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Abstract: An agricultural drought assessment is the basis for formulating agricultural drought miti-
gation strategies. Traditional agricultural drought assessment methods reflect agricultural drought
degree by using the soil water deficit, e.g., Soil Moisture Anomaly Percentage Index (SMAPI). How-
ever, due to varying water demands for different crops, a given soil water deficit results in varying
crop water deficits and agricultural droughts. This variation often leads to a misinterpretation of
agricultural drought classification when one only considers the soil water deficit. To consider the
influence of crop growth, this study proposes an agricultural drought assessment method by coupling
hydrological and crop models (variable infiltration capacity-environmental policy integrated climate,
VIC-EPIC). Agricultural drought in Jiangsu Province, China was evaluated using the VIC-EPIC
model and crop water anomaly percentage index (CWAPI). The validation results based on the actual
drought records showed that the correlation coefficients (0.79 and 0.82, respectively) of the statistical
values and CWAPI simulated values of light and moderate drought area rates were greater than those
for SMAPI (0.72 and 0.81, respectively), indicating that the simulation results of the VIC-EPIC model
in Jiangsu Province were highly reasonable. The temporal and spatial variation characteristics of the
drought grade in typical large-scale drought events in Jiangsu Province were also analyzed.

Keywords: agricultural drought assessment; VIC-EPIC; CWAPI; SMAPI; crop water demand;
irrigation effects

1. Introduction

An agricultural drought assessment is the basis for formulating agricultural drought
mitigation measures and preventing agricultural drought. Because the formation mecha-
nism of agricultural drought is extremely complex and there are many influencing factors,
it is difficult to build an effective agricultural drought evaluation method. Therefore,
researchers have used drought indices to assess agricultural droughts.

Agricultural drought can be assessed based on the crop water deficit. A crop water
deficit index (CWDI) has been proposed [1–3]. CWDI is the normalized difference [2,4,5]
between the observed vegetative water consumption and water demand [6]. Consequently,
CWDI can directly reflect the extent of agricultural drought and provide highly reliable
results for assessing agricultural drought [7–9]. Accordingly, many studies [1–3,10] have
conducted agricultural drought assessments based on CWDI. CWDI can be calculated
using the following three methods:
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(1) Remote sensing inversion

A remote sensing inversion method was proposed, along with the development of
remote sensing technology [11–13]. This method was applied based on remote sensing data
and estimation formulas (such as the energy balance method and crop coefficient method).
The potential evapotranspiration and actual evapotranspiration were calculated as the crop
water demand and water consumption, respectively. The CWDI [1,2,14,15] was obtained
on this basis. This method considered the influence of the vegetation water content, and
the estimation formula model’s physical mechanisms. The CWDI was calculated using
crop water demand, which was estimated using the potential evapotranspiration based on
meteorological conditions alone; however, the influence of leaf area of crops in different
growth periods on water demand was not considered [16–18]. Therefore, uncertainty
regarding drought assessments based on remote sensing inversion remains.

(2) Crop growth model based on remote sensing data

With the continuous development of remote sensing technology, remote sensing data
products have become increasingly mature. In the agricultural field, crop models are
an important mathematical tool used to estimate the extent of crop water deficits. With
the use of crop models to estimate the degree of water deficit, combined with remote
sensing data products, the crop model is used to simulate the growth process of crops,
and the CWDI is calculated to assess agricultural drought [19,20]. Wang, et al. [21] used
microwave remote sensing to compute large-scale farmland soil moisture and calculated
an agricultural drought index that reflected the degree of crop water shortage combined
with crop models. The crop model improves the accuracy of regional agricultural drought
assessments. However, some defects in microwave remote sensing data limit the accuracy
of crop water consumption and the agricultural drought index simulated by crop models.
The soil moisture of the surface layer (2–5 cm) can be retrieved through microwave remote
sensing [22,23]; however, the soil moisture of the entire root layer of the crop cannot
be calculated. The soil water content retrieved from remote sensing data has temporal
discontinuities, owing to the long revisit periods of remote sensing satellites [24]. The
significant soil moisture uncertainty can seriously affect the uncertainty of the water
demand simulated by crop models and the resulting agricultural drought index based on
crop water.

(3) Coupled hydrological crop-growth model

The simulation of soil water content using a hydrological model with a physical basis
can consider the influence of vegetation and soil characteristics in different regions on the
hydrological process. This is a more efficient method for obtaining spatially continuous soil
profile water content data [25,26] and avoids temporal discontinuities in the retrieval of soil
water content from remote sensing data. On this basis, a crop model was introduced which
can consider the influence of dynamic changes in crop leaf area and water stress on the
simulation of crop evapotranspiration and soil water content. This improves the simulation
accuracy of soil water content. Combined with the advantages of accurate simulation of
soil water content and evapotranspiration using the hydrological and crop models, the
coupled hydrology–crop growth model improved the simulation accuracy of crop water
consumption. In addition, the ability to identify agricultural drought with the coupled
model was further improved compared with that with the single crop model.

Studies regarding the CWDI based on the coupled model have rarely been reported;
however, related work has been reported. Mcnider, et al. [27] coupled the hydrology model
of the water supply stress index (WaSSI) with the crop model of the decision support
system for agrotechnology transfer (DSSAT). The CWDI, based on the crop water demand
and water supply, was proposed for indicating crop water shortages, which showed
patterns more similar to the actual drought conditions compared with other drought
indices. However, the coupled model DSSAT-WaSSI could only simulate the growth of a
single type of crop. Many types of crops are generally planted in a region’s farmland. The
variations in water consumption patterns of different crops may result in varying soil water
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contents and crop water deficits. Consequently, it is difficult for DSSAT-WaSSI to accurately
simulate and evaluate regional agricultural droughts. In addition, the irrigation module
used in DSSAT-WaSSI did not consider the influence of limited water supply of the surface
water body. The cultivated crops received more irrigation water than the model assumed,
which would result in the simulated drought severity being less than the observed severity
during drought periods. Hence, little attention has been paid to the construction of an
agricultural drought index that considers the effects of different crops, the characteristics of
different growth periods, irrigation, and crop rotation [28].

To overcome the issues of not considering the crop growth and irrigation in the
agricultural drought assessment, the present study constructed the coupled hydrology–
crop growth model called variable infiltration capacity-environmental policy integrated
climate (VIC-EPIC), the proposed crop water anomaly percentage index (CWAPI) based on
crop water demand, and consumption simulated by the VIC-EPIC model, and analyzed
the index for regional agricultural drought assessment. The drought assessment results
were compared with the soil moisture anomaly percentage index (SMAPI), which reflects
the magnitude of soil water deficit. The comparison of the results was used to verify the
viability of CWAPI.

2. Methodology
2.1. Framework of the VIC-EPIC Model

The two-way tightly coupled method was used to realize the coupling of EPIC and
VIC models [29], and the soil water content calculated by the VIC model was passed to the
crop model. The crop model simulated the crop growth process based on the soil water
content, and the soil evaporation and crop transpiration calculated by the crop model were
returned to the VIC model to calculate the initial soil water content for the next period.

Because crops require irrigation during the growth process, irrigation water from
groundwater, rivers, and reservoirs is required. The calculation of water volume originating
from rivers and reservoirs is inseparable from river routing; consequently, it was necessary
to couple the routing module, reservoir module, and irrigation module with the VIC model.
The routing model was the flexible large-scale hydrological routing model (FLASH) based
on the merged grid [30], and sequential coupling was adopted between the VIC and the
routing models. The VIC model passed the surface runoff and underground baseflow of
each merged grid to the routing model, and the routing model was subsequently executed.
Based on the runoff and routing models, an integrated coupling was used between the
reservoir module and the routing model. The routing model transmitted the river flow data
to the reservoir module, and the reservoir module performed the water balance calculation
of the aggregated reservoir and simulated the water storage of the aggregated reservoir
moment-by-moment [31]. The reservoir module returned the calculated discharge to the
routing model. The irrigation module was coupled with a reservoir module. The irrigation
module calculates the actual irrigation water based on the water storage value of the
reservoir module, which supplements the actual irrigation water to the soil water content
and passes the updated soil water content to the EPIC model. The construction principle of
the VIC-EPIC model [32,33] is shown in Figure 1.
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Figure 1. Flowchart of the coupled VIC-EPIC model integrated using FLASH and the reservoir module.

2.2. CWAPI

Based on the definition of agricultural drought (water deficit of crops caused by
external environmental factors [34]), this study used crop water demand and water con-
sumption to build a drought index reflecting the degree of crop water shortage. The crop
water anomaly index (CWAI) was parameterized by:

CWAI j = (
Eact,j − Esoil,act,j

Ej − Esoil,j
− 1)× 100% = (

Et,act,j

Et,j
− 1)× 100% (1)

where CWAIj is the CWAI on a given day j (%); Eact,j is the actual evapotranspiration on
a given day j (mm); Esoil,act,j is the actual soil evaporation on a given day j (mm); Ej is the
potential evapotranspiration on a given day j (mm); Esoil,j is the potential soil evaporation
on a given day j (mm); Et, act, j is the actual transpiration of crops on a given day j, i.e., crop
water consumption (mm); and Et, j is the maximum crop transpiration on a given day j, i.e.,
crop water demand (mm).

The CWAPI was constructed to describe the CWAI in each region with a unified
standard, based on the Formula (2) to assess agricultural drought [1,34].

CWAPI =
CWAIi − CWAI

100 + CWAI
× 100% (2)

where CWAPI is the CWAPI in some periods, CWAIi is the weighted average of the CWAI
for a given period i (%, see Formula (3)), and CWAI is the contemporaneous average of the
CWAI in the calculated period, which is 30 years in this study (see Formula (4)).

CWAIi = k1 × CWAIj + k2 × CWAIj−1 + . . . + k50 × CWAIj−49 (3)
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where CWAIi is the weighted average of the CWAI for a given period i (%), CWAIj is the
CWAI on a given day j (%, see Formula (1)), and kj is the weight coefficient of CWAIj [34].

CWAI =
1
n

n

∑
m=1

CWAIm (4)

where n is the total number of analyzed years, generally more than 30, and m is the serial
number of each year, m = 1, 2, . . . , n.

To formulate a reasonable drought level classification standard, based on the research
ideas of Wu, et al. [35], Mao [36], and Palmer [37], the CWAPI frequency distribution in the
study area was calculated. Drought was then classified based on the frequency distribution
and frequency of different drought levels reported by Mao [36] and Wu, et al. [35] (see
Table 1). To consider the influence of different growth periods of crops on the agricultural
drought levels, referring to the treatment method for the critical period of crop water
demand in “Grade of Agricultural Drought” [34], the droughts of the critical period of crop
water demand and other growth periods were classified.

Table 1. Agricultural drought grades based on CWAPI.

Drought Levels
CWAPI/%

Other Growth Stages Critical Period of Crop Water Demand

Light drought (−10, −30] (−5, −25]
Moderate drought (−30, −40] (−25, −35]

Severe drought (−40, −45] (−35, −40]
Extremely drought (−45, −∞) (−40, −∞)

In this study, the droughts characterized by CWAPI and SMAPI are referred to as
crop drought and soil drought, respectively. SMAPI is often calculated using the soil water
content simulated by the VIC model [35,38]. Because the VIC model failed to simulate
irrigation and crop growth processes, and the simulated soil water content was the average
soil water content for all land-use types, the VIC-based SMAPI was not affected by crop
growth and irrigation. In this study, the SMAPI dryness and wetness scale suggested by
Lu, et al. [39] was used (Table 2).

Table 2. Drought and flood grades of SMAPI.

SMAPI Grade SMAPI Grade

SMAPI ≤ −25% Extreme drought 5% < SMAPI ≤ 10% Light flood
−25% < SMAPI ≤ −20% Severe drought 10% < SMAPI ≤ 15% Moderate flood
−20% < SMAPI ≤ −15% Moderate drought 15% < SMAPI ≤ 25% Severe flood
−15% < SMAPI ≤ −5% Light drought SMAPI > 25% Extreme flood
−5% < SMAPI ≤ 5% Normal state

Recently, drought has occurred frequently in Jiangsu Province. SMAPI was built
using soil water content simulated by the VIC model to identify drought events in Jiangsu
Province, China. CWAPI was built on this basis, and the drought characteristics and
changing laws of agricultural drought events in Jiangsu Province were investigated. These
have an important role in understanding the occurrence and development processes of
drought in Jiangsu Province and may provide a basis for large-scale drought monitoring
and prediction.

2.3. Validation Method

Currently, there is a scarcity of the measured drought index data, and only the drought-
related statistics and other widely used drought indices and their related hydrological
variables can be used to validate the rationality of the calculated results of the drought index.
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The observed soil moisture and statistical data on the drought area each year are compared
with the simulation results of VIC-EPIC. Using Equations (5)–(8) (percent bias, PBIAS;
normalized root mean square error, NRMSE; root mean square error, RMSE), the rationality
of CWAPI can be validated. Comparisons with other verified drought indices can also
indicate if the proposed drought indices are reasonable. Studies have proposed other
agricultural drought indices that have been verified using observational data. For example,
Wu, et al. [35] and Mao, et al. [38] applied the SMAPI drought index to agricultural drought
assessments in China and Jiangsu Province, respectively, and noted the applicability to be
good. Therefore, this study compared the change process of SMAPI and CWAPI, found the
difference between the change processes, and used the drought formation process to show
that the difference is more reasonable for verifying the feasibility of CWAPI.

PBIAS =


T
∑

t=1
( ft − yt)

T
∑

t=1
yt

× 100 (5)

NRMSE =

√√√√ 1
T
×

T

∑
t=1

( ft − yt)
2 × 100

y
(6)

R =

T
∑

t=1
( ft − f )(yt − y)√

T
∑

t=1
( ft − f )

2 T
∑

t=1
(yt − y)2

(7)

RMSE =

√√√√ 1
T
×

T

∑
t=1

( ft − yt)
2 (8)

where ft is the simulated value of the model at time t, t = 1, 2, . . . , T; yt is the observed
value at time t; f is the average value of the simulated value of the model at all times; and
y is the average value of the observed value at all times.

2.4. Study Area and Data

Jiangsu Province is in the Jianghuai region of eastern China and has a total area of
107,200 square kilometers, spanning across 30◦45′–35◦08′ north latitude and 116◦21′–121◦56′E
longitude, bordering Shanghai, Zhejiang, Anhui, and Shandong. Jiangsu is a coastal area
across a river, with many lakes and a flat terrain. The landform consists of plains, water, low
mountains, and hills. It faces the Yellow Sea to the east and crosses the Yangtze and Huaihe
Rivers. Jiangsu geographically spans the north and south, and its vegetation and climate
have characteristics of both areas. The annual average temperature varies between 13 ◦C
and 16 ◦C, and the average annual precipitation is approximately 1000 mm. It consists of
more than 8000 watersheds. However, the temporal and spatial distribution of precipitation
in Jiangsu Province is uneven, and regional differences are significant. It is a typical area
in China with frequent droughts and floods [40]. During recent years, large-scale and
high-impact drought events have continuously occurred under the combined influence of
climate warming and human activities. For example, Jiangsu Province suffered a severe
drought in 2011, and Shijiu Lake in Nanjing City was almost dry. In 2016, Hongze Lake was
dry for a long period, which brought great inconvenience to water transportation in the lake
area. Changzhou also experienced continuous high temperatures and dry weather, which
severely restricted the development of local agriculture. From mid-September to December
2019, the average rainfall in Jiangsu Province was 91 mm, which was 48% less than that
during the same period of the previous year. Most of the province was in moderate or above
meteorological drought, and the regions toward the south of the Huaihe River experienced
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severe drought. Jiangsu Province is a province with high gross domestic product (GDP),
ranking fourth in terms of total agricultural output value in 2019 among 31 provinces.
The frequent occurrence of droughts has remarkably affected the normal progress of local
agricultural production and has become an important factor in restricting the economic
and social development of Jiangsu Province.

The VIC-EPIC model was constructed for Jiangsu Province to study the formation of
local agricultural drought. The meteorological data used in the model are the 6-h-scale
data of a 5 km merged grid obtained by the inverse distance weight interpolation method
based on the daily dataset from the China Meteorological Data network [41]. The spatial
distribution of crops was detected based on moderate resolution imaging spectroradiometer
(MODIS) remote sensing products, as shown in Figure 2. DEM data were obtained from the
shuttle radar topography mission (SRTM) [42] with a resolution of 30 m. The water area
data originate from the 30 m resolution water data product developed by the European
Commission Joint Research Center [43]. The soil parameters in the VIC model were
calculated based on the soil database [44] and soil characteristic parameter formula of
Saxton [45]. The property parameters of the different types of crops came from the crop
parameter library of the SWAT model. The parameters of the hydrological model were
calibrated and transferred using measured hydrological data [25,36,46,47].

Figure 2. Spatial distribution diagram of meteorological stations, water area, and crop rotation types
in Jiangsu province.
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3. Results
3.1. Validation Based on Soil Moisture

To validate the VIC-EPIC simulation results, this study used data from 99 soil moisture
stations in Jiangsu Province’s watersheds to calculate the correlation coefficient, the soil
water content’s PBIAS, RMSE, and NRMSE between the soil moisture simulation and
observation at a depth of 10 cm. Figure 3 shows that the percentage of soil moisture
sites with a correlation coefficient greater than 0.60 accounted for 25%, and the average
correlation coefficient was 0.40, which was higher than that noted in prior studies [12,48].

Figure 3. Frequency histogram of correlation coefficients between 10 cm soil moisture of simulation
and observation in merged grids containing soil moisture stations of Jiangsu province.

Figure 4 shows that the simulation accuracy in the north was generally better, but there
was no trend in the spatial distribution of errors. The soil water content and evapotranspi-
ration at some stations were well simulated, particularly when the RMSE was used as the
error index. There were some points close to the river channel where the soil water content
simulation accuracy was greater, which may be related to the model considering irrigation
because the area close to the river was generally within the effective irrigation area.

Figure 4. Cont.
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Figure 4. Soil moisture error indices at 10 cm depth, as per the VIC-EPIC model and ground stations
in Jiangsu province. (a) Correlation coefficient; (b) PBIAS, percent bias; (c) RMSE, root mean square
error; (d) NRMSE, normalized root mean square error.

3.2. Validation Based on the Drought Record

Because the water absorbed by crop roots comes from the soil at a depth of
0–40 cm [49–51], the default soil water content used in the SMAPI constructed in this
study was the average soil water content at a depth of 0–40 cm for all land use types
calculated by the VIC-EPIC model [35,38].

The drought area rate corresponding to each year’s drought index in Jiangsu Province
was calculated and compared with the statistical drought-affected area rate recorded in
yearbooks [52]. The correlation coefficients (0.79 and 0.82) between the statistical values of
the drought-related area rate and light and moderate drought area rate calculated based on
CWAPI were greater than those (0.72 and 0.81) for SMAPI. This indicates that the drought
results based on the VIC-EPIC model simulation were reasonable and feasible, and CWAPI
could reflect agricultural drought characteristics more reasonably at a regional level.

Figure 5 shows that the variation trend of the simulated drought area rate from 2011
to 2013 was very close to the statistical variation trend of the drought-affected area rate.
A comparison of the bar graphs of the area rates of different drought grades year-by-year
showed that the greater the drought grade, the smaller the corresponding drought area
rate, and the relationship between years varied. For example, the light drought area rate
in 2012 was smaller than that in 2014, whereas the severe drought area rate in 2012 was
greater than that in 2014, and the relative relationship between the severe drought area rate
and the statistical value of the drought-affected area rate was more consistent. This was
related to the fact that the statistical value of the drought-affected area rate was calculated
based on the record data of yield loss area, and the water deficit of severe drought was
larger than that of light drought, which made severe drought more likely to cause yield loss.
Hence, the variation trend of the area rate of severe drought showed a pattern more similar
to that of the statistical drought-related area rate compared to that of the light drought.
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Figure 5. Bar diagrams of the statistical values of drought-affected area rates and the area rates of
different drought grades in Jiangsu Province from 2009 to 2019 (a–d correspond to light, moderate,
severe, and extremely drought area rates, respectively).

The actual drought of the year was recorded in the annual “Jiangsu Water Conservancy
Yearbook” [52]. CWAPI simulation results based on the VIC-EPIC model were verified
using drought records. According to a previous study [52], in 1989, the rainfall in Jiangsu
Province was 20% less than that of normal years during the flood season, and the rainfall
at the time of sowing was only 14 mm. Most of the small- and medium-sized reservoirs
dried up, the soil moisture content of the cultivated layer was only 5%, and 16 million mu
(1 mu = 0.0667 ha) was fully affected by drought. In 1992, a severe drought occurred in
northern Jiangsu and hilly and mountainous areas during the flood season. From July to
August, the drought affected the entire province. Drought severity in some areas exceeded
that of 1989. This was the driest year since 1978. More than 30 million mu of the province
has suffered from drought. In 1998, there was little rainfall after the flood season, and a
severe autumn drought occurred on the coast and in the hilly and mountainous areas of
northern and southern Jiangsu. The drought-affected area is as large as 20 million mu. In
2010 and 2011, continuous droughts occurred in autumn, winter, spring, and summer, with
serious soil moisture shortages and abnormally dry inflows. There was a large drought-
affected area of 4.3663 million mu. Overall, severe droughts occurred in 1989, 1992, 1998,
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and 2011. The drought-affected area in 1992 was the largest during these four years, but the
assessment results based on SMAPI did not reflect this conclusion. The assessment results
based on CWAPI showed that the drought in 1992 was the most severe of these four years.
Hence, CWAPI is more suitable than SMAPI for characterizing severe agricultural droughts.
Sayago, et al. [53] also found that the correlation between the remote sensing drought index
and ETc/ET0 was superior between the remote sensing drought index and the soil water
deficit, indicating that CWAPI based on ETc/ET0 was more suitable for characterizing
agricultural drought than SMAPI.

4. Discussion
4.1. Temporal and Spatial Variation Process of Large-Scale Drought
4.1.1. Analysis of the Change Process in the Drought Grade Area and Typical
Prefecture-Level Drought Index

From mid-September to December 2019, the average rainfall in Jiangsu Province was
91 mm, which was 48% less than what was recorded in the same period of the previous
year, and severe meteorological drought occurred. Most of the province was in moderate
or above meteorological drought, and the areas toward south of the Huai River were in
severe drought. To analyze the change process of this drought, the change in the area ratio
of different drought grades in Jiangsu Province in 2019 was plotted.

Figure 6a shows that the proportion of moderate drought areas, calculated based on
SMAPI, was generally larger than that based on CWAPI, which was related to the ability
of the crop drought index to intensify the effects of irrigation, water demand, and fallow
during agricultural drought. (1) Irrigation water quantity had a greater impact on drought
relief, as indicated by CWAPI, than indicated by SMAPI. As a result, the drought severity
indicated by CWAPI was less than that indicated by SMAPI. For example, during the flood
season from June to October, there was more precipitation and the water storage of the
aggregated reservoir was significant. The crop water demand was elevated when there
was high temperature and no rain in summer, resulting in a large volume of irrigation
water during this period (see Figure 6b). Therefore, the proportion of moderate drought
areas in Jiangsu Province, indicated by CWAPI, was less than that indicated by SMAPI.
(2) In the early stages of growth and near maturity, the water demand of crops is typically
low. Currently, crops require less water to maintain normal growth. Therefore, the degree
of drought indicated by CWAPI was less than that indicated by SMAPI. For example, in
March-April and October-November, crops required less water in the early stages of growth;
consequently, drought formation rarely occurred during these periods. (3) Crop fallow
was also one of the reasons for the low proportion of dry areas in CWAPI. For example, in
early June and mid-October, farmland lay fallow; consequently, the proportion of moderate
drought areas during this period was close to zero. The crop model used to calculate crop
water consumption in CWAPI also considers the effect of crop drought tolerance. Wheat
and maize had stronger drought tolerance performance; thus, slight water shortages had
less inhibition of their growth, and the drought degree of crops represented by CWAPI
was low. (4) When calculating SMAPI, the leaf area index (LAI) used by the VIC model
kept a constant value for each month, which could not consider the effect of the small
LAI of vegetation in the early stage of growth. Consequently, the crop water consumption
was greater and the soil water content was lesser, which also made the proportion of
moderate drought area of SMAPI relatively large. Overall, five factors, irrigation, crop
water requirements, and fallow, made the proportion of moderate drought areas calculated
based on SMAPI greater than that calculated based on CWAPI.
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Figure 6. (a) Time courses of the area ratio of the moderate drought grade calculated by SMAPI and
CWAPI; (b) Time courses of precipitation and irrigation of Jiangsu Province in 2019.

Figure 6a shows that there were two large extreme values of the area ratio of moderate
drought on 22 May 2019 and 19 November 2019. By reviewing news reports, it was found
that there were no reports of drought in May 2019; however, there were some reports
of drought in November 2019. For example, Jiangsu reported on November 19 [54] that
the drought-affected area of wheat in the province reached 2.63 million mu. The drought
during November was more serious than that during May, which was consistent with the
change in the proportion of moderate drought areas reflected by CWAPI; however, the
simulation results of SMAPI showed that the light drought area ratios on 22 May and 13
November were both greater than 0.25, and the ratio of the drought-affected area in May
was even larger than that in November, which was inconsistent with the actual events.

Taking typical drought-prone areas in Jiangsu Province as examples, such as Xuzhou
City, Lianyungang City, and Huai’an City, the rationality and change process of the drought
index in 2019 were analyzed. In terms of the rationality analysis, Figure 7 shows that the
drought in Huai’an was the most severe, followed by Xuzhou and Lianyungang. The
statistical results showed that the drought-affected area rates of Huai’an, Xuzhou, and
Lianyungang were 24%, 11%, and 5%, respectively. Therefore, the CWAPI simulation
results were consistent with the statistical results for the 2019 drought-affected area rate.

The process of change of the drought index in Xuzhou, Lianyungang, and Huai’an
showed both similarities and differences. Figure 7 shows that the similarities of changes
in the drought index of each city were as follows: the change in the crop drought index
had a certain lag relative to that of the soil drought index; and the crop drought index
changed slowly because of slow growth. There were also significant differences in the
index change process of each city; the SMAPI in Lianyungang City was relatively elevated
during the first half of the year, which was related to the large volume of irrigation water
in the city, but CWAPI was more easily affected by irrigation, which resulted in greater
distance between the CWAPI and SMAPI lines in Lianyungang City during May 2019
compared to that of Xuzhou and Huai’an. In the second half of the year, the smaller SMAPI
and CWAPI were related to smaller precipitation. The CWAPI of Huai’an was generally
small, which is related to its latitude. The temperature in Huai’an was greater than that in
Xuzhou and Lianyungang, which led to high evapotranspiration. The irrigation water per
unit area of Huai’an was also relatively small; the two factors of evapotranspiration and
irrigation water decreased the soil water content, and the crops were susceptible to water
stress. Therefore, the CWAPI in Huai’an City were small.
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Figure 7. Time series of drought indices of Xuzhou (a), Huai’an (b), and Lianyungang (c) in 2019.

4.1.2. Analysis of Changes in Spatial Distribution of Large-Scale Drought Levels

In the first half of 2000, a severe drought occurred in Jiangsu Province, resulting in a
drought-affected area rate of 0.239 and a disaster-affected area rate of 0.171. The disaster
level during the 32 years from 1985 to 2016 was less than that in 1988 and 1994. To analyze
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the formation process of drought events, the level distribution map of the drought index
on 9 February, 18 April, 10 May, 25 May, and 3 June 2000, are shown in Figure 8.

Figure 8. Spatial distribution of drought levels using SMAPI and CWAPI on 9 February, 18 April,
10 May, 25 May, and 3 June 2000 in a large-scale drought event in Jiangsu Province.

The soil drought event began in early February, and by mid-April, it spread across the
central and northern parts of Jiangsu Province. Some parts of the northern region were
subject to severe and extreme drought conditions. In early May, the drought spread to the
entire Jiangsu Province, and the drought in the northern part remained severe. Compared
with the drought in mid-April, the coverage area of severe and extreme droughts in early
May remained unchanged, and the area of moderate drought expanded. During late May,
the drought event in the south ended, and the drought in the north continued, but the severe
and moderate droughts in some regions were degraded to moderate and light droughts,
respectively, while the areas covered by extreme drought remained unchanged. Finally,
drought in Jiangsu Province was relieved at the beginning of June. The development
process of drought events indicated that it took a long time for a soil drought event to
develop into a provincial drought, whereas it took a short time to recover from a provincial
drought to a normal state, which was determined by large-scale and long-term precipitation
in Jiangsu Province during late May. Therefore, the large-scale soil drought event in Jiangsu
Province in 2000 was characterized by slow development and rapid relief.

Crop drought events began to occur in the first ten days of April and developed to
the north of Jiangsu Province during mid-April. Extreme drought and severe drought



Remote Sens. 2022, 14, 5994 15 of 18

occurred in some regions of northern Jiangsu Province. By the first ten days of May, the
drought-related area became larger, and the degree of drought increased. The drought
levels in some regions changed from severe and light drought to extreme drought. Since
late May, the degree of drought in some regions had eased, and the drought-related area
had decreased. The drought level in some regions near the middle of Jiangsu Province
reduced from extreme to moderate. Finally, the crop drought in the entire province ceased
by early June. As a result, the large-scale crop drought event in Jiangsu Province in 2000
also had characteristics of slow development and rapid relief.

There were similarities and differences regarding the development processes of soil
drought and crop drought. In terms of similarities, the spatial and temporal trends of soil
drought and crop drought were similar, both of which were severe drought in the north
and moderate drought in the south. Both gradually spread from the north to most regions
of the province. The consistency of the distribution and change trends of the two drought
indices indicated that the proposed CWAPI was reasonable. In terms of differences, the
drought-related areas of crops were smaller than those of the soil droughts. For example,
in the first ten days of May, the soil drought spread to the whole province, while the crop
drought did not occur in the middle and east of Jiangsu Province and was affected by
the crop fallow period. The assessment scope of agricultural drought did not include the
area of the central and southern Jiangsu Province. The crop drought duration was shorter
than that of soil drought. Soil drought had occurred since the first ten days of February,
while crop drought had gradually occurred since the first ten days of April. Therefore, the
severity of soil drought was obviously more serious than that of crop drought because the
CWAPI (based on VIC-EPIC) considered the impact of slow growth and water demand
of crops and was more affected by irrigation than SMAPI. Although the drought level of
crops in most regions was less than that of soil, the drought level of crops in some regions
was higher than that of soil. For example, this phenomenon occurred in some regions in the
Huaihe River Basin in the north of Jiangsu Province in early May 2000, which was related to
the drought level of CWAPI, considering the critical period of crop water demand. Table 1
shows that the drought level of some CWAPIs in the critical period of water demand was
more severe than that in the other periods.

5. Conclusions

Based on CWAPI, an agricultural drought assessment was performed over a large
area to consider the influence of crop growth and irrigation. From one perspective, Jiangsu
Province was used as the research area, the VIC-EPIC model was constructed, and CWAPI
was established based on the simulated crop water demand and consumption, which
validated the application of CWAPI in Jiangsu Province. From the other perspective, com-
bined with the difference of underlying surface, the spatio-temporal change in agricultural
drought was evaluated. The following conclusions were obtained:

(1) A VIC-EPIC model was constructed in Jiangsu Province, and the simulation results of
the VIC-EPIC model and evaluation results of the CWAPI drought index were verified.
The soil moisture results of the VIC-EPIC model were verified using 99 moisture-site
data. The average correlation coefficients between the soil moisture of the simulation
and observation at the 25% soil moisture stations were greater than 0.60, indicating
that the simulation results of the VIC-EPIC model were very reasonable.

(2) The correlation coefficients (0.79 and 0.82) between the statistical values of the drought-
related area rate and light and moderate drought area rate calculated based on CWAPI
were greater than those (0.72 and 0.81) for SMAPI. The drought characteristic values
based on CWAPI showed better agreement with the more severe drought events
recorded. The drought results based on the VIC-EPIC model simulation were reason-
able and feasible, and CWAPI could reflect agricultural drought characteristics more
reasonably at a regional level.

(3) The drought reflected by CWAPI in Jiangsu Province during November of 2019
was much more severe than that during May, which was consistent with the data
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regarding the actual drought-affected area, while the drought reflected by SMAPI was
the opposite. The drought-affected area rate of Huai’an, Xuzhou, and Lianyungang
in 2019 was 24%, 11%, and 5%, respectively. The CWAPI simulation results were
consistent with the statistical results of the 2019 drought-affected area rate. Therefore,
the CWAPI can reveal the drought characteristics with greater reliability.

(4) In the large-scale drought of 2000, the severity of soil drought was significantly greater
than that of crop drought because the crop drought simulation was more influenced
by irrigation; the spatial and temporal trends of soil drought and crop drought in 2000
were similar.

This study analyzed crop water demand and crop water consumption, constructed the
CWAPI, and, finally, explained the regional agricultural drought characteristics. However,
as a result of agricultural drought process complexity, there are aspects that still need to be
improved. For example, at present, many remote sensing data products are closely related
to drought assessment, such as MODIS LAI and MODIS ET. The use of these data to improve
the simulation accuracy of the VIC-EPIC model requires further investigation. In addition,
if crop water shortage can be directly converted into drought-related yield reduction, the
yield reduction as an agricultural drought index would have a clearer physical significance,
directly reflecting the impact of drought on agricultural production. Agricultural drought
assessment based on remote sensing data and yield reduction simulations is the key
direction of our research group.
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