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Abstract: For vegetation monitoring, it is crucial to understand which changes are caused by the
measurement setup and which changes are true representations of vegetation dynamics. UAV–LiDAR
offers great possibilities to measure vegetation structural parameters; however, UAV–LiDAR sensors
are undergoing rapid developments, and the characteristics are expected to keep changing over the
years, which will introduce data inter-operability issues. Therefore, it is important to determine
whether datasets acquired by different UAV–LiDAR sensors can be interchanged and if changes
through time can accurately be derived from UAV–LiDAR time series. With this study, we present
insights into the magnitude of differences in derived forest metrics in savanna woodland when three
different UAV–LiDAR systems are being used for data acquisition. Our findings show that all three
systems can be used to derive plot characteristics such as canopy height, canopy cover, and gap
fractions. However, there are clear differences between the metrics derived with different sensors,
which are most apparent in the lower parts of the canopy. On an individual tree level, all UAV–LiDAR
systems are able to accurately capture the tree height in a savanna woodland system, but significant
differences occur when crown parameters are measured with different systems. Less precise systems
result in underestimations of crown areas and crown volumes. When comparing UAV–LiDAR data
of forest areas through time, it is important to be aware of these differences and ensure that data
inter-operability issues do not influence the change analysis. In this paper, we want to stress that it is
of utmost importance to realise this and take it into consideration when combining datasets obtained
with different sensors.

Keywords: UAV–LiDAR sensor comparison; savanna woodland; forest structure; tree metrics

1. Introduction

Light Detection and Ranging (LiDAR) has been adopted as an important technology
for measuring vegetation structure on different scales, and has been operated from aero-
planes [1,2], spaceborne platforms [3,4], and ground-based platforms [5–8]. Recently, the
miniaturisation of LiDAR instruments and the developments in unmanned aerial vehicle
(UAV) technology have yielded affordable LiDAR data acquisition over areas of multiple
hectares [7,9–12]. However, there are numerous UAV–LiDAR systems on the market, with
variable specifications, which yield LiDAR point clouds of varying quality. To limit the
weight and thus increase the flight time, trade-offs are made with regard to the range and
precision of the scanners.

For vegetation monitoring, it is crucial to understand which changes may be caused
by the different instruments used, and which changes are true representations of vegetation
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dynamics. Many UAV–LiDAR systems are commercially available nowadays, with large
differences in investment costs. All systems promise the “highly accurate” 3D mapping of
multiple hectare areas including vegetated areas, which is true compared with airborne
LiDAR data, which was the main option for large-scale mapping in the past. However, UAV–
LiDAR instruments differ in their capabilities to record multiple returns, their beamwidth,
the strength of the emitted laser pulse resulting in differences in the range and accuracy
of the scanner [12–15], and the accuracy of inertial navigation systems (INSs), resulting in
differences in geometric accuracy.

Technical differences among sensors result in different point cloud properties, but they
do not necessarily affect the derived forest structural parameters. Validating the quality of
point cloud data in a non-controlled environment (such as forests) remains a large challenge,
because there are many factors which influence the acquisition process. Wind may move
the trees, and occlusion determines which areas are (under)sampled and limits the usabil-
ity of ground reference targets for accuracy assessment. Previous studies have assessed
the quality of UAV–LiDAR to spatially characterise forest structure against photogram-
metry [15,16], airborne LiDAR (ALS) [16,17] or terrestrial LiDAR (TLS) [12,18], mobile
LiDAR (MLS) [19], and field measurements [18,20]. However, the differences in derived
forest parameters, resulting from differences in UAV–LiDAR sensor properties, have not
been investigated yet. This is crucial to the judgement of whether or not forest structural
changes in time-series of UAV–LiDAR data are true changes, or are caused by differences
in sensor characteristics. UAV–LiDAR sensors are undergoing rapid developments and
their characteristics are expected to keep changing over the years, which will introduce
inter-operability issues.

The objective of this study was to investigate the influence of different UAV–LiDAR
instruments on point cloud quality and derived forest parameters. By operating three different
UAV–LiDAR sensors over the same site within a small time frame (6 days), we can safely
assume that the differences in derived forest structure parameters are caused by the systems
and not by actual forest structure changes. We aimed to determine which inaccuracies may
be expected if the regular monitoring of sites is performed with multiple devices and how
changes between acquisitions with different instruments should be interpreted. Can we
use time-series data composed of different UAV–LiDAR systems to assess forest structure
changes? Additionally, to what extent should we account for data-interoperability issues?

Our study was performed in a savanna woodland ecosystem, which is a highly dy-
namic biome characterised by an open tree canopy and an understorey mostly comprising
grass. The frequent monitoring of vegetation structures is of great value for understanding
carbon dynamics, and for assessing how land management decisions about fire frequency
and intensity may impact structural diversity [19,21]. Savanna woodlands are a very open
forest type, which makes them ideal for the UAV-based mapping of structural changes.
Furthermore, they are a relatively open biome with good GNSS signal coverage, which
makes them easy to scan and enables comparisons of the performance on an individual
tree level.

In this study, we wanted to gain insights into the magnitude of the difference in
derived forest metrics when three different UAV–LS systems are used for data acquisition.
We investigated spatial plot metrics such as canopy height, canopy cover, and gap fraction,
and compared these with ALS data, which have been used for many years for mapping
large areas of forest structure. At individual tree level, we focussed on geometrical measures
such as tree height, crown area, and tree volume, which we compared with TLS-derived
tree metrics. Analyses of TLS data have generally been accepted as a technique to determine
the geometrical properties of individual trees [5], and is becoming the standard for accurate
plot size measurements. The comparisons between the different UAV–LiDAR sensors and
a comparison with ALS and TLS will help determine whether UAV–LiDAR systems are
interchangeable over a monitoring period or that the system should be kept the same. We
realise that there are many more arguments to decide on one system over the other, such as
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costs, ease of implementation, durability, etc. However, we will not look into these, but
focus instead on the variability in derived metrics between the systems.

2. Materials and Methods
2.1. Study Area

The study site (13◦10.740′S 130◦47.670′E) was the Litchfield Savanna TERN SuperSite,
located in Litchfield National Park, NT (Australia) [22] (Figure 1). The site is a tropical
savanna woodland with an average temperature of 32 ◦C and a maximum tree height of
around 25 m. The site is frequently burned by wildfires and has a monsoonal tropical
climate, with a wet season from December to March. An eddy–covariance flux tower was
established in December 2012, after the ALS data acquisition. Therefore, the flux tower was
not present in the ALS data.
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Figure 1. The Litchfield study area, located in Litchfield National Park, Northern Territory Australia.
The left pane shows an aerial photograph, overlaid with the Canopy Height Model derived from the
VUX-SYS dataset. The top right pane in an enhanced view of part of the Litchfield National Park.
The bottom right map shows the zooms further out to Northern Australia. Coordinates on the X and
Y axes are given in UTM Zone 52S.

2.2. UAV–LiDAR Sensors

UAV–LiDAR point clouds were acquired with three different systems: Riegl VUX-
SYS, Nextcore RN50 and Nextcore Gen-1. The Riegl VUX-SYS (http://www.riegl.com/
products/unmanned-scanning/ricopter-with-vux-sys/ (accessed on 13 June 2022)) consists
of a Riegl VUX1-UAV laser scanner combined with an Applanix APX-20 inertial navigation
system (INS) which, including the control box and wiring, weighs approximately 7 kg. It
was mounted under a Riegl Ricopter, which led to a combined take-off weight of 24.9 kg.
This system is further referred to as VUX-SYS.

The Nextcore® RN50 system (https://www.nextcore.co/ accessed on 13 June 2022)
was designed around the Quanergy M8 discrete return LiDAR sensor with an Advanced
Navigation Spatial Dual INS, integrated with a DJI Matrice 600 pro UAV. This system is
further referred to as QM8.

http://www.riegl.com/products/unmanned-scanning/ricopter-with-vux-sys/
http://www.riegl.com/products/unmanned-scanning/ricopter-with-vux-sys/
https://www.nextcore.co/
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The Nextcore® Gen-1 system consists of a Velodyne VLP16 scanner, with an Advanced
Navigation Spatial Dual INS attached, which was also integrated with the DJI Matrice 600
pro. This system is further referred to as VLP16. Further specifications of the UAV–LiDAR
systems are given in Table 1.

Table 1. System and flight specifications.

UAV–LiDAR System RIEGL VUX-SYS Nextcore Gen-1
VLP16

Nextcore RN50
QM8

Technology Time of Flight Time of Flight Time of Flight
View angle (degrees) 330 360 360
Wavelength (nm) 1550 903 905
Max number of returns 9 2 3
Max range (m) 600 100 100
Beam divergence (mrad) 0.35 3.0 unknown
Intensity Yes Yes Yes
Accuracy (cm) 1 ~3 <3
Flight speed (m/s) 3–5 4–5 4–5
Flight height above ground (m) 55 40 40
Line spacing (m) manual 16–23 16–23
Sensor pulse rate (M points/s) 0.55 0.6 1.2
Data acquisition date (Y/M/D) 12 September 2018 6 September 2018 6 September 2018

2.3. Data Acquisition and Pre-Processing

UAV–LiDAR data were acquired on the 6th (QM8 and VLP16) and 12th (VUX-SYS)
of September 2018. With all systems, two flights were conducted. For the VLP16 and
QM8, each flight consisted of 20 parallel flight lines, programmed using the DJI GS Pro
application. The drone was flown at speeds of 4–5 ms−1 at approximately 40 m above
ground level with a line spacing of between 16 and 23 m. The first flight followed a north–
south direction, whereas the second flight was performed perpendicular to this, thus resulting
in a checkerboard pattern flight plan. VUX-SYS data were collected at an altitude of 55 m
above ground level. For the VUX-SYS flight planning, the UGCS-ground station software
was used. Again, two flights were performed; however, during Flight 1, the autopilot failed,
and the flight was continued manually. This resulted in a pattern of crossing flight lines at
an approximate speed of 3 m/s for Flight 1. With Flight 2, a larger area was covered, first
following the outlines of a 500 × 500 m area, and next crossing the study area 11 times with
a flight speed of 5 m/s. During all flights, there was light to moderate wind (about 2 m/s).
The flight specifications are summarised in Table 1.

Local GNSS base station data were collected with an L1/L2 RTK receiver with a datalog-
ger which was placed in an opening close to the take-off location. This system determines its
own location by averaging the GNSS locations received; however, no correction relative to a
fixed base station was possible due to the remoteness of the study area. The collected base sta-
tion data were needed for co-registration of the point clouds with post-processed kinematic
(PPK) GNSS data. With PPK processing, accurate positioning is not performed in real time;
trajectory correction algorithms are applied afterwards. The raw GNSS logs of the base
station and the scanning systems were combined during the data processing to determine
the accurate positioning track. It is implied that the relative positioning during the flight
was very accurate (estimated to be a few centimetres), but the absolute positioning accuracy
depended on how accurately the base station estimated its own position (estimated to be
2–5 m).

The co-registration of the scans and different flight lines is one of the most crucial steps
for the generation of a point cloud. Due to the limited payload capacity of UAV systems,
UAV-based LiDAR systems always face a compromise between quality and weight. This
affects the quality of the scanner itself, as well as that of other components of the system
such as the INS. Visual inspections showed that the initial alignment was better for the
VUX-SYS than for the other systems. After the initial co-registration, there was still a slight
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offset between the individual flight lines for both the VLP16 and QM8. This could largely be
resolved by introducing a second processing step, aligning flight lines using iterative closest
point algorithm (ICP) point cloud matching in CloudCompare [23] (Stop criterion: RMSE
difference = 1.0× 10−5; Overlap = 80%; Random Sampling Limit = 50,000; Rotation = XYZ).

Airborne LiDAR data acquired in 2012 were included in this study for a comparison of
the spatial coverage and patterns, and to investigate whether UAV–LiDAR data can be used
in combination with or as a follow up of ALS recordings. ALS data are widely available
and could serve as a baseline for time-series. For a tree-level comparison, terrestrial laser
scanning data of an area of 100× 100 m around the flux tower were used for benchmarking.
These data were collected in the month before the flights (August 2018, so some leaf drop
was expected) with RIEGL VZ-400 apparatus, following the procedures as described by
Wilkes et al. [24]. Scan locations were laid out in a regular grid of 25 × 25 m, which were
registered using retro-reflective targets. At each position, scans were performed in upright
and horizontal tilting using the VZ-400 tilt-mount.

For all UAV–LiDAR systems, standard processing pipelines, provided by the system
manufacturers (Riegl® and Nextcore®), were used to geo-register the point clouds. Due
to the small offset in base station position between the different UAV flights, all UAV–
LiDAR datasets were aligned to the ALS data using the ICP algorithm, which minimised
the difference between two point clouds and performs a rigid body transformation, thus
leaving the internal geometry of the UAV–LiDAR point clouds intact. The ALS and UAV–
LiDAR point clouds were then clipped to an area of 200 × 200 m around the flux tower for
further analysis. For the individual tree comparison, the UAV–LiDAR data were clipped to
the spatial extent of the TLS data, which covered a 100 × 100 m area around the flux tower.

2.4. Analysis

To assess the differences in forest and individual tree parameters between the different
systems, a few comparisons were performed, which are outlined in Figure 2. A summary of
the used methods is given in Table 2. First, visual and numeric comparisons of the point cloud
quality, point density and distribution were performed by creating point density plots, cross
sections, and point density profile plots. Next, terrain and canopy metrics were calculated
and compared. We hypothesised that all UAV–LiDAR systems yield comparable terrain and
canopy metrics, but we expected to see differences along the vertical profile. Finally, individual
tree metrics were derived and a comparison between the different UAV–LiDAR sensors and
TLS was conducted. We expected the higher-end VUX-SYS to deliver individual tree metrics
that were closer to the TLS-derived individual tree metrics than the mid-range VLP16 and
QM8 systems. The methodology is further described in the following sections.

For the ALS and UAV–LiDAR point clouds, a number of XY rasters with a 1 m reso-
lution were calculated with the R-package lidR [25]. Although a higher resolution would
be achievable with the UAV–LiDAR point clouds, we chose a 1 m resolution to also enable
a fair comparison with the ALS data. First, ground points were classified, and the digital
terrain model (DTM) and canopy height model (CHM) were calculated. Canopy cover
was calculated using “lascanopy” using the Lastools software package [26]. Further pro-
cessing and analysis was performed in R [27]. The Rpackage lidR was used to calculate
canopy gap fraction profiles for three randomly selected locations, with a radius of 20 m.
This gap fraction profile function assesses the number of laser points that actually reached
the layer z + dz, and those that passed through the layer [z, z + dz], following the method
of Bouvier et al. [28]. By definition, the layer 0 will always return 0 because no returns
pass through the ground. Canopy profile plots for the three locations and four airborne
sensors were created and compared. To quantify the differences between the DTMs, the
three UAV–LiDAR-derived DTMs were subtracted from the ALS DTM, which showed
potential offsets and spatial differences between the DTMs. DTM differences were plotted,
and summary statistics were calculated. For the DEM, CHM, and point density, raster plots
of the calculated metrics were created for visual comparison. For the canopy cover raster, plots
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and boxplots were created for visual comparison, and summary statistics for the 200 × 200 m
area were calculated for a numeric comparison.
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Figure 2. Flowchart of the followed methodology.

For a comparison of the individual tree metrics, TLS data were used as a benchmark
dataset, with which the UAV–LiDAR data were compared. TLS point clouds and point
clouds from the three UAV–LiDAR systems were first co-registered by picking three pairs
of common points between the TLS and the corresponding UAV–LiDAR point cloud
using the point pairs picking function in CloudCompare [23]. Individual trees were first
segmented from the TLS point cloud manually. Next, corresponding individual trees
from the UAV–LiDAR point clouds were matched based on a nearest neighbour approach,
taking the locations of the trees in the TLS point cloud as base positions. Points from the
UAV–LiDAR point clouds which were within a distance of 0.5 m of the TLS tree points
were given the same label as the TLS tree. This resulted in a total of 550 matched trees
detected in all datasets. Tree height, tree projection area, and tree crown volume were
calculated for TLS and UAV–LiDAR individual tree point clouds using the ITSMe R-
package (https://github.com/lmterryn/ITSMe (accessed on 25 November 2022)) [29].

https://github.com/lmterryn/ITSMe
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Briefly, tree height was defined as difference between the largest and lowest Z-value of an
individual tree point cloud. The tree projection area was defined as the area of the concave
hull (concavity = 2) computed from the points of the tree point cloud, and tree volume was
calculated as the volume of the 3D alpha-shape (alpha = 2) computed from the points of
the individual tree point cloud.

The differences between individual tree height, crown area, and tree volume were
calculated with the TLS-derived values were used as reference. Scatterplots were created
between TLS- and UAV–LiDAR-derived individual tree parameters and summary boxplots
and statistics (mean absolute error (MAE) and root-mean-squared error (RMSE)) were
calculated. Finally, to determine whether there was a relationship between the size of
the tree and the measurement error, the differences between TLS-derived individual tree
metrics and UAV–LiDAR metrics (TLSvalues–UAVvalues) were calculated and plotted against
the TLS-derived metrics. These comparisons will answer our question if UAV–LiDAR
datasets acquired by different systems are interchangeable or not.

Table 2. Overview of calculated metrics and methods used to calculate them.

Variable/Metric Method Function Package/Software

DTM KNNIDW on ground points (k = 6, p = 2) rasterize_terrain R: lidR
CHM Local maximum calculation grid_canopy R: lidR
Point density Point counts per grid cell grid_density R: lidR
Frequency profiles Point counts in 0.5 m Z-bins above the terrain R

Canopy cover
Number of first returns above the height cutoff
divided by the number of all first returns, output
as a percentage.

Lascanopy Lastools

Gap fraction profiles

Gap Fraction =
N[0;z]

Ntotal−N[0;z+dz]

In which:
N[0;z] being the number of returns below z, Ntotal
is the total number of returns, N[0;z+dz] is the
number of returns below z + dz

gap_fraction_profile R: lidR [28]

Tree height Tree height = Zmax − Zmin tree_height_pc R: ITSME [29]
Tree projection Area Concave Hull fitting (concavity = 2) R: ITSMe [29]
Tree volume 3D alpha shape fitting (alpha = 2) alpha_volume_pc R: ITSMe [29]

3. Results
3.1. Point Clouds

The three UAV–LiDAR systems, as expected delivered much higher point densities
than ALS (15–100 times higher). The different UAV–LiDAR sensors delivered point clouds
with large variations in point densities and differences in spatial distributions of the points
(Figure 3—note the different colour schemes used). Higher point densities were related
to the presence of vegetation, which resulted in more points per square metre due to the
vertical structure. This can be determined by the peaks in point density near individual
trees. Point density was highest for the VUX-SYS, but the failure of the autopilot during
the first flight resulted in a manual flight, which led to an uneven point distribution. With
a properly functioning autopilot, the point density distribution should be more evenly
spread [12]. The point density for the QM8 was slightly lower than for the VUX-SYS, but
the spatial variation in point density reflected the presence of vegetation, which resulted in
more points per surface area. For the VLP16, the point density was lowest on average.
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study area; coordinates on the x and y axes are given in UTM Zone 52S. Note that colour scales are
different per plot.

A visual comparison of the cross-sections in Figure 4 revealed that all systems de-
scribed the upper canopy and terrain well, but the VUX-SYS captured the understorey
(0–5 m above ground) and smaller trees much better. This can be attributed to the larger
number of returns captured which helped penetrate the canopy and contribute to measure-
ments of the understorey. Furthermore, the range of the VUX-SYS was much larger than
for the other systems. As a result, many additional points were recorded from flight lines
which were further away, under more oblique viewing angles, which contributed to the
better recording of the understory. The range was especially limited for the VLP16, which
prohibited the detection of below-canopy points under oblique angles.

The co-registration of the different flight lines was much better for the VUX-SYS than
for the VLP16- and QM8-based systems. This can be seen in Figure 5, where the point cloud
of the top of the flux tower is shown, using the GPS time as an attribute to colour the points.
For all systems, the point cloud of the tower comprised multiple passes (shown by the
different colours), but for the QM8 and VLP16, it showed that the different scanlines did not
match perfectly, with offsets of around 30 cm. This is mainly a result of the lower-quality
INS used in these systems, compared with the INS of the VUX-SYS. ICP could not resolve
the original offsets completely, as shown in Figure 5. The ICP algorithm aims to minimise
the difference between point clouds, taking all points in consideration. The large fraction
of ground points will have a higher weight in the ICP process than the lower fraction of
points higher in or above the canopy, which may lead to suboptimal co-registration in those
parts of the point cloud. ICP after removing the ground points would work for the trees,
but may result in worse co-registration at ground level. Aligning the flight lines of the QM8
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and VLP16 systems using a Bayesian method as described by Jalobeanu et al. [30] would
reduce errors associated with misalignment.

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 21 
 

 

cloud of the top of the flux tower is shown, using the GPS time as an attribute to colour 

the points. For all systems, the point cloud of the tower comprised multiple passes (shown 

by the different colours), but for the QM8 and VLP16, it showed that the different scan-

lines did not match perfectly, with offsets of around 30 cm. This is mainly a result of the 

lower-quality INS used in these systems, compared with the INS of the VUX-SYS. ICP 

could not resolve the original offsets completely, as shown in Figure 5. The ICP algorithm 

aims to minimise the difference between point clouds, taking all points in consideration. 

The large fraction of ground points will have a higher weight in the ICP process than the 

lower fraction of points higher in or above the canopy, which may lead to suboptimal co-

registration in those parts of the point cloud. ICP after removing the ground points would 

work for the trees, but may result in worse co-registration at ground level. Aligning the 

flight lines of the QM8 and VLP16 systems using a Bayesian method as described by Jalo-

beanu et al. [30] would reduce errors associated with misalignment. 

 

Figure 4. Cross sections of a 5 m slice show the differences in point density and point distribution. 

This is especially visible by the greater detail in the understory for the VUX-SYS. The flux tower was 

established after the ALS data acquisition, and was therefore lacking in the upper slice. The area 

shown covers a 200 m slice in the X direction, and 5 m in the Y direction. Values on the X axis are X-

coordinates; values on the Y axis are heights given in UTM Zone 52S. 

Figure 4. Cross sections of a 5 m slice show the differences in point density and point distribution.
This is especially visible by the greater detail in the understory for the VUX-SYS. The flux tower was
established after the ALS data acquisition, and was therefore lacking in the upper slice. The area
shown covers a 200 m slice in the X direction, and 5 m in the Y direction. Values on the X axis are
X-coordinates; values on the Y axis are heights given in UTM Zone 52S.
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Figure 5. Side views of the top of the flux tower, with the points coloured by GPS time; thus, different
passes with the systems are shown in different colours. Co-registration issues between the different
flight lines are visible for the VLP16 and QM8 sensors.

Figure 6 displays the point distribution height profiles, subdivided for the return
number. Thus, it can be observed that the VUX-SYS data contained a much larger fraction
of points within the 0–10 m above surface range. Additionally, the contribution of mainly
second returns is much larger than for the other sensors. ALS data contained a relatively
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larger fraction of ground points than the other systems, but the understorey was sampled
relatively better than with the VLP16 and QM8. For the VLP16, most of the recorded points
were first returns, and the recorded second returns were also located around 15 m above
the terrain, also in the canopy layer. The data obtained by the QM8 appeared to show
an error in the return number attribute, because the fractions of first, second, and third
or more returns were practically the same. However, the profile of all returns combined
showed a comparable height distribution for the VLP16 and QM8 point clouds. A full
explanation of the lack of lower canopy points cannot be deduced from these data; however,
it is likely to be a combination of the lower laser power and limited range of the scanners.
Another aspect that influences the return distribution are the discretization settings of
scanner manufacturers, for which it is difficult to determine any insights for as an end-user.
The VLP16 sensor has a much larger beam-divergence than the VUX-SYS, which likely led
to stronger attenuation of the beam when it passed the upper canopy, leading to a lower
signal returned from the lower parts of the canopy. This lower signal may not pass the
discretization thresholds set by the manufacturer, resulting in fewer returns in the lower
parts of the canopy.
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Figure 6. Frequency profiles showing the number of points per 0.5 m height above the terrain bins,
for the entire 200× 200 m study area. The black line shows the number of points including all returns,
and the red, green, and blue lines show the first, second, and third or higher returns, respectively.

3.2. Digital Terrain Models

Slight differences in the DTMs were observed (Figure 7). All DTMs accurately showed
the general topography of the study area, which was gently sloping toward the northeast.
Additional car tracks can be observed in the UAV–LiDAR datasets, which were formed
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after the ALS data were collected. The QM8 and VLP16 DTMs were overall slightly lower in
elevation than the ALS and VUX-SYS. Those differences are within the vertical uncertainty
in PPK processing. The difference maps (Figure 8) of the UAV–LiDAR-derived digital
terrain models and the ALS DTM show that the UAV–LiDAR-derived DTMs exhibited
structurally lower elevations than the ALS DTM (differences were calculated as ALSDTM-
UAVDTM), with median offsets of 0.31 m, 0.33 m, and 0.35 m for the VUX-SYS, VLP16, and
QM8, respectively. These structural offsets were likely a result of the ICP alignment, where
the ALS data were used as a reference to align the UAV–LiDAR data. Performing the ICP
alignment on the ground points only may remove this offset. The DTM difference maps
did not show clear spatial patterns, except for the entrance road which was established for
construction of the flux tower after the acquisition of the ALS data.
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Figure 7. (Left) Digital terrain models acquired with the different sensors; elevation is given in metres
above sea level. (Right) Canopy height models acquired with the different sensors; elevation is given
in metres above the terrain. The area shown covers the 200 × 200 m study area; coordinates on the x
and y axes are given in UTM Zone 52S.
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Figure 8. Difference maps of the UAV–LiDAR-derived digital terrain models and the ALS DTM. The
three maps show the absolute differences spatially. The boxplot shows a summary of the differences
for all pixels in the study area. The area shown covers the 200 × 200 m study area; coordinates on the
x and y axes are given in UTM Zone 52S.
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3.3. Canopy Metrics

The CHMs of the three UAV–LiDAR sensors showed larger crowns than the CHM
derived from the ALS data (Figure 7 Right), which may partially be explained by the 6-year
difference between acquisitions. Between the UAV–LiDAR datasets, there were no clear
observable differences, indicating that all UAV systems delivered a visually comparable
CHM. However, the calculated canopy cover showed clear differences and was, on average,
much higher for the VUX-SYS than for the other systems. This led to spatial differences in
canopy cover (Figure 9), but was also expressed in differences in average canopy cover for
the study area. The boxplots in Figure 10 show that the median canopy cover derived from
the VUX-SYS data (median = 19.9%) was twice as high as for the VLP16 (8.8%), and about
four times higher than for the QM8 (5.2%). Canopy cover derived from the VLP16 and
QM8 point clouds were lower than for the ALS data, whereas the VUX-SYS exhibited
higher numbers, which showed that the UAV–LiDAR system characteristics had a much
larger influence than the growth during the 6 years in between ALS and UAV–LiDAR
data acquisition. We can only speculate which sensor properties led to those differences in
canopy cover, but most likely, the beam divergence and return discretization parameters
are underlying causes.
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Figure 9. Canopy cover (%) acquired by the different sensors (pixel size = 1 m). The area shown
covers the 200 × 200 m study area; coordinates on the x and y axes are given in UTM Zone 52S. Large
differences in canopy cover can be observed between the different datasets.
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Figure 10. Boxplots of canopy cover (%) values for the 200 × 200 m study area, acquired by the
different sensors. The boxplots show that the average canopy cover is much higher for VUX = SYS
than for the other UAV data and the older ALS data.

Gap fraction profiles, created for three random locations within the study sites with a
20 m radius, showed that there were substantial differences in the description of the vertical
vegetation profile (Figure 11). In general, the profiles were comparable for the upper canopy,
but the VUX-SYS had a lower gap fraction for the lower parts of the canopy. This implies that
the VUX-SYS measured much more structure in the understory, which was also observed in
the cross sections and point distribution profiles shown before (Figures 4 and 6).
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Figure 11. Gap fraction profiles of three randomly selected 20 m radius areas plots. Height is given
in m.a.s.l.

In Section 2.4, we hypothesised that all systems would give comparable terrain and
canopy metrics, but this did not hold for the canopy metrics. The canopy cover derived from
the QM8 and VLP16 was much lower than from the VUX-SYS, which was also reflected
in the CHM. The expected differences along the vertical profile were clearly observed;
especially in the lower parts of canopy, clear differences in the point density and derived
gap-fraction are present.

3.4. Individual Tree Parameter Estimation

All systems estimated individual tree height well when compared with TLS measure-
ments (Figure 12). The VUX-SYS was, on average, underestimating the tree height by 20 cm
(Table 3), whereas the other systems showed a smaller under- (VLP16: 8 cm) or overestimation
(QM8: 6 cm). However, the variation in tree height estimation error was larger for the VLP16-
and QM8-based systems, which is a risk when the focus is on a few individual trees. This
was also expressed in a larger RMSE for those systems (Table 3). The error plots (bottom
Figure 12) show that the error in height estimation for the VLP16 and QM8 was slightly
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more negative for taller trees than for shorter trees, indicating that those systems tended to
overestimate the height of taller trees more than for smaller trees. This plot also showed
that fewer smaller trees were detected by the matching procedure for the VLP16 and QM8
point clouds, but contained too few points to derive a reliable tree height. The VUX-SYS
does not show a relationship between the tree height and error in height estimation.

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 21 
 

 

individual trees. This was also expressed in a larger RMSE for those systems (Table 3). 

The error plots (bottom Figure 12) show that the error in height estimation for the VLP16 

and QM8 was slightly more negative for taller trees than for shorter trees, indicating that 

those systems tended to overestimate the height of taller trees more than for smaller trees. 

This plot also showed that fewer smaller trees were detected by the matching procedure 

for the VLP16 and QM8 point clouds, but contained too few points to derive a reliable tree 

height. The VUX-SYS does not show a relationship between the tree height and error in 

height estimation. 

  

Figure 12. Tree height (Left), tree projected area (Middle), and tree crown volume (Right) derived 

from individual tree point clouds for the different sensors, compared with TLS-derived values. On 

the top, scatterplots are given, with the regression lines of TLS vs. UAV data. In the middle, the data 

are represented in boxplots to summarise the differences for all trees within the 100 × 100 m study 

area. At the bottom, the differences in the TLS-derived parameters minus the UAV-derived param-

eters are plotted against the TLS-derived values. 

The tree volume derived from the VUX-SYS point clouds showed very similar values 

to the measurements based on the TLS data (Table 3). Both the VLP16 and QM8 systems 

showed underestimations of the tree volume (Figure 12). This was indicated by a negative 

Figure 12. Tree height (Left), tree projected area (Middle), and tree crown volume (Right) derived
from individual tree point clouds for the different sensors, compared with TLS-derived values. On
the top, scatterplots are given, with the regression lines of TLS vs. UAV data. In the middle, the
data are represented in boxplots to summarise the differences for all trees within the 100 × 100 m
study area. At the bottom, the differences in the TLS-derived parameters minus the UAV-derived
parameters are plotted against the TLS-derived values.
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Table 3. Mean values for individual tree parameters calculated for all trees in the plot, and the
mean absolute errors and root-mean-squared error for individual tree parameters, using TLS data
as reference.

TLS VUX-SYS VLP16 QM8

Mean Height [m] 11.93 11.73 11.85 11.99
Mean Tree Area [m2] 14.99 15.32 13.07 13.83
Mean Tree volume [m3] 47.23 45.24 36.41 40.97
MAE Height [m] - 0.23 0.31 0.46
RMSE Height [m] - 0.34 0.79 0.93
MAE Tree Area [m2] - 1 2.15 1.76
RMSE Tree Area [m2] - 1.93 3.13 2.51
MAE Tree Volume [m3] - 3.39 11 7.11
RMSE Tree Volume [m3] - 6.68 18.46 11.66

The tree volume derived from the VUX-SYS point clouds showed very similar values
to the measurements based on the TLS data (Table 3). Both the VLP16 and QM8 systems
showed underestimations of the tree volume (Figure 12). This was indicated by a negative
mean difference, but the scatter plots and box plot also showed that for almost all trees,
the tree volume measurements with the VLP16 and QM8 were lower. The VUX-SYS
measurements showed variations around the 0 m3 difference, but those variations occurred
in both negative and positive directions (MAE = 3.39 m3, RMSE = 6.68 m3). Therefore, we
conclude that the VUX-SYS data described the individual tree volume much better than the
other systems. Comparable conclusions can be drawn for the projected tree area (Figure 12,
Table 3). The VUX-SYS captures the dimensions of the crown better than the VLP16 and
QM8, which both showed a consistent underestimation of the crown dimensions. For the
tree crown area and tree volume, there was a relationship between the size of the tree and
the error. This was most pronounced for the VLP16, which underestimated the tree volume
in general, but the absolute error became larger when the tree volume increased.

In Section 2.4, we hypothesised that the higher-end VUX-SYS would deliver more
accurate individual tree metrics than the mid-range VLP16 and QM8 systems. Considering
TLS as the ground-truth for complete tree structure parameters, this hypothesis can be con-
firmed. For tree height, area, and volume, the VUX-SYS results are, on average, consistently
closer to the TLS-derived values than the VLP16 and QM8 results.

4. Discussion

The technical specifications of the scanner can be evaluated well in a laboratory
setup; however, the performance of the entire UAV–LiDAR system is harder to assess. A
crucial part of the system is the INS, which is essential for proper alignment of the scans.
When comparing the systems for a specific application, as performed in this study, there
were observable differences in co-registration quality. There are no real straightforward
methods to determine the internal quality of a point cloud in a dynamic environment such
as a forest, but a comparison of the different datasets shows that investing in a higher-
quality system does pay off, especially when the focus is an individual tree assessment,
opening possibilities for more advanced analysis [31]. On a tree level, the parameters
derived from the VUX-SYS data were closest to the TLS-derived parameters, which is
considered a good standard for tree-level parameter estimates.

Our results show that in the context of the data-interoperability of time series mea-
surements of a forest site, it is crucial to use the same system, or cross-calibrate derived
forest structural metrics. The products derived from the different scanners show differences
which are likely larger than actual changes taking place within the forest, as shown in
Figure 10, where the VLP16 and QM8 canopy cover is lower than the ALS canopy cover,
although the ALS data are 6 years old and the canopy has likely changed over the years.
General products such as the DTM and CHM are reasonably comparable for different
UAV–LiDAR sensors; however, differences can also be observed here, especially for the
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CHM. Analysis of specific forest structural parameters, such as canopy height or canopy
cover, shows that the choice for one UAV–LiDAR sensor or the another has a considerable
influence on the derived parameter values. Therefore, one UAV–LiDAR system cannot
be interchanged for the other, and forest products derived from different sensors are not
comparable. This is crucial when building UAV–LiDAR time series for any ecological
interpretation of observed changes, or extending ALS time-series with UAV–LiDAR data.
LiDAR has been used to study multi-temporal forest dynamics [32–34], but it is clear that
UAV–LiDAR should be added to the toolbox with utmost care.

Some of the larger errors in tree height estimation were caused by missing lower parts
of the trees. We defined the tree height as the difference between minimum and maximum
Z in the point cloud; therefore, missing the lower parts of the stem during scanning resulted
in an underestimated tree height. Adaptions of the method to calculate the tree height may
decrease those errors, for example, by comparing the treetop with the ground instead of
treetop with the bottom of the stem. The larger differences mainly reflect the difficulties the
VLP16 and QM8 have to record below canopy structure. Therefore, research focus could
also be on developing algorithms that are less sensitive to data-interoperability issues.

We did not investigate the influence of repeated flights with the same system. A slightly
different flight pattern may result in a different sampling of the area, and thus, in a different
point distribution. However, we believe that this will lead to much smaller differences in
the point clouds than the differences we observe between the different scanners.

Our sensor comparison was performed in savanna woodland, characterised by an
open structure, which makes it easier for LiDAR to penetrate deep within the canopy.
For more complex forests, with denser vegetation and multiple canopy layers, differences
between systems might even be larger. Previous research by Terryn et al. [7] showed that,
using the VUX-SYS system, differences in flight speed and multiple vs. single returns
resulted in significant differences in derived forest parameters for dense tropical forest.
High laser power and multiple return capabilities will be crucial in such cases for good
characterisation of the forest structure. Brede et al. [35] showed in their experiment over a
tropical forest plot that the technical settings of the system (such as pulse repetition rate
and laser power) have a considerable influence on how well the different canopy layers
are sampled. For many low-cost systems, range is limited, and the laser power cannot be
adapted, which will limit their use in more dense or multi-layered canopies. Experiments
such as those performed by Brede et al. and Terryn et al. are essential to gain better insight
in which factors have the strongest impact on the properties of the acquired point cloud.

With our experimental setup, we were not able to quantify the importance of dif-
ferent flight parameters (e.g., height and speed), beam divergence, laser power, or pulse
discretization. For this, repeated and controlled experiments are needed, or virtual LiDAR
simulations such as those facilitated by HELIOS++ software [36]. Such LiDAR simulation
software offers the possibility to produce datasets as they would be acquired by different
sensors, while keeping all environmental parameters constant. We are confident that the
vegetation in the plot did not change significantly during the 6 days between UAV–LiDAR
flights, but a stable environment can be assured using simulations. Furthermore, simu-
lations offer the possibility to test much more different scenarios than could be assessed
during our field campaign. For example, flight operational factors such as speed, height,
and the number of flight lines influence the quality of the data, of which the influence could
be systematically tested with LiDAR simulation software. In our comparison, we used
different flight parameters, mostly following the manufacturers’ instructions; however, we
could not validate how large the influence of those parameters was on the acquired datasets.

Developments in UAV–LiDAR sensors are rapidly progressing, with systems becom-
ing smaller and less expensive [13,37]. Specification sheets all promise highly accurate and
reliable 3D point clouds, but in practice there are considerable differences in data quality.
The advances in technology present many great possibilities for measuring forest structure
and monitoring the structural dynamics. However, in this comparison, we demonstrated a
large variation in point density between sensors, which significantly influenced the derived
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forest parameters. Therefore, the main conclusion is that the interpretation of multi-sensor
UAV–LiDAR datasets and drawing ecological conclusions from them should be carried out
with utmost care.

However, we should not neglect that the rapid developments in UAV–LiDAR systems,
in tandem with rapidly dropping prices, bring those systems within reach for a much larger
user community. The systems presented here require sizeable investments (we refer to
the companies or resellers for exact pricing information), but systems built around LIVOX
sensors, for example, are available for around EUR 10,000. The absolute quality of those
cheaper sensors is lower compared with high-end systems such as the VUX-SYS, but the user
base will be much larger. Therefore, those lower-end systems should not be neglected because
they may open up new directions such as covering larger areas, more frequently, and at lower
costs. However, we showed that data quality will have a considerable influence on the
derived forest parameters; thus, users should be aware of this.

The intention of this paper was not to give best-buy advice, because there are many
reasons why to decide on one system over another. We focussed on the derived forest
parameters, but many practical considerations precede this, such as operational use (flight
time and ease of operation), processing efficiency (number of user interventions and time
investment) and costs (for purchase but also maintenance and operations).

Given the speed at which forest structures change, time series would ideally extend
multiple decades, which is beyond the expected technical lifespan of UAV–LiDAR systems.
Nowadays, we are just at the beginning of the construction of such long time-series. Future
research should focus on quantifying data operability issues, as we have shown in this
research. Algorithms should be tested for their robustness to the system properties, and
the focus should be on developing algorithms which yield robust estimates of the forest
structure, independent on the sensors used.

5. Conclusions

In this study, we compared forest structural parameters derived from data recorded
with three different UAV–LiDAR systems. The results showed that there were considerable
differences in the derived forest parameters, indicating that studying forest dynamics with
multiple UAV–LiDAR should be performed with utmost care, because data operability is
a major challenge. When combining different sensors in a UAV–LiDAR time-series, the
differences in derived tree or forest parameters between systems is likely larger than the
actual changes within the forest.

Author Contributions: Data were collected by H.B., T.W., K.C., R.B., S.R.L., and L.T.; R.B., S.R.L.,
and T.W. arranged crucial parts of the permissions and logistics. Pre-processing and analysis were
performed by H.B., T.W., S.M.K.M., L.T., and K.C.; H.B., K.C., S.R.L., H.V. and T.W. conceptualised
the experiment. All co-authors contributed to the writing process. All authors have read and agreed
to the published version of the manuscript.

Funding: The fieldwork was funded by BELSPO (Belgian Science Policy Office) in the frame of the
STEREO III programme project 3D-FOREST (SR/02/355).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author or kim.calders@ugent.be. The data are not yet publicly available due to ongoing
research on the acquired datasets.

Acknowledgments: We thank Barbara D’hont for assistance during the TLS fieldwork. We acknowl-
edge the Ecosystem Processes facility in Australia’s Terrestrial Ecosystem Research Network (TERN)
and NT Parks and Wildlife.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.



Remote Sens. 2022, 14, 5992 18 of 19

References
1. Goodwin, N.R.; Coops, N.C.; Culvenor, D.S. Assessment of forest structure with airborne LiDAR and the effects of platform

altitude. Remote Sens. Environ. 2006, 103, 140–152. [CrossRef]
2. Zhang, Z.; Cao, L.; She, G. Estimating forest structural parameters using canopy metrics derived from airborne LiDAR data in

subtropical forests. Remote Sens. 2017, 9, 940. [CrossRef]
3. Simard, M.; Pinto, N.; Fisher, J.B.; Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res.

Biogeosci. 2011, 116, 103592. [CrossRef]
4. Tang, H.; Armston, J.; Hancock, S.; Marselis, S.; Goetz, S.; Dubayah, R. Characterizing global forest canopy cover distribution

using spaceborne lidar. Remote Sens. Environ. 2019, 231, 111262. [CrossRef]
5. Calders, K.; Adams, J.; Armston, J.; Bartholomeus, H.; Bauwens, S.; Bentley, L.P.; Chave, J.; Danson, F.M.; Demol, M.; Disney, M.

Terrestrial laser scanning in forest ecology: Expanding the horizon. Remote Sens. Environ. 2020, 251, 112102. [CrossRef]
6. Bauwens, S.; Bartholomeus, H.; Calders, K.; Lejeune, P. Forest inventory with terrestrial LiDAR: A comparison of static and

hand-held mobile laser scanning. Forests 2016, 7, 127. [CrossRef]
7. Terryn, L.; Calders, K.; Bartholomeus, H.; Bartolo, R.E.; Brede, B.; D’hont, B.; Disney, M.; Herold, M.; Lau, A.; Shenkin, A.

Quantifying tropical forest structure through terrestrial and UAV laser scanning fusion in Australian rainforests. Remote Sens.
Environ. 2022, 271, 112912. [CrossRef]

8. Côté, J.-F.; Fournier, R.A.; Egli, R. An architectural model of trees to estimate forest structural attributes using terrestrial LiDAR.
Environ. Model. Softw. 2011, 26, 761–777. [CrossRef]

9. Neuville, R.; Bates, J.S.; Jonard, F. Estimating forest structure from UAV-mounted LiDAR point cloud using machine learning.
Remote Sens. 2021, 13, 352. [CrossRef]

10. Liu, K.; Shen, X.; Cao, L.; Wang, G.; Cao, F. Estimating forest structural attributes using UAV-LiDAR data in Ginkgo plantations.
ISPRS J. Photogramm. Remote Sens. 2018, 146, 465–482. [CrossRef]
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