, the different
spectral response shown here can potentially be attributed to the different atmospheric
correction approach adopted (aerosol correction vs. Raleigh correction). It is worth noting
that the “brighter” sea snot pixels examined here are mostly dominated by the spectral
shape of the floating matter and subtraction of the neighbouring water pixels’ contribution
does not significantly affect the resultant spectral shape.

Pollen, on the other hand, presents a spectral shape much more similar to the HDPE
target than that of sea snot. With a spectral angle of less than 5 degrees between pollen and
the HDPE target, indicating a significant similarity, the two floating matters are shown to
be very difficult to discriminate using spectral classification methodologies. Similar to the
bright sea snot pixels, in the case of the higher magnitude pollen pixels, which are from
a very bright area of the pollen-containing windrow, it is very likely that the abundance
fraction of pollen is quite high, and as such the pollen reflectance spectrum dominates
the pixels’ response. Hence, the subtraction of the surrounding water pixels does not
significantly affect the resulting spectral shape. In the case of the pollen pixels from inside
the Gulf of Gera however, the resultant spectral shape is altered mostly in the RGB range
when subtracting the neighbouring water pixels spectrum.
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Although pollen and sea snot can potentially present significant implications for the
detection of FML, both these floating matters occur during specific time and are regionally
dependent events. Pollen accumulations occur mostly during the spring months and
very close to shore, while sea snot events have a distinct spatial distribution and are also
temporally dependent. Hence, such occurrences can more easily be taken into account in
terms of FML detection.
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Figure 5. (a) Location map of the sea snot accumulations off the east coast of Lemnos Island on
20210624. The red squares indicate the location of the 5 × 5 pixel averages. (b) Location map of the
pollen accumulations in the vicinity of the Island of Lesvos in 20220427. The red squares indicate
the location of the 5 × 5 pixel averages. (c) Spectral comparison plots for sea snot, pollen, and the
HDPE target in the 490–865 nm range. The HDPE profile magnitude has been adjusted to the average
833 nm reflectance of the central HDPE target pixel, essentially retaining the same spectral shape
but increasing the magnitude. (d) Spectral angles between HDPE-sea-snot and HDPE-pollen. The
spectral angle has been computed for an eight-band combination (492, 560, 665, 704, 740, 780, 833,
865 nm).

3.1.1. Reversed Spectral Unmixing

Through dimensional measurements and object-based image analysis, we calculated
that the HDPE mesh coverage amounted to about 30%. This means that in a fully covered
10 m × 10 m pixel, 30% or 30 m2 of the pixel would be fully covered by the HDPE material.
Therefore, in our case, for the HDPE target central pixel, the abundance fraction of HDPE is
χ = 0.3 in the reversed spectral unmixing Equation (5). The reversed spectral unmixing is
thus performed using the central pixel reflectance values without any water background
subtraction.

In theory, we would expect that the calculation would yield the same signature for
all acquisitions, however this is not the case, as can be seen from Figure 6. The figure
shows only the 10 m bands of Sentinel-2, since these are the only bands where there is a full
coverage of the pixel by the HDPE mesh. The difference in the produced spectral signatures
can be due to slightly different conditions during the different acquisition days. Sun glint
can significantly affect the water leaving reflectance which theoretically amounts for 70%
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of the overall fractional coverage, but can have a different effect on the target pixel than
the surrounding water pixels and can affect certain bands more than others. Biofouling
accumulations and UV degradation can alter the HDPE mesh signature, and even though
we are restricting to the first acquisitions during which biofouling contamination is very
low, it is still possible that the HDPE mesh signature changes slightly even throughout the
first weeks of the experiment.
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Figure 6. Four-band (RGB and NIR) spectral plots for 20210621 central pixel, 20210621 central pixel
with water subtraction and unmixed signatures for the four first acquisitions.

Three different profiles are used as endmembers in the subsequent partial unmixing
detection: the produced Rhdpe signature from the 20210701 acquisition, along with the
mean profile from the central HDPE target pixel and the reflectance mean ∆R HDPE profile
adjusted to 833 nm. These profiles are chosen based on their similarity to the HDPE
spectral shape.

3.1.2. Biofouling Effects on HDPE Mesh Spectrum

Biofouling accumulations on the surface of floating materials are very common, es-
pecially in cases of prolonged stay in productive waters. These organic bioaccumulations
that usually contain photosynthetically active substances, can affect the spectral response
of the materials that they are growing on. Through the long-term deployment of the FML
targets in the highly productive waters of the Gulf of Gera, we were able to acquire data for
the targets with various degrees of biofouling, ranging from no biofouling accumulations
up to highly biofouled. This allowed us to assess the effect that biofouling accumulations
can have on the spectral response of FML that have remained on the water surface for
extended periods.

Figure 7 shows the spectral plots from three acquisitions affected by different amounts
of biofouling accumulations: 20210621—practically no biofouling, 20210721—moderate
biofouling, and 20210805—dense biofouling. These acquisitions were chosen in an effort to
isolate the biofouling parameter and not take into account the effects that other parameters
may have on the spectral response of the HDPE mesh. On all three days, conditions were
very similar, with low to no wind, similar turbidity, no significant submersion of the HDPE
target material and similar sun glint conditions in the study area. The central pixels with
no subtraction of the water background are examined here, since the abundance fraction of
the mesh is such that it dominates the pixel response, hence water leaving reflectance does
not significantly affect the overall pixel reflectance spectrum in the 10 m bands and we can
restrict to the 10 m × 10 m pixel that is solely covered by the target material. We should
note that the 20 m red-edge and NIR bands shown in the graph are distorted, and hence the
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resulting plot is not representative of the HDPE material. As such, for the reasons described
in Section 2.5, we cannot come to any conclusion regarding the effect of biofouling on
any of the 20 m bands and it should not be assumed that biofouling has no effect on the
20 m bands.
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Figure 7. Spectral plot showing biofouling effects on HDPE mesh spectrum. Top: UAV images of the
HDPE target showing the increase in biofouling accumulations. Bottom: HDPE mesh target central
pixel plots for three dates. The 20210621 acquisition has no biofouling accumulations; 20210721 has
moderate biofouling accumulations; 20210805 has dense biofouling accumulations. Note that no pixel
averaging or background subtraction has been performed, and hence the 20 m bands are distorted
and not representative of the HDPE material.

From the UAV images, it becomes evident that the increasing biofouling accumulations
significantly alter the colour of the HDPE mesh from a bright white to a greenish brown.
Hence, we would expect that there would be a similar change to the spectral response of
the HDPE mesh target in the Sentinel-2 images, especially in the RGB range. From the three
spectral plots representing different degrees of biofouling accumulations, we can see that
the spectral shape of the plots is changed mostly in the RGB part of the spectrum, although
retaining the upwards slope from the blue to green wavelengths and a downwards slope
from the green to red. The main difference between the three different plots in the shape of
the curve in the RGB bands is concentrated on a lower blue reflectance. With increasing
biofouling accumulations, we see a similar curve but a diminished RGB signal of up to 50%
from no biofouling to high biofouling accumulations. This corresponds partially with the
absorption features of chlorophyll [45], which is consistent with the fact that the biofouling
is mostly composed of green turf algae. On the other hand, we see practically no difference
in the spectral response of the HDPE mesh in the 10 m NIR band between the different
stages of biofouling accumulation, which is also consistent with chlorophyll absorbance
features, since chlorophyll does not absorb above the 750 nm range. Resulting spectral
angles between the three plots stand at 10◦ between no biofouling and medium biofouling
accumulations, and at 18◦ for no biofouling and high biofouling accumulations (four-band
combination—RGB and NIR).

These findings are also supported by the UAS hyperspectral data gathered on two
dates with different levels of biofouling accumulation (Figure A1). The plot from the
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20210716 acquisition corresponds to medium-density biofouling accumulations, while the
plot from 20210731 corresponds to high-density biofouling accumulations. As with the
Sentinel-2 data, we can see that with increasing biofouling accumulations, we find a signal
decay in the visible part of the spectrum, but not so much in the NIR, although there is a
slight reflectance reduction especially after the 850 nm range.

The HDPE mesh is generally resistant to UV radiation, compared to other plastics.
However, prolonged stay under the sun in combination with the salt presence in sea
water and the wave action can have weathering effects. This weathering results in surface
degradation that alters the material’s spectral response. It is not clear whether the HDPE
mesh was degraded enough during the 4-month acquisition campaign, but it is possible
that the continuously diminishing spectral response of the HDPE mesh could be partially
attributed to weathering.

The above observations are somewhat consistent with chlorophyll absorption features,
although we are seeing a reduction in the green wavelength that theoretically should not
occur. Additionally, although chlorophyll does not absorb in the NIR, we would expect
a differentiation in NIR reflectance solely due to the fact that most of the plastic material
is covered by a different substance. Nevertheless, the resulting spectral angles between
the non-biofouled and biofouled target pixels show that the change in the spectral shape
of FML due to biofouling could affect the detection capabilities of biofouled FML with
spectral classification methodologies.

3.1.3. Submersion Effects on HDPE Mesh Spectrum

In general, wet surfaces are known to have lower reflectance values when compared
to the same dry surfaces. Additionally, water absorption features especially in the NIR
and SWIR parts of the spectrum, mean that submersion under a layer of water can have
significant effects on the spectral response of the submerged material. The diminished
signal of submerged surfaces can have a significant effect on FML detection. Hence, it is
useful to examine the effect of submersion in FML reflectance under realistic and near-real
conditions. During the PLP2021 acquisition campaign we have acquired images with the
HDPE target at different positions in the water column; floating partially above water, to
fully submerged under a variable depth of up to 50+ cm. However, due to other factors
also affecting the spectral response of the targets, it is difficult to isolate the degree of
submersion as the only variable. Figure 8 shows the spectral response of the HDPE target
for two acquisitions on which the main environmental variable and governing factor was
the depth of submersion. The mesh on the 20210830 acquisition was cleaned previously
from biofouling accumulations, although a small amount of biofouling is still present on
the HDPE mesh. UV degradation could have also occurred during the prolonged stay of
the targets in the water. Both these factors can have affected the spectral response of the
HDPE mesh; however, we believe that these effects are much less influential compared to
the effects of submersion.

As shown in Figure 8, partial submersion under a water column of about 10–20 cm
results in a reflectance reduction in the HDPE mesh of about 30% for the RGB bands and
about 40% for the NIR band, characteristic of water’s absorption features. The 20 m red-
edge and NIR bands also show a relative reduction in reflectance, however for the same
reasons as above, no conclusions can be drawn for the lower resolution bands, since the
abundance fraction of HDPE is not sufficient to dominate the signal.

The effects of submersion significantly impact the signal intensity of the HDPE mesh
response, but the signal shape remains relatively unchanged, at least in regard to the
10 m RGB and NIR bands. These findings are generally comparative to those from stud-
ies conducted in laboratory conditions showing a similar signal decay resulting from
submersion [12,15–17]. This overall reduction can influence the overall FML signal and
capability of detection.
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Figure 8. (Top) Field images showing the target on the two different acquisitions; 20210611 float-
ing on water surface, 20210830 partially submerged under a water column of about 20 to 30 cm.
(Bottom) Spectral plot of central pixel of HDPE mesh target floating on surface vs. partially sub-
merged, no pixel averaging or background subtraction has been performed.

3.1.4. Spectral Indices

Spectral indices analysis is performed to assess the spectral separability of the above-
mentioned classes using two spectral indices: FDI [27] and NDVI. The two indices are
computed for the 22 Sentinel-2 images acquired during the PLP2021 acquisition campaign
and a series of different images of surface features as presented above (e.g., marine mucilage
off the coast of Lemnos, pollen off the coast of Mytilene). The spectral indices for the three
PLP2021 targets (HDPE, wooden planks and mixed) are calculated for all pixels containing
a target abundance fraction.

From the scatterplots, we can see that most floating materials can be successfully
distinguished from water using the FDI. However, using the FDI alone is not sufficient for
distinguishing between floating materials, since there is considerable overlap between the
FDI values of the different classes. This is also evident from the boxplots showing the same
overlap (Figure 9). The combination of FDI and NDVI can work for the differentiation
of FML from specific classes such as woody floating materials, however the rest of the
classes cannot be successfully distinguished in all cases using the two indices combined.
Vessels can be successfully distinguished in some cases, but it is white-decked vessels that
resemble FML the most, and hence cannot be successfully distinguished. Wakes and foam
are also very hard to differentiate using the two specific indices. Sea snot can in many cases
be successfully distinguished since it shows higher FDI values than FML, but the case of
pollen is much harder. Looking at a combined FML class (HDPE and mixed target pixels),
the difficulty in distinguishing the FML class from pollen and other surface materials using
FDI and NDVI combined becomes apparent.
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3.2. Detection of FML with Partial Unmixing

Figure 10 shows the detection results after the binary threshold has been applied on the
matched filtering results from four different acquisitions on 20210621, 20210805, 20210830
and 20210904. These acquisitions were chosen to represent four different cases: target
floating with no biofouling accumulations, target floating with dense biofouling growth,
target partially submerged and mixed target configuration. The results shown are those
obtained using the unmixed signature as an FML endmember, in a four-band combination:
RGB and NIR. The mean central pixel and background subtracted HDPE signature yielded
similar results, but the unmixed signature corresponds to better thresholding.

In the 20210621 image containing both the HDPE mesh and wooden planks target, six
out of the nine HDPE target pixels are effectively detected, although the pixels that are not
detected have abundance fractions that are less than 20% (this is an approximation based
on the mesh’s coverage and effective target area). It is possible to increase the number of
detected pixels, however the applied thresholds (0.3 binary threshold) are set so that the
number of false positives is greatly reduced.

The detection implications due to the different spectral shape resulting from the
biofouling accumulations becomes evident in the 20210805 detection results, where only
a single FML target pixel is detected from the partial unmixing methodology. This was
expected since the relatively large spectral angle between the non-biofouled and biofouled
HDPE indicated lower spectral similarities between the two.
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Figure 10. Partial unmixing detection results for: 20210621: floating HDPE target, 20210830: partially
submerged HDPE target—the two additional targets are an anchored monohull and a catamaran
sailing boat, 20210805: highly biofouled HDPE target, 20210904: mixed target.

The partially submerged target in 20210830 can also be effectively detected, without
false detection of the wooden planks target. Sailing boats anchored near the deployment
area are partially classified as FML-containing pixels.

The mixed material target configuration in 20210904 can be detected using the HDPE
signature. This shows that the partial unmixing methodology can be applied using the
HDPE/FML signature acquired through PLP2021 for the detection of mixed floating
debris aggregations.

Generally, after applying a buffer to the dense cloud mask and having eliminated
commission errors due to shallow waters through the extended land mask, the vast majority
of the remaining false positives are vessels and wakes/foam. Although vessels are generally
falsely classified, the colour of the ship’s deck seems to be a defining factor, since most
large cargo ships with red decks were not classified as FML, while smaller white-decked
vessels are falsely classified as FML-containing pixels.

In order to assess the effectiveness of the detection methodology under natural scenar-
ios, the algorithm was applied on verified FML aggregations. Figure 11 shows the detection
methodology applied on validated FML concentrations off the coast of La Gonave Island in
Haiti, taken from the MARIDA dataset [23]. To the best of our knowledge, these floating
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accumulations mostly consist of plastic floating debris. The applied methodology can
effectively be used to detect a large number of pixels from the FML windrow with a small
number of omission errors (Figure 11).
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Figure 11. Partial unmixing results showing larger study area, close-up of the surface accumulations
and the detected pixels after the applied partial unmixing: (a) sea snot accumulations off Lemnos
Island, (b) pollen off Lesvos Island and (c) reported marine debris accumulations off La Gonave
Island in Haiti [23].

As shown in Section 3.1, a variety of floating matters have spectral characteristics
very similar to those of FML. Figure 11 above shows the partial unmixing results when
applying the detection workflow on known accumulations of sea snot. Results show that
the methodology can successfully discriminate sea snot pixels from FML aggregations.
However, an approaching vessel and its near wake are classified as FML. Increasing the
applied threshold can effectively discard these surface features, but that would also result
in much lower accuracy in terms of FML pixel detection, with many more omission errors.

Pollen, on the other hand (Figure 11), is harder to eliminate by using the same thresh-
olds that apply to FML detection under different band combinations. Even though most
of the pollen pixels are not falsely detected as FML, the denser pollen accumulations
cannot be successfully discriminated. This is in conjunction with the spectral similarities
between FML and pollen established earlier and show that pollen accumulations can be a
significantly confining factor in terms of FML pixel classification.

4. Conclusions

This paper presents the acquired data and analysis results from the Plastic Litter
Project 2021, a data acquisition campaign using artificial floating marine litter and debris
targets. A series of main findings can be summarised from the analysis and processing that
was performed:
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• Biofouling seems to affect the spectral response of FML concentrations mainly in terms
of signal intensity and shape in the RGB part of the spectrum. The NIR bands do not
show any significant effect of biofouling in these parts of the spectrum. The shape of the
HDPE spectral response is affected by biofouling accumulations to a significant degree.
These findings correspond with the absorption features of chlorophyll, although we
do not see a stable reflectance on the green part of the spectrum. Further study is
required in order to better understand and quantify the effects of biofouling, as well
as the characteristics of the specific organisms involved.

• Submersion depth significantly affects the reflectance of the HDPE mesh target. A
submersion of the target in the scale of 20 to 30 cm below the water surface results
in 30–40% of signal decay throughout the visible range of the MSI’s sensor, with
greater impact on NIR bands. Such signal decrease could have implications for the
detection of FML, since FML accumulations are very often partially or fully submerged
under the water surface, in some cases to depths much greater than 30 cm. However,
using the partial unmixing methodology, it was possible to detect partially submerged
target pixels.

• Floating materials such as pollen and sea snot, as well as wakes, foam and vessels
have spectral features comparable to those of FML, with spectral angles between
the different spectra that show significant similarities. Pollen is specifically hard to
discriminate and presents an important constraining factor when it comes to FML
pixel classification.

• FML detection using partial unmixing methodologies with ACOLITE atmospherically
corrected Sentinel-2 data is generally possible under reasonable conditions, with a
minimum estimated abundance fraction of lower than 20% being detectable.

• Other floating features such as pollen, vessels and vessel wakes are hard to discrimi-
nate from FML using the proposed algorithm since they have very similar spectral
characteristics to those of FML.

In order to better understand the effects that the above-described parameters have
on the spectral response of FML, further study is needed into the effects of biofouling
and UV degradation that might occur during prolonged stay of plastic marine litter in the
marine environment. Precise identification of the biofouling organisms can help to identify
the biological characteristics of these organisms and better understand their effect on the
spectral response of FML. Although the biofouling organisms are specific to the area in
which they are found, spectral samples before and after target deployment can allow the
assessment of UV degradation effects. Besides biofouling and submersion, one of the initial
goals of the PLP2021 was the assessment of the influence of turbidity and wind speed on the
overall signal of FML. Due to an inability to isolate these parameters in different acquisition
dates, it was not possible to effectively assess their effects. Simultaneous acquisitions in
turbid and open water conditions under comparable atmospheric conditions could allow
for the assessment of the effects of turbidity on the spectral response of FML. Additionally,
acquisitions under different wind conditions but limiting other parameters’ influence can
allow the assessment of wind speed on the signal of FML. However, since white water has a
bright signal similar to FML, high winds would most likely result in water pixels exhibiting
spectral characteristics similar to those of FML, simultaneously dampening the FML signal
due to the submersion caused by water movement. Finally, the large number of in situ
validated FML target-containing pixels presents an opportunity for machine learning and
artificial intelligence approaches to be applied.

Besides multispectral instruments, hyperspectral missions such as PRISMA and EN-
MAP can provide significant insights into the spectral characteristics and detection capabil-
ities of FML. It is also clear that the current freely available satellite imagery significantly
limits our capability to discriminate FML in terms of spatial and spectral resolution. More
advanced orbiting sensors tailored on FML spectral characteristics (in particular in the
NIR-SWIR region) and with higher spatial resolution could dramatically improve detection
capability for FML in the environment.
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