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Abstract: Soil freeze depth variations greatly affect energy exchange, carbon exchange, ecosystem
diversity, and the water cycle. Given the importance of these processes, obtaining freeze depth
data over large scales is an important focus of research. This paper presents a simple empirical
algorithm to estimate the maximum seasonally frozen depth (MSFD) of seasonally frozen ground
(SFG) in snowy regions. First, the potential influences of driving factors on the MSFD variations
were quantified in the baseline period (1981–2010) based on the 26 meteorological stations within and
around the SFG region of Heilongjiang province. The three variables that contributed more than 10%
to MSFD variations (i.e., air freezing index, annual mean snow depth, and snow cover days) were
considered in the analysis. A simple multiple linear regression to estimate soil freeze depth was fitted
(1981–2010) and verified (1975–1980 and 2011–2014) using ground station observations. Compared
with the commonly used simplified Stefan solution, this multiple linear regression produced superior
freeze depth estimations, with the mean absolute error and root mean square error of the station
average reduced by over 20%. By utilizing this empirical algorithm and the ERA5-Land reanalysis
dataset, the multi-year average MSFD (1981–2010) was 132 cm, ranging from 52 cm to 186 cm, and
MSFD anomaly exhibited a significant decreasing trend, at a rate of −0.38 cm/decade or a net change
of −28.14 cm from 1950–2021. This study provided a practical approach to model the soil freeze
depth of SFG over a large scale in snowy regions and emphasized the importance of considering
snow cover variables in analyzing and estimating soil freeze depth.

Keywords: seasonally frozen ground; snow cover; air temperature; empirical algorithm

1. Introduction

Soil freeze depth arises from the complex heat exchange processes between the ground
and atmosphere and is highly sensitive to climate change, thus reflecting long-term changes
in the climate system [1,2]. Global warming caused mainly by greenhouse gas emissions
has led to substantial changes in soil freeze depth at regional, national, and hemispheric
scales [1,3–11], which then affects carbon exchange, ecosystem diversity, hydrological
processes, and engineering construction in cold regions [12–16].

Soil freeze depth is generally obtained by manual observation through standard frost
tubes when the ground surface temperature is below 0 ◦C [17]. Using ground observations,
substantial efforts have been made to estimate the spatial distribution and change in the
maximum seasonally frozen depth (MSFD) of seasonally frozen ground (SFG), such as in
the Three Rivers Source Region [5] and Qinghai-Tibetan Plateau (QTP) of China [6,14], all of
China [9,10], and Eurasian high latitudes [1]. However, the results may have been partially
affected by the number and distribution of stations, particularly at high altitudes and
latitudes with sparse site distribution due to harsh natural environments and expensive ob-
servation costs [18,19]. In addition, analysis based on station observations cannot reflect the
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spatiotemporal variations of soil freeze depth in data-scarce areas. Under such conditions,
the development of soil freeze depth estimation models can be an effective way to obtain
regional-scale freeze depth data. Over a regional scale, soil freeze/thaw processes have
often been simulated by incorporating numerical solution schemes (e.g., finite element and
finite volume) into land surface or hydrological models [4,20–22], but the high computa-
tional cost and large data requirement for model calibration have limited their application
in large scale surveys [19]. By utilizing climatic variables such as air temperature, precipita-
tion, snow depth, or freeze–thaw indexes, some empirical or semi-empirical solutions have
performed adequately in soil freeze depth simulations [1,4,6,9,23–25]. Among them, the
Stefan solution has been most widely used to estimate the soil freeze depth of SFG and ac-
tive layer thickness above permafrost by utilizing air temperature and soil parameters (e.g.,
soil thermal conductivity, soil bulk density, and soil water content) as main inputs [9,26,27].

Due to the significant correlation between the soil freeze depth and air temperature,
the Stefan solution has been simplified and widely used in MSFD estimation at both
point [28,29] and regional scales [8,9,30–32]. However, considering air temperature as the
only input variable and generalizing other variables as constants [31,33] may lead to large
uncertainties in MSFD estimations. For example, in areas with deep snow cover, the effect
of snow cover on soil temperature [34–36], the soil freeze depth of SFG [37], and the active
layer thickness above permafrost [38–41] has been significant or even exceeded that of
air temperature. However, the potential impact of snow cover parameters on soil freeze
depth was not fully considered in the simplified Stefan solution, which may limit its wide
application in areas with substantial snow cover. Other variables, such as soil properties
and vegetation characteristics, may also influence the variation in soil freeze depth [1,42].
For example, soil properties mainly affect the thermal and hydraulic conductivity of soil
and thus influence the freeze/thaw process [43]. Vegetation can affect the energy balance
of the ground via changes in the surface albedo (e.g., bare ground versus vegetation
cover), vegetation transpiration, and shading effects [44,45], which influence the freezing
conditions of the soil [46].

Northeast China is a stable snow cover distribution area, where average snow depth,
snow density, and snow water equivalent are larger than in other regions of China [47–49].
Heilongjiang province is located in the northern part of Northeast China, where the annual
average air temperature has risen at a rate of 0.35 ◦C/decade from 1960 to 2015 [50], leading
to clear changes in the frozen ground [51,52]. With Heilongjiang province as the study
area, we aimed to develop a simple empirical algorithm for estimating the MSFD of SFG in
snowy regions. To this end, we first quantified the potential influences of driving factors
(including air temperature, snow cover, vegetation, and soil properties) on the MSFD
variation based on the data from the 26 meteorological stations within and around the SFG
region of Heilongjiang province. By selecting and fitting the principal driving elements,
the empirical algorithm for MSFD estimation was developed, and its performance was
evaluated by comparing it with the observed freeze depths and the estimations of the
simplified Stefan solution. This empirical algorithm was also combined with the ERA5-
Land reanalysis dataset to investigate the spatiotemporal variations in the soil freeze depth
of SFG in Heilongjiang province.

2. Materials and Methods
2.1. Study Area

With a geographical boundary of approximately 121◦11′–135◦05′E and 43◦26′–53◦33′N,
Heilongjiang province extends 930 km from east to west and 1120 km from north to south
(Figure 1). The elevation ranges from 28 to 1637 m, with only 3.24% of the area exceeding
800 m.
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Figure 1. Location of Heilongjiang province with the spatial distributions of frozen ground type and
26 meteorological stations. The distribution map of frozen ground was provided by the National
Cryosphere Desert Data Center (http://www.ncdc.ac.cn (accessed on 15 May 2022)). The background
reflects the altitude. DEM: digital elevation model.

As a typical cold temperate continental monsoon climate region, Heilongjiang province
experiences hot and rainy summers and cold and dry winters [53]. According to the distribu-
tion map of frozen ground across China [54], discontinuous permafrost, island permafrost,
and seasonally frozen ground are distributed predominantly from north to south in Hei-
longjiang province (Figure 1). Among them, seasonally frozen ground comprises up to 68%
of the total area and is the focus of this paper.

2.2. Data and Methods

Historical climate data of daily observations within Heilongjiang province, including
soil freeze depth, air temperature, and snow depth, were obtained from the China Meteoro-
logical Administration. Daily soil freeze depth was manually measured at 08:00 Beijing
time using a standard frost tube by trained professional technicians when the ground
surface temperature was below 0 ◦C. The mean daily air temperature was calculated from
the arithmetic means of four daily observations (02:00, 08:00, 14:00, and 20:00 Beijing time).
Snow depth was measured at 08:00 Beijing time using a centimeter-scale wooden ruler
when snow covered the ground and was recorded as an integer [17]. The annual MSFD
was determined as the maximum daily frozen ground depth during a freezing year from
September to August of the following year [6,10]. Twenty-six meteorological stations, with
records available for more than three-quarters of the study period from 1975 to 2014 within
and around the SFG region of Heilongjiang province, were selected to quantify the effect of
main driving factors on MSFD variations and construct the MSFD estimation algorithm.
Among the 26 stations, 4 were located in island permafrost regions but were not themselves
above permafrost (Figure 1). The annual air freezing index (FI), which is the sum of the
absolute values of all daily air temperatures below 0 ◦C, was used to evaluate the influence
of air temperature on soil freeze depth [33,43]. Annual snow cover days (SCD) and average

http://www.ncdc.ac.cn
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snow depth (ASD) were obtained from daily snow depth observations from each station.
SCD is the number of days in a year with snow on the ground at a depth of ≥1 cm [55],
and ASD is the ratio of the total of all daily snow depths to SCD [56].

Due to the shortage of observational data, the time series data of soil moisture content
(SM) and leaf area index (LAI) of the 26 stations were extracted from the ERA5-Land
hourly reanalysis dataset (https://cds.climate.copernicus.eu (accessed on 10 May 2022)),
depending on the longitude and latitude of the stations using ArcGIS 10.6. The ERA5-Land
reanalysis dataset provides a consistent view of the evolution of land variables over several
decades at high temporal (1 h) and spatial (0.1◦ × 0.1◦) resolutions from 1950 to the present,
which grants it utility for many land surface applications, such as water resource, land,
and environmental management [57,58]. To estimate the MSFD at regional scales, gridded
air temperature (at 2 m above the land surface), snow depth, SM, and LAI data were also
extracted from the ERA5-Land reanalysis dataset. Specifically, SM refers to the mean values
of soil moisture at depths of 0–7, 7–28, and 28–100 cm.

To evaluate hourly air temperature and snow depth data from ERA5-Land, the values
of FI, ASD, and SCD calculated from the observations of the 26 stations were compared
with those calculated from the ERA5-Land dataset using two evaluation indexes: root
mean square error (RMSE) and mean absolute error (MAE). For the evaluation of hourly
SM and LAI data from ERA5-Land, we compared the possible impact of using different
data products to quantify the effects of the main driving factors on MSFD variations and to
construct the MSFD estimation algorithm. Among these data products, gridded normalized
difference vegetation index (NDVI) data from 1982 to 2010 with 5 km spatial resolution
were collected from the National Earth System Science Data Center of the National Science
& Technology Infrastructure of China (http://www.geodata.cn (accessed on 15 May 2022));
the data are produced by the National Oceanic and Atmospheric Administration NDVI
Climate Data Record. The SM data were provided by the Global Land Data Assimilation
System (GLDAS V2.0), which produces operational spatiotemporally continuous global
soil moisture data sets (https://disc.gsfc.nasa.gov (accessed on 15 May 2022)), and has
been widely used in previous research [59–61]. The mode of the GLDAS used in this study
was the Noah Land Surface Model with a spatial resolution of 0.25 degrees and the monthly
time series data from 1948 to 2015 [62,63]. Soil moisture was calculated as the mean soil
moisture values at depths of 0–10, 10–40, and 40–100 cm. All these data (i.e., FI, ASD,
SCD, LAI, NDVI, and SM) of the 26 stations from different data products were extracted
depending on the longitude and latitude of the stations using ArcGIS 10.6.

During the baseline period (i.e., 1981–2010), the relative contributions of the environ-
ment variables (i.e., FI, SCD, ASD, SM, and LAI) to MSFD variations were quantified with
hierarchical partitioning analysis implemented using the R package “rdacca.hp” in R pro-
gramming language [64]. In practical applications, this package has demonstrated advantages
in managing multicollinearity [65–67] and allows us to directly compare the relative contribu-
tions of these explanatory variables by standardizing each variable. This R package “rdacca.hp”
is available at the open-access repository Zenodo https://zenodo.org/record/5796018 (ac-
cessed on 10 March 2022). To reduce the complexity of the model, only variables con-
tributing more than 10% to MSFD variations were retained to fit the MSFD estimation
algorithm. A simple multiple linear regression was performed with these variables to
explore the possible empirical relationships between the MSFD and these environmental
variables in Heilongjiang province. MSFD measurement data during the baseline period
(i.e., 1981–2010) were used to construct the MSFD estimation algorithm, and 10 years of
observational data (i.e., 1975–1980 and 2011–2014) were used to verify the accuracy of
the algorithm. The MAE and RMSE were used to compare the observed and estimated
MSFD values. We also compared the results from our empirical algorithm with those
obtained from commonly used estimation methods (i.e., the simplified Stefan solution; see
Equation (S2) in Supporting Materials). Based on the ERA5-Land reanalysis dataset, this
empirical equation was applied to investigate the detailed spatiotemporal variations in the
soil freeze depth of SFG in Heilongjiang province. By utilizing the modified Mann–Kendall

https://cds.climate.copernicus.eu
http://www.geodata.cn
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test and Sen’s slope estimator method [68,69], the trends of MSFD change were evaluated
at both regional and grid scales. Here, changes in MSFD at regional scales were based on
a time series of anomalies (with respect to the mean of the 30-year baseline period, i.e.,
1981–2010) from 1950 to 2021.

3. Results
3.1. Driving Factors of MSFD Variation

Based on data from 26 stations during the 30-year baseline period (1981−2010), the
relative contributions of five environment variables to MSFD variations estimated from
different data products (i.e., vegetation indices and soil moisture) were highly consistent
(Figure 2), with the contribution of ASD > FI > SCD. The other two variables contributed
less than 2% each. This suggests that different data products may have only minor effects
on the quantification of the main driving factors of MSFD variations.
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data of SM and LAI were obtained from ERA5-Land reanalysis dataset. The blue bars represent
the data of SM and NDVI were obtained from other data products (see Section 2.2). The negative
contribution may suggest that the effect of this variable on MSFD variations can be considered truly
unimportant [64].

The results from ERA5-Land data (i.e., SM and LAI data were obtained from ERA5-
Land) showed that (Figure 2) approximately 42.04% of the total variability in MSFD was
explained by ASD during the baseline period (i.e., 1981–2010), while ~27.20% was explained
by FI. Further study indicated that the station average contributions of ASD to MSFD were
over 30%, with nearly 85% of sites contributing more than 10%, whereas the station average
contributions of FI to MSFD were ~12.71%, with 13 stations contributing more than 10%.
These findings indicated that the influence of air temperature (characterized by FI) on soil
freeze depth was clearly lower than that of average snow depth in the study area. We also
found that SCD explained approximately 11.07% of the total variability in MSFD, while the
effect of SM and LAI on MSFD was negligible, with contributions of less than 2% each.

Overall, these findings indicated that ASD had the greatest effect on the MSFD dy-
namics, followed by FI and SCD, while annual SM and LAI changes had negligible effects.
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3.2. Development of the MSFD Estimation Algorithm

Considering that three variables (i.e., FI, ASD, and SCD) each contributed more than
10% to MSFD variation, and the sum of the relative contribution of these three variables
was 81.4% (Figure 2), they were included in a multiple linear regression to construct the
MSFD estimation algorithm. Their fitting equation was expressed as:

MSFD = 102.1380 + 0.0506FI− 0.1606ASD− 3.3630SCD (1)

where MSFD is the annual maximum freeze depth (cm), FI is the air freezing index (◦C),
ASD is the annual mean snow depth (cm), and SCD is the snow cover days (days). The
multiple regression equation was significant despite a relatively low R2 (p < 0.01, R2 = 0.37)
and could thus be used to estimate the MSFD for the study region.

Compared with the simplified Stefan formula, the RMSE and MAE of the station
average during the 10-year validation period (i.e., 1975–1980 and 2011–2014) obtained
from the multiple regression equation were reduced by approximately 23.1% and 20.1%,
respectively (Figure 3). Additionally, the obtained station average RMSEs and MAEs from
the multiple regression equation were ~10% lower than those obtained using the Stefan
formula for 1975–1980 and more than 30% lower for 2011–2014. The above comparative
results suggest that this simple regression equation has wide applicability for estimating
soil freeze depth in the study area and also emphasize the need to consider snow cover
variables when estimating soil freeze depth in snowy areas.
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Figure 3. Comparison of the observed and simulated MSFD values using the (a) multi-
ple linear regression equation (see Equation (S1)) and (b) simplified Stefan solution (see
Equation (S2) in Supporting Materials) for all 26 stations during the 10-year validation period
(i.e., 1975–1980 and 2011–2014). The black solid line is the 1:1 line.

3.3. Application of the MSFD Estimation Algorithm at Regional Scales
3.3.1. Performance of ERA5-Land

Figure 4 shows the statistical criteria between the calculated using the ERA5-Land
reanalysis dataset and observed FI, ASD, and SCD at 26 meteorological stations in Hei-
longjiang province from 1975−2014. Due to relatively large differences in the FI and SCD
values for each station, the MAE and RMSE varied greatly between stations. The ratios
of MAE and RMSE to annual mean FI, ASD, and SCD (RMSE/Mean and MAE/Mean,
respectively) were selected to analyze the ERA5-Land performance [48].
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reanalysis dataset against observed data from 26 meteorological stations in Heilongjiang province.
RMSE/Mean and MAE/Mean refer to the ratios of MAE and RMSE to annual mean FI, ASD, and
SCD, respectively.

For FI, the RMSE/Mean and MAE/Mean of the station average were 0.16 and 0.15,
respectively, with 18 stations (69.2 %) having an RMSE/Mean < 0.2 and 19 (73.1 %) having an
MAE/Mean < 0.2. These relatively low values suggest relatively high estimation accuracy
for air temperature using the ERA5-Land reanalysis dataset in Heilongjiang province.
For SCD, the RMSE/Mean and MAE/Mean of the station average were 0.49 and 0.42,
respectively, with 19 stations (73.1 %) having an RMSE/Mean < 0.6 and 22 (84.6 %) having
an MAE/Mean < 0.6. For ASD, the RMSE/Mean and MAE/Mean of the station average
were 1.01 and 0.80, respectively, with 14 stations (53.8 %) having an RMSE/Mean < 1.0
and 20 (76.9 %) having an MAE/Mean < 1.0. Compared with the statistical criteria of the
calculated and observed snow depth in China from 1951 to 2009 [48], the RMSE/Mean and
MAE/Mean of the corresponding sites in this study were relatively low, which suggests
that the snow depth estimation result in Heilongjiang province using the ERA5-Land
reanalysis dataset was reasonable and reliable.

3.3.2. Spatial Distributions of Soil Freeze Depth

Using air temperature and snow depth data obtained from the ERA5-Land hourly
reanalysis dataset, we calculated the values of FI, ASD, and SCD from 1950−2021 in
Heilongjiang province and then applied Equation (S1) to obtain the spatial distribution
status of the soil freeze depth of SFG.

Based on the 30-year baseline period (1981−2010), the spatial distributions of the
MSFD of SFG varied greatly (Figure 5). The average MSFD for the entire region was 132 cm,
ranging from 52 to 186 cm. The areas at depths of 52–120 cm, 120–130 cm, 130–140 cm,
140–150 cm, and 150–186 cm accounted for approximately 20.66%, 28.68%, 14.19%, 19.86%,
and 16.62% of the total area of SFG, respectively. As shown in Figure 5, the higher MSFD
was mainly concentrated in the north (e.g., > 140 cm), whereas the lower MSFD was mainly
concentrated in the south (e.g., < 120 cm). Overall, the MSFD displayed an increasing trend
from southeast to northwest.
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3.3.3. Changes in Soil Freeze Depth

Over the past seven decades, the average MSFD for the entire region reached its
maximum (153 cm) in the 1950s, after which it has tended to gradually decrease. From
the 1950s to the 2010s, the MSFD greatly decreased by −25 cm, and the area of MSFD
that thinned more than −20 cm represented ~72% of the total area of SFG (Figure 6). In
addition, increased MSFD was detected, and the area ratio of MSFD thickening increased
to 79.4% from the 1980s to the 1990s. Similar findings also applied to MSFD variation for
other periods. For example, the area ratio of soil freeze depth thickening exceeded 25% for
the periods of the 1970s–1980s, 1990s–2000s, and 2000s–2010s but was only ~12% for the
1960s–1970s (Figure 6).

Figure 7 shows that the MSFD anomaly exhibited a significantly decreasing trend at
a rate of −0.39 cm/decade or a net change of −28.14 cm from 1950–2021 (i.e., 72 years).
At grid scales, approximately 93.48% of the area displayed a significant decreasing trend
in MSFD at the 95% confidence level (Figure 8). The geographic distributions of the
decreasing rates in MSFD have varied greatly over the past 72 years, with relatively high
decreasing rates (e.g., <−4.5 cm/decade) primarily occurring in the center of the region and
relatively low decreasing rates (e.g., −3.0–0 cm/decade) sporadically distributed around
the study area.
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4. Discussion
4.1. Comparison with the Stefan Solution

The simplified Stefan solution requires relatively few inputs (see
Equation (S2) in Supporting Materials) and has high simulation accuracy, and thus has
been broadly applied for soil freeze depth estimations at regional, national, and hemi-
spheric scales [8,9,28–32]. However, the simplified Stefan solution does not fully consider
the potential impact of changing snow cover conditions on soil freeze depth, which may
limit its wide application in areas with substantial snow cover. We therefore emphasize the
importance of considering snow cover variables in analyzing and estimating the soil freeze
depth of SFG in such areas.

Snow only covers the ground during the cold season, but its changes can significantly
affect the soil’s thermal state due to its high albedo, low thermal conductivity, and latent heat
of phase changes [34,35,70,71], which then influence soil freeze/thaw processes [11,36,71].
In pan-Arctic regions, snow depth and snow duration can impact permafrost thermal
regimes [72], and increasing snow depth greatly promotes the increase in active layer
thickness [41]. Conversely, reductions in snow depth decrease soil temperature and active
layer thickness [39,40]. Snow cover can cause permafrost degradation in the low Arctic
due to a strong insulation effect in winter but can protect permafrost in the high Arctic
when the SCD exceeds 330 days [38]. Across the circumpolar north, the influence of SCD
on soil temperature was larger than that of snow depth [34]. According to the summary of
Zhang (2001) [71], a relatively thin snow cover may cool the soil surface due to high albedo
snow causing the soil to absorb less solar radiation, but this cooling effect is very brief if
the snow lasts for a short time. Alternatively, relatively thick snow cover can warm the
ground by insulating it from coldness, whereas snow cover that lasts until next spring or
even summer can cool the ground due to the albedo and latent heat of fusion.



Remote Sens. 2022, 14, 5989 11 of 16

By quantifying the potential influences of driving factors (including air temperature,
snow cover, vegetation, and soil properties) on the MSFD variation based on data from the
26 stations, the effect of snow cover on the MSFD was significantly greater than that of air
temperature in Heilongjiang, with the relative contributions of ASD and SCD (~56.11%)
more than double that of FI (27.20%). This may have been due to relatively thick snow
cover combined with relatively long snow cover days. For example, the multi-year mean
ASD (1981–2010) was ~7.37 cm (from 2.61 cm to 11.38 cm) based on the 26 stations, which
was smaller than that of Russia (>10 cm) but nearly twice the average snow depth of
China [47,56]. The multi-year mean SCD was ~103.23 days (from 60.23 days to 134.57 days),
and ~73% of stations had a mean of more than 90 days. The relatively strong impact of
snow cover on MSFD suggested substantial uncertainty in the MSFD estimations in snowy
regions using the simplified Stefan solution, which only considers air temperature as the
main input variable. By fitting the three selected variables (i.e., FI, ASD, and SCD), this
study provided an empirical algorithm to estimate soil freeze depth. Compared with the
commonly used estimation methods (i.e., the simplified Stefan solution), this empirical
algorithm achieved superior performance by considering snow cover variables, with the
RMSE and MAE of the station average reduced by over 20%. It was thus more suitable to
simulate the soil freeze depth in snowy regions.

4.2. Limitations of This Study

In this study, the fitting of the empirical algorithm to estimate soil freeze depth was based
on data from 26 stations within and around the SFG region of Heilongjiang province. The
uniformity and representativeness of the site distribution undoubtedly affected the accuracy
of the fit of the algorithm. More station observations and field survey data should thus be
added in the future, and the applicability of this estimation method should be evaluated
in other snowy regions [73–77]. In addition, two common snow cover variables, ASD and
SCD, were selected and fitted with the air temperature variable (characterized by FI) to build
the algorithm and estimate soil freeze depth. In the real world, the effects of snow cover
on soil freeze/thaw processes are complex and largely depend on snow cover thickness,
timing, duration, density, accumulation characteristics, and melting processes, as well as
local environmental and meteorological conditions [71]. Future research should therefore
focus on the effects of multiple snow cover parameters on soil freeze depth with greater
consideration of local climatic and environmental contexts.

The ERA5-Land reanalysis dataset provides a good data source to study the character-
istics of soil freeze depth changes at different time scales (e.g., monthly, annual, and decadal)
with high temporal (1 h) and spatial (0.1◦ × 0.1◦) resolutions from 1950 to present [57,58].
Previous studies have suggested that the ERA5-Land reanalysis dataset (for daily air tem-
perature) performed better in East China (including Heilongjiang province) than in West
China and the QTP [78]. Following Li et al. (2022), the mean coefficient of determination
(R2) of all 26 stations was 0.88, ranging from 0.81 to 0.95. Combined with relatively low
RMSE/Mean and MAE/Mean values for the calculated against observed FI (Figure 4a,b),
our results further confirm the high performance of air temperature data obtained from
ERA5-Land in Heilongjiang province. Compared with the statistical criteria calculated
against observed snow depths in China from 1951 to 2009 [48], the RMSE/Mean and
MAE/Mean of the corresponding sites in this study were relatively low, which suggests
a superior snow depth simulation result in Heilongjiang province using the ERA5-Land
reanalysis dataset. Due to the shortage of observational data, the evaluation of LAI and SM
data extracted from the ERA5-Land hourly reanalysis dataset was performed by comparing
the possible influence of different data products on quantifying the main driving factors of
MSFD variations. However, to obtain better estimation and analysis results at spatial scales
in the future, the utilization of higher resolution downscaled and remote sensing datasets
that combine ground-based observations and field surveys should be considered.
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5. Conclusions

Statistics on the relative contributions of potential driving factors to MSFD variations
showed that ASD had the greatest effect (42.04%), followed by FI (27.20%) and SCD (11.07%),
while SM and LAI had negligible effects (<2%). This suggests that the influence of snow
cover on MSFD variations was clearly larger than that of air temperature, possibly caused
by relatively thick snow cover combined with relatively long snow cover days in the study
area. By considering the three variables (i.e., FI, ASD, and SCD) that contributed more than
10% to MSFD variation, a simple empirical algorithm to estimate soil freeze depth was fitted
(1981–2010) and verified (1975–1980 and 2011–2014) using ground station observations.
This simple empirical algorithm (considering the snow cover variable) performed better
in snowy regions compared to the commonly used Stefan solution, with the MAE and
RMSE of the station average reduced by over 20%. Using the ERA5-Land reanalysis dataset
(1950−2021) and the simple empirical algorithm, detailed spatiotemporal variations of soil
freeze depth were also assessed in the SFG region of Heilongjiang province.

Soil freeze depth may also be affected by other unconsidered regional variables, such
as soil organic materials, land use change, soil type, air pollution, and ecological protection
activities. Nevertheless, this paper provides a practical empirical algorithm with particular
utility in data-scarce regions with relatively substantial snow cover, as it requires fewer
inputs and provides useful information from frozen ground depth simulation over a
regional scale. The results of this study also underscored the importance of including
snow cover variables when analyzing and estimating historical and future soil freeze depth
variations in snowy regions.
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Abbreviations

MSFD annual maximum seasonally frozen depth
SFG seasonally frozen ground
QTP Qinghai-Tibetan Plateau
DEM digital elevation model
FI air freezing index
SCD snow cover days
ASD average snow depth
SM soil moisture content
LAI leaf area index
RMSE root mean square error
MAE mean absolute error
NDVI normalized difference vegetation index
GLDAS Global Land Data Assimilation System
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