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Abstract: Understanding trends of vegetation evolution and its spatial characteristics is critical for
sustainable social development in the Greater Mekong Subregion (GMS), which is densely populated
and still has uneven economic development. Through Theil–Sen/Mann–Kendall tests, polynomial
regression and bivariate local autocorrelation analyses, we investigated vegetation greening trends
and their spatial correlation with bioclimatic and environmental variables. The study yielded the
following results: (1) Land cover in the GMS has changed significantly over the last 20 years.
Conversion between forest and grassland was the main type of change. (2) The upward trend in
the forest enhanced vegetation index (EVI) significantly exceeded the downward trend in countries
over 20 years. In GMS, the spatial variation in forest trend slope values ranged from −0.0297 a−1 to
0.0152 a−1. (3) Anthropogenic activities have played an important role in forest greening; planted,
plantation and oil palm forests exhibit the largest contributions to greening. (4) Changes in forest
EVI were most spatially correlated with radiation (12.19% for surface net solar radiation and 12.14%
for surface solar radiation downwards) and least spatially correlated with seasonality precipitation
(8.33%) and mean annual temperature (8.19%). The results of the analysis of EVI trends in vegetation
and their spatial correlation with bioclimatic and environmental variables can provide a reference for
strategies aimed for protecting the vegetation ecology.

Keywords: vegetation trends; spatial autocorrelation; biometeorological variables; solar radiation

1. Introduction

Climate change is expected to affect the growth state of vegetation, which will in turn
cause regional variations in geographical and environmental elements [1]. This will in-
evitably affect human productivity and livelihoods, as well as the sustainable development
of society. Owing to the spatial heterogeneity of hydrothermal conditions and topography,
vegetation responses to climate change show considerable regional differences [2]. There-
fore, a long-term analysis of vegetation dynamics and their interrelationships with climatic
and geoenvironmental factors at the regional scale is of practical significance importance
in ecological construction, carbon balance regulation, and the sustainable use of natural
resources in the region.

To date, several vegetation indices, including the normalized difference vegetation
index (NDVI) and enhanced vegetation index (EVI), have been developed, and various data
products have emerged. This includes advanced very-high-resolution radiometer (AVHRR)
NDVI, SPOT vegetation (VGT) NDVI, moderate resolution imaging spectroradiometer
(MODIS) NDVI/EVI [3], and Landsat NDVI/EVI. They are characterized by a combination
of red light absorption and high near-infrared reflection properties for green vegetation
leaves and indicate vegetation cover, growth status, biomass, and photosynthetic intensity.
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They are essential for elucidating the impacts of global change on terrestrial ecosystems
and are widely used in regional and global vegetation studies [4–7]. In contrast with NDVI,
EVI is insensitive to the soil background and more sensitive to changes in the dense canopy
than NDVI [8,9]. Compared with AVHRR, Landsat, and SPOT-VGT, MODIS EVI has a
higher temporal resolution. This allows it to easily overcome the effects of cloud cover and
makes it more suitable for analyzing long-term series of vegetation change and responses
to climate at the regional scale.

Studying vegetation change in a long time series includes temporal trends in veg-
etation, the persistence of future changes, mutation analysis, and spatial heterogeneity.
Multi-year change trend analysis methods include linear regression [10], Mann–Kendall
trend test [11], Sen Slope calculation, and Sen+Mann–Kendall [12]. These have been widely
applied in the Yellow River basin and the Beijing–Tianjin–Hebei region of China, as well as
in the African and North American continents [13]. However, this approach is limited by its
implicit assumption that vegetation changes linearly over a long period of time. The results
reflect monotonic changes in vegetation trends, such as monotonic increase and decrease.
In this context, it may fail to detect areas with different directions and rates of change [14],
or may obscure the presence of short-term “greening” or “browning” patterns through aver-
aging [15]. To explore mutations in vegetation, the segmented linear regression model [16],
BFAST [17], and DBEST [18] are popular methods. However, short-term oscillations and
abrupt change points may also be caused by orbital drift and instrument calibration, which
affect the reliability of the long-term series trend analysis [19]. Furthermore, the impact
of climate change on vegetation is mostly a gradual process [19] and can vary nonlinearly
with different magnitudes over a range of spatial and temporal scales. This necessitates a
detailed analysis of potential changes [14].

The factors affecting vegetation change from climatic constraints, anthropogenic ac-
tivities, and topography have been investigated [20–24]. Among all factors, temperature
and precipitation are the main shaping vegetation change [25,26]. In contrast, bioclimatic
variables, which have more ecological importance than mean annual temperature and pre-
cipitation, are rarely mentioned [27]. Methods based on multiple regression and residual
analysis are widely used to separate and assess the contributions of climatic and anthro-
pogenic factors to vegetation change [28–30]. When identifying the magnitude of impacts
caused by anthropogenic activities, it is difficult to distinguish between natural and an-
thropogenic vegetation changes due to climate variability [31,32]. This means that the final
contribution of anthropogenic factors obtained is unclear. In addition, vegetation variation
and its response to climate change show considerable spatial variations in different regions,
owing to different hydrothermal conditions and vegetation types [33]. For example, the
vegetation greenness trend in Southeast Asia during the dry season is opposite to that
of the Amazon Forest. This highlights the complex effects of climate variability on vege-
tation dynamics [34]. Therefore, to overcome the shortcomings of linear relationships in
regression and residual analyses, a spatial approach is needed to quantitatively assess the
correlations between different factors on vegetation change at the regional scale.

The Greater Mekong Subregion (GMS) is located at the junction of Southeast Asia,
South Asia, and Southwest China. It is an economic cooperation mechanism initiated
by six countries in the Lancang–Mekong River Basin under the initiative of the Asian
Development Bank to promote economic and social development in the region [35]. The
land cover of the GMS is dominated by forests and agriculture. The rapid development of
this region poses a serious threat to its ecosystems. World Wide Fund for Nature (WWF)
has stated that this region is vulnerable to the effects of global climate change [36]. This
study aims to analyze the trends and spatial patterns of vegetation and land cover in the
GMS in the context of regional climate change. The effects of climate and geoenvironmental
factors on the spatial and temporal variations of forests in the GMS are also examined.
In this study, MOD13Q1 EVI time series data from 2001 to 2020 were obtained from the
Google Earth engine. The spatial and temporal variations of vegetation EVI in GMS
from 2001 to 2020 were analyzed by combining the monotonic trend and polynomial
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trend extraction methods. The three main contributions of this study are: (1) extraction
and analysis of land cover transformations and EVI trends in the GMS over the past
20 years; (2) comparative analysis of the differences between monotonic and polynomial
trend methods; and (3) analysis of the spatial correlations between forest EVI and climate
elements as well as geoenvironmental factors.

2. Materials and Methods
2.1. Study Area

The GMS is located in the southwest of China, in Southeast Asia (Figure 1). It was first
proposed by the Asian Development Bank in 1992 at a meeting of six countries (regions) in
the GMS in Manila, and includes Yunnan Province (CN) of China, Myanmar (MM), Laos
(LA), Thailand (TH), Cambodia (KH) and Vietnam (VN). In 2005, the Guangxi province
in China joined the GMS as an economic cooperation region. The GMS covers an area of
2,568,600 km2, and has a population of approximately 320 million. The terrain is high in
the north and low in the south, with numerous mountains and plateaus. The plains in
this region are predominantly located in the coastal areas in the southeast, mainly in the
alluvial plains and deltas with a wide area downstream of the rivers. The Ayeyarwady,
Nujiang–Salween, Lancang–Mekong and Jinsha Rivers are distributed from north to south.
The GMS is located in the tropical monsoon region of Asia. From May to October, it is
influenced by the southwest monsoon from the sea, resulting in wet and rainy weather.
From November to mid-April, it is influenced by the northeast monsoon from the mainland,
producing dry and less rainy conditions.
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2.2. Dataset

The data used for the study include the EVI, land cover, precipitation, temperature,
radiation, topography, and forest management type.

(1) Given the dense vegetation cover in the study area, EVI data were used for veg-
etation change analysis. The MODIS MOD13Q1 data products had a spatial resolution
of 250 m and a temporal resolution of 16 days. They covered the period January 2001 to
December 2020, and eight regions of the GMS: h26v06, h26v07, h27v06, h27v07, h27v08,
h28v06, h28v07, and h28v08. They were processed and downloaded from Google Earth
Engine with the data ID MODIS/061/MOD13Q1.

(2) Land cover data were obtained from MODIS MCD12C1, with a spatial resolution
of approximately 0.05◦. They were used to analyze land cover change and the EVI trend in
the GMS. This land cover dataset comprises 17 major types, including 11 natural vegetation
types, 3 land development and mosaic land categories, and 3 non-grassland land type
definition categories. They were downloaded from the Google Earth engine.

(3) To analyze the influence of meteorological factors on forest EVI trends, we down-
loaded meteorological data for temperature, precipitation, and radiation. These data were
obtained from the ERA5-LAND reanalysis dataset provided by the European Center for
Medium-Range Weather Forecasts (ECWMF). They were obtained using the land-based
atmospheric variables simulated by ERA5, and the fifth-generation reanalysis product of
ECWMF as forcing factors and simulated using the modified land surface hydrological
model HTESSEL and CY45R1 [37]. Compared with ERA5, ERA5-LAND has a spatial
resolution of 0.1◦ (9 km) and a temporal resolution of 1 h [37].

(4) To analyze the spatial correlations between environmental factors and EVI trends,
we downloaded ASTER GDEM V2 [38], which was calculated based on data from the
Advanced Spaceborne Thermal Emission and Anti-Emission Instrument (ASTER). ASTER
GDEM V1 was released on 29 June 2009. The GDEM V2 solved the anomalies in the GDEM
V1 data and improved the accuracy of spatial resolution and elevation.

(5) To differentiate anthropogenic activities in the analysis of the forest EVI trends,
we downloaded globally consistent forest management map data (FMM) [39]. This map
was derived from the 226 K reference dataset from Geo-Wiki with 2015 PROBA-V satellite
imagery at a resolution of 100 m. It has an accuracy ranging between 58% and 80% for
the forest management classes. This map has a high level of spatial detail for the most
prevalent forest management classes, such as naturally regenerating forests without any
signs of management (NRF), naturally regenerating forests with signs of forest management
(NRFM), planted forests (PF1), plantation forests (PF2) with a rotation of up to 15 years, oil
palm plantations (OPP), and agroforestry (AF).

2.3. Methods

The flow of the research method is illustrated in Figure 2. After the performing
pre-processing steps, such as EVI filtering, maximum value extraction, land cover reclas-
sification, and calculation of biological variables and annual mean of net surface solar
radiation, the monotonic and polynomial trends were extracted from the EVI series data.
The spatial statistics were then determined. Finally, bivariate local Moran’s I (BiLISA)
was used to analyze the spatial correlations between the climate and the environmental
variables and EVI trends. The main steps are as follows.
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(1) Remote sensing data pre-processing

First, Savitzky Golay (S–G) filtering was performed on MODIS EVI series data from
2001 to 2020 using the Google Earth engine to remove outliers. The de-clouding of MODIS
EVI was based on the labels of MODIS clouds. The maximum EVI value of each pixel was
extracted from the valid EVI series data using the maximum value synthesis method [40] to
obtain the EVImax in the ith year. The EVImax represented the vegetation cover and served
to eliminate the influence of clouds and water vapor on the EVI and improve the reliability
of the data.

In this study, the original 17 classes of MCD12Q1 were reclassified into seven classes:
water bodies, forests, grasslands, croplands, cropland/natural vegetation, urban, and
bare land. Evergreen needleleaf forests, evergreen broadleaf forests, deciduous needleleaf
forests, deciduous broadleaf forests, mixed forests, and closed shrublands were classified as
forests. Open shrublands, woody savannas, savannas, grasslands, and permanent wetlands
were classified as grasslands. Permanent snow/ice and water bodies were classified as
water bodies (Appendix A, Table A1).

For the ERA5-land hourly data, nine bioclimatic variables were calculated from the
ERA5 land hourly data according to the definition of the “biovars” function in the “dismo”
package in R 4.2.1. We then calculated the average values of five climatic variables, namely
surface net solar radiation (SSR), surface solar radiation downward (SSRD), soil temperature
layer 1 (STL1), volumetric soil water layer 1 (SWVl), and total evaporation (E) for 2001–2020.
These data were then re-projected, cropped, and resampled into the spatial projection and
resolution of MODIS EVI for subsequent data analysis. Finally, three topographic variables
(elevation, slope, and aspect) were calculated using GDEMV2. These data are listed in
Appendix A, Table A2.

(2) Analysis of the EVI trend of vegetation

In this study, the Theil–Sen + Mann–Kendall (TS–MK) [41] trend analysis method was
used. The TS–MK method uses Theil–Sen to calculate the trend slope and Mann–Kendall to
test the significance of long time series trends. Mann–Kendall is a nonparametric statistical
method widely used for the trend discrimination of meteorological and hydrological data.
The Mann–Kendall method has no mandatory distribution requirements for series data
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and is not limited by anomalies. It is performed to statistically assess whether there is a
monotonically increasing (upward) or decreasing (downward) trend in the EVI over time.
A monotonically increasing trend implies that the variable increases over time. However,
this trend may or may not be linear.

The Theil–Sen trend slope is calculated as follows:

β = Median
( xj − xi

j− i

)
∀j > i (1)

where 1 < i < j < n, β is the slope, β > 0 indicates an upward trend in vegetation, and
β < 0 indicates a downward trend in vegetation.

The statistic S for the Mann–Kendall trend test is calculated as follows:

S =
n−1

∑
i=1

n

∑
j=i+1

sgn
(
xj − xi

)
(2)

where

sgn
(
xj − xi

)
=


1 xj − xi > 0

0 xj − xi = 0

−1 xj − xi < 0

(3)

The length of the time series in this study is n = 20 (2001–2020), and the statis-
tic S approximately obeys the standard normal distribution. Therefore, statistic Z is
used to perform the trend test, and the significance level is considered to be α = 0.05,
Z1−α = Z0.975 = 1.96.

The statistic Z is calculated as follows:

Z =


S−1√
VAR(S)

S > 0

0 S = 0
S+1√
VAR(S)

S < 0

(4)

where

VAR(S) =
n(n− 1)(2n + 5)−∑m

i=1 ti(ti − 1)(2ti + 5)
18

(5)

where n is the number of data points in the sequence, m is the number of knots (groups
of recurring data points) in the sequence, ti is the width of the knot, that is, the number
of repeated data points in the ith group of repeated datasets. A bilateral trend test was
performed for the Z values. |Z| ≥ 1.96 indicates that the trend of the time series passed the
significance level of 0.05.

Considering that TS–MK only detects monotonic trends, we used a polynomial
trend [14] to detect nonlinear features in the EVI series data. The polynomial trend is
a three-stage procedure for generating linear, quadratic, cubic, concealed, and non-trending
classes of vegetation index time series. Polynomial trends are extracted using a recursive
judgment method by statistically testing the significance of linear, quadratic, and cubic
trends. During the first two significance tests, pixels were assigned cubic or quadratic trend
classes when passing the test, but were treated as concealed classes if the slope coefficients
were not statistically significant. Finally, the linear trend class was assigned to a pixel in the
case of passing the significance test. Otherwise, it was regarded as having no trend.

(3) Spatial correlation analysis of EVI trends with climate and environmental variables

To detect the spatial correlation characteristics of trends in forest EVI with bioclimatic
and environmental variables, we used the BiLISA tool in GeoDa. BiLISA can reveal the
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spatial clustering and spatial differentiation characteristics of one attribute in each spatial
cell and another attribute in the neighboring cells. BiLISA was calculated as follows:

Ipq = Wp

n

∑
q=1

ZpqWq (6)

where Ipq is the local spatial correlation index in spatial cells p and q, and Wp and Wq are the
normalized values of the variance of the attribute values in spatial cells p and q, respectively.
BiLISA can generate five types of spatial associations: spatially nonsignificant, high–high
clustering (HH), high–low clustering (HL), low–low clustering (LL), and low–high clus-
tering (LH). A total of nine biometeorological, two topographic, and five environmental
variables were used in this study. To explore the correlation of these variables with EVI
trends, we calculated their slopes for 2001–2020 using linear regression.

3. Results
3.1. Characteristics of Land Use/Land Cover Changes in the Greater Mekong Subregion

The spatial distribution of land cover of the GMS during 2001–2020 and its changes are
shown in Figure 3. During 2001–2020, the land cover changes in the GMS were relatively
significant, and 81.88% of the land cover types remained spatially stable. Forests and
grasslands were the dominant land cover types in the GMS (Figure 3), accounting for more
than 78% of the entire area. Among the categories where land cover change occurred,
the pronounced ones were the conversion from forest to grassland (171,656.09 km2) and
conversion from grassland to forest (114,631.71 km2). Conversion from forest to grassland
was mainly distributed in Laos and Myanmar. Meanwhile, conversion from grassland
to forest was mainly distributed in Guangxi and Yunnan, China, and the northern part
of Thailand. In terms of forest loss and gain, Guangxi and Yunnan in China had the
largest forest gain (64,036.84 km2), while Laos (3786.70 km2) and Cambodia (2695.88 km2)
had the smallest gain. The largest forest loss was in Myanmar (48,560.93 km2) and the
smallest was in China (14,509.18 km2). In terms of grassland loss and gain, Myanmar had
the largest grassland gain (54,315.94 km2), and the remaining countries exhibited a small
differences in grassland gain (33,511.51–37,695.95 km2). China had the largest grassland
loss (78,044.89 km2), of which 49,281.51 km2 was transformed into forest, and the smallest
grassland losses were in Laos (6636.01 km2) and Cambodia (11,674.21 km2).
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3.2. Monotonic Trends in EVI of Vegetation with No Change

From the results of the MK significance trend test, the non-significant pixels encompassed a
larger proportion of the area of each country, and were ranked according to value: Laos (89.7%)
> Myanmar (83.3%) > Cambodia (74.1%) > Vietnam (73.2%) > Thailand (71.3%) > China (66.4%).
Among the significant pixels, the largest proportion of the downward trend was Vietnam
(5.9%), and the smallest proportion was Thailand (1.8%). In terms of the proportion of
the area in an upward trend, Yunnan and Guangxi provinces in China had the largest
increase (31.5%) and Laos the smallest (9.5%). Spatially (Appendix A, Figure A1), the
areas with significant downward trends were mainly located around cities, such as the Red
River Delta in Vietnam, Phnom Penh in Cambodia, Bangkok in Thailand, and Nanning
City in Guangxi, China. The upward trend was concentrated and continuous in Guangxi
Province, China, the Lower Mekong Plain, the Lower Ayeyarwady River in Myanmar, and
northeastern Thailand.

Figure 4a shows the distribution of significant trends in forest EVI without type change.
Areas with a significant increase in forest EVI were located in several mountains, including
the Truong Son Mountains, Birao Mountains, Arakan Mountains, and Shan Plateau as well
as eastern Guangxi and southwestern Yunnan, China. Areas with a significant downward
trend accounted for 8.1% of the area of the upward region and were spatially dispersed.
There were also areas of intense downward movement in certain areas, such as Khammoung
and Xieng Khouang in Laos. Areas with significant increases in EVI for grasslands without
type change were mainly located in Guangxi and western and northern Yunnan in China,
and northeastern and southern Thailand. A downward trend is present for in Laos, western
Vietnam, and northern Cambodia.
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Figure 5 shows the distribution of the area and slope of the significant trend of EVI
for unchanged forests and grasslands. Figure 5a shows that the largest area of significant
EVI increase was in China, followed by Myanmar, and the smallest was in Cambodia. The
upward trend for the EVI in the forests in each country was greater than the downward
trend. For grasslands (Figure 5b), the largest area of significant EVI increase was in China
and the lowest in Laos. Figure 5c,d shows the slope distribution of areas with significant EVI
trends for forests and grasslands. In terms of forests, spatial variation in the slope values of
forests in the GMS ranged from −0.0297 a−1 to 0.0152 a−1 over the last 20 years. For the
spatial distribution, the largest upward slope was observed in China with a mean value
of 0.0077 a−1, and the smallest was observed in Vietnam with a mean value of 0.0058 a−1.
Dispersion of the upward slope was strongest in China and Cambodia. Meanwhile, the
mean of the downward slope was more variable in the forests and more discrete than
the upward trend. In terms of grasslands, the largest upward slope was for Cambodia
(0.0081 a−1) and the smallest was for Laos (0.0062 a−1). The dispersion of the downward
slope was greater than that of the upward slope. In summary, the overall trend for forests
and vegetation without type change in the last 20 years in the GMS was upward.
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3.3. Polynomial Trends in EVI of Vegetation with No Change

We extracted polynomial trends for forests and grasslands that had not experienced
type changes (Figure 6). Five types of results were included in the polynomial trend
algorithm, namely linear, quadratic, cubic, concealed trend, and no-trend classes. Only the
first four types are presented here. Figure 6a shows the polynomial trends of the forests
over the last 20 years. Spatially, the polynomial trends for forests were concentrated in the
Shan Plateau, Arakan Mountains, Birao Mountains, Xieng Khouang Plateau, and lower
and middle Mekong Mountains. Concealed forest trends were widely distributed and
dispersed. Linear trends in forests were mainly observed in Ha Tinh Province and the
Birao Mountains in Vietnam, the Cardamom Mountains in Cambodia, and the eastern and
southern parts of Guangxi, China. Meanwhile, dispersed linear trends were observed in the
Shan Plateau in northern Myanmar and the Hengduan Mountains in Yunnan. Quadratic
and cubic trends were not spatially significant. Figure 6c shows that the forest had the
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largest proportion of concealed trends in terms of area, followed by linear trends, while
the proportion of quadratic and cubic trends was smaller. Among the six countries, the
concealed and linear trends were the largest in Myanmar. In China, the largest proportion
of linear trends were found in forests, followed by concealed trends. Cambodia had the
smallest area for all trends. In terms of grasslands, linear trends were mainly distributed in
the eastern part of the Korat Plateau and the southern part of Changwat Krabi in Thailand,
Guangxi province and the eastern part of Yunnan province in China, and Mon State in
Myanmar (Figure 6b). The concealed, quadratic, and cubic trends were spatially dispersed,
with only the quadratic trend being more concentrated in the northern part of Ho Chi Minh
City in Vietnam. Figure 6d shows the area proportion for each trend. Compared with
forests, the linear trend was larger in grasslands, followed by concealed trends. There was
little difference in the proportions of quadratic and cubic trends for grasslands among the
six countries.
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Compared to TS–MK (Figure 5), the polynomial trend method (Figure 6) can detect
more pixels with trends. In terms of forests, 11.28% of the pixels that did not show a
significant trend in TS–MK were judged as concealed trend classes by polynomial trends,
and 3.02% of the pixels were judged as linear (2.49%), quadratic (0.25%), and cubic (0.28%)
trend classes. In pixels with TS–MK upward trends, the percentages of concealed, linear,
quadratic, and cubic trend classes were 2.07%, 68.56%, 4.48%, and 4.8%, respectively. For the
pixels with TS–MK downward trends, the percentages of concealed, linear, quadratic, and
cubic trend classes were 2.92%, 58.69%, 6.4%, and 8.7%, respectively. With grasslands, the
polynomial trend determined the pixels in which the TS–MK method showed no significant
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trend as concealed (14.74%), linear (3.5%), quadratic (0.62%), and cubic (0.49%) trend classes.
The percentage of linear, quadratic, and cubic trend classes was higher than that of the
forest in pixels with TS–MK upward and downward trends, whereas the percentage of
concealed trends was lower than that of forests.

3.4. Impact of Human Activities on EVI Trends in Forests

Figure 7a shows the distribution of significant trends in EVI for the forest management
types defined by the FMM and the proportion of their area in each category. The areas of
NRF and NRFM areas were the largest in the GMS. The proportion of significant trends
was the largest in PF2 and PF1. This indicates that anthropogenic activities in the GMS
strongly influence significant changes in forest EVI. For each country, Figure 7b,c shows
the proportions of upward and downward trends in EVI for each forest management class.
In terms of upward trends (Figure 7b), PF1 and PF2 had the largest proportions in China,
reaching 27.76% and 40.46%, respectively, whereas AF had the lowest (9.53%). In Vietnam,
the OPP had the largest upward trend, whereas the AP had the smallest. In Thailand,
PF2 showed the largest upward trend and NFRM the smallest. In Myanmar, the OPP
showed the largest upward trend and the AP the smallest. In Cambodia, PF2 showed
the largest upward trend and NFRM the smallest. Overall, China showed relatively high
upward trends in NRF, NRFM, PF1, and PF2, whereas other countries showed high upward
trends in PF2 and OPP. As shown in Figure 7c, Vietnam showed the most pronounced
downward trends in PF2 (2.11%), OPP (3.46%), and AF (4.22%), while other countries
showed the largest proportion of downward trends in AF. However, the downward trend
in GMS forests affected a small proportion (ranging from 0.36% to 4.2%). Figure 7d,e
show the slope of the significant trend in EVI for different forest management types. In
the upward trends, the PF2 of GMS showed the largest variation (0.0075± 0.0027), and
the smallest was AF (0.0060± 0.0023). For the downward trends, PF1 had the highest
variation (−0.0071± 0.0044), and its dispersion was larger. PF2 exhibited the smallest
variation (−0.0055± 0.0023).
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3.5. Spatial Correlation Analysis of Trends in EVI with Climate and Environmental Variables

Overall, among the 16 variables, the average percentage of those without significant
clustering characteristics with forest EVI trends reached 60.37%. Meanwhile, among those
with significant clustering characteristics with forest EVI trends (p < 0.05), the average
percentages of high–high clustering (HH), low–low clustering (LL), low–high clustering
(LH), and high–low clustering (HL) were 9.56%, 9.86%, 11.02%, and 9.19%, respectively.
In terms of clustering characteristics, the largest percentage of EVI with no significant
characteristics was observed for bio01 (67.25%) and the smallest for SSR (51.24%). In HH
clustering, the largest proportion was observed for EVI with a topographic slope (15.15%)
and the smallest in bio12 (3.47%). In LL clustering, the largest proportion was observed for
EVI with elevation (15.61%) and the smallest for topographic slope (1.50%). In LH clustering,
the largest proportion was observed for EVI with a topographic slope (16.29%) and the
smallest with bio12 (6.93%). In the HL clustering, the largest proportion was obtained for
EVI with elevation (13.59%) and the smallest with topographic slope (1.19%). Spatially, LL
clustering was most evident in the northern part of Myanmar, as shown in Figure 8e,g–j,o.
LL clustering also exists in transnational regions, such as the borders of China, Vietnam
and Laos, as shown in Figure 8c,h,i,p, and the borders of Vietnam, Laos and Cambodia, as
shown in Figure 8b,j,l,m. LH clustering is mainly present in the northern part of Myanmar,
as shown in Figure 8a–g,p. HL clustering was most evident in Yunnan and Guangxi, China,
and Myanmar, as shown in Figure 8a,c–f,h–n. HH clustering was mainly distributed in
northern Myanmar and southern Yunnan, China (Figure 8a,d,e,g,j–m,p), central Truong
Son Mountains of Laos and Vietnam (Figure 8g–i,k), and the Birao Mountains of Myanmar
and southern Thailand (Figure 8b,d–f,n,o).
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layer 1 (STl1), volumetric soil water layer 1 (SWVl) and total evaporation, respectively.

4. Discussion

Overall, our results showed (Figure 3) that forests were decreasing in five of the six
GMS countries, with Laos and Cambodia showing the largest reductions over the last
20 years. Meanwhile, China was the only country with an increase in the forest area.
According to Tölle [42], forest dynamics occurred in stages, with a sharp decrease in
forest area after 2000, which continued until 2018, as in Cambodia and Vietnam. In recent
years, some countries have shown signs of reforestation or slow deforestation, such as
Thailand [43,44]. According to food and agriculture organization studies, the recovery
of forest cover in some countries is attributed to the expansion of plantations [45,46].
Therefore, despite the general slowdown in deforestation and efforts to increase forests
in these countries, the trend of tropical forest decline has not changed [47]. Much of
this forest decline has shifted to grasslands, as seen in southern Cambodia and northern
Laos (Figure 3). These declines occurred in the marginal parts of forested areas, which is
consistent with the trend observed by Tölle [42]. Land policies in China have been adjusted
in recent years. In Guangxi, during the Tenth Five-Year Plan, forestry projects included
the return of cultivated land to forest, the construction of fast-growing and productive
forest bases, and the construction of nature reserves, Pearl River protection forests, and
coastal protection forests [48]. Open forest land with 10–30% depression and high-cover
grassland with >50% cover were planted into timber and economic forests [49]. This is the
main anthropogenic factor affecting forest growth in China.

In recent years, global vegetation is becoming greener [50], including in India, southern
and southeastern China, and Southeast Asia [51]. Study timespans are important for
determining time-series trends in vegetation indices [16]. It has been shown that global
vegetation trends after 2000 are highly uncertain [47]. Multiple trend detection methods
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are required to assess the coherence of trends. In this study, a monotonic trend assessment
method and polynomial trend analysis were used. With TS–MK, the polynomial trend
was able to find more trend pixels in EVI, especially those with concealed trends. In
contrast, 58.69–68.56% of the significant trend pixels were linear. This does not mean that
TS–MK overestimated the trend variation of the EVI. The TS–MK method is insensitive to
noise, does not require the data to obey a normal distribution, and has high reliability in
monotonic trend detection. The difference in the number of linear trends may be attributed
to the polynomial trend that assigns pixels from the monotonic trend to the quadratic and
cubic trend classes. In terms of spatial distribution, the trends were similar. In the case of
forests, areas where trends were clearly concentrated were distributed in eastern China and
central Laos. Meanwhile, areas where trends appeared more dispersed were distributed in
the mountainous areas between Myanmar and Yunnan, China. The similarity in spatial
distribution characteristics of the results of the two detection methods was more evident
in grassland trend maps. From the results of vegetation index trends, all six countries
located in the study area had unique land use policies, and therefore, may have unique
vegetation trend trajectories. Chen et al. [47] showed that the “greening” of Earth is mainly
attributed to increasing in human agriculture and forest replanting. In this study, we
excluded agriculture and areas where forest categories changed over a 20-year period. As
shown in Figures 5 and 6, these increasing trends in EVI were significantly greater than
the decreasing trends. However, spatially, the increasing and decreasing trends in EVI are
intertwined, which is consistent with the observations of Chen [51].

In terms of land cover change, the GMS had the greatest reduction in forests, and the
greatest increase in grasslands (Figure 3), and a large proportion of conversion from forests
to grasslands. One of the main driving factors is deforestation by agricultural production in
Southeast Asian countries [52]. The high value of forests to the ecology of the GMS and the
sustainability of human society is well known. Therefore, this study used BiLISA to analyze
the spatial clustering characteristics of biometeorological and topographic factors and forest
EVI trends. From the results, 16 variables with no significant spatial correlation with forest
EVI trends in the GMS accounted for most of this region. Net surface solar radiation (SSR;
12.19%), downward surface solar radiation, (SSRD; 12.14%), and elevation (11.29%) were
the three variables with the largest average distribution correlated with EVI trends (HH,
LL, LH, and HL). This was followed by STL1 (soil temperature class 1, 10.52%), Bio05
(maximum temperature in the warmest month, 10.47%), Bio09 (average temperature in
the driest quarter, 10.36%), and Bio08 (average temperature in the wettest quarter, 10.26%)
in the biometeorological variables, although the differences in the average proportions
between them were relatively small. The smallest average proportions of spatial clustering
characteristics with EVI trends were the topographic slope (8.53%), Bio15 (precipitation
seasonality, 8.33%), and Bio01 (annual mean temperature, 8.19%). Nemani [20] suggested
that vegetation growth in Southeast Asia is mainly limited by radiation rather than by other
climatic factors such as precipitation and temperature. Results of our BiLISA analysis also
showed that radiation (SSR and SSRD) had the largest spatial correlation with forest EVI
trends. In addition, forest EVI trends were also influenced by elevation due to differences
in hydrothermal, light, and atmospheric conditions resulting from different elevations. Our
results further confirmed that the precipitation and temperature variables Bio15 and Bio01
were the two variables with the lowest spatial correlation with forest EVI trends; however,
seasonal changes in precipitation and temperature were more spatially correlated with
forest EVI trends.

To date, we have only analyzed monotonic and polynomial trends, which complicated
determining of the response of vegetation to weather extremes. In future studies, we will
use long-term time-series datasets to capture trends and their turning points as well as
related influencing factors. In this study, we analyzed anthropogenic activities in unchanged
forest areas. Considering the higher anthropogenic activities in the GMS, the impacts of
anthropogenic activities on other vegetation types will be further explored.
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5. Conclusions

This study aimed to analyze the change characteristics of land cover as well as grass-
land and forest EVI of six countries in the GMS, and their spatial correlation with bioclimatic
and environmental variables. We used TS–MK and polynomial regression to extract the
vegetation trends in MODIS EVI over the past 20 years, and BiLISA was used to charac-
terize the spatial clustering of bioclimatic and environmental variables with forest EVI
trends. The results of the study show that land cover changes in the GMS were relatively
large during 2001–2020. Among types of land cover change, conversion between forest
and grassland was the main trend. The EVI trend in forests and grasslands without a
type change in the GMS was upward. Forest EVI trends in the six countries were strongly
influenced by anthropogenic activities, especially planted forests and plantation forests in
China, and oil palm plantations in the other countries. Changes in forest EVI were most
spatially correlated with radiation and least spatially correlated with the seasonality of
precipitation and mean annual temperature. Considering the relatively high population
density and unbalanced economic development in the GMS, the sustainable development
of society is urgently needed for soil and water conservation, carbon sequestration ca-
pacity, and protecting the economic value of forests. While working towards, regional
economic development, countries should work together to strengthen the regulation of
anthropological activities and effectively reduce forest loss.
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Appendix A

Table A1. MODIS land cover reclassification.

Classes Code Reclassified Classes New Code

Evergreen needleleaf forests 1

Forests 1

Evergreen broadleaf forests 2
Deciduous needleleaf forests 3
Deciduous broadleaf forests 4
Mixed forests 5
Closed shrublands 6
Open shrublands 7

Grasslands 2
Woody savannas 8
Savannas 9
Grasslands 10
Permanent wetlands 11
Croplands 12 Croplands 3
Urban and built-up lands 13 Urban and Built-up Lands 4
Cropland/natural vegetation mosaics 14 Cropland/Natural Vegetation Mosaics 5
Barren 15 Barren 6
Permanent snow and ice 16

Water Bodies 7Water bodies 17
Unclassified 255 Unclassified

https://code.earthengine.google.com
https://code.earthengine.google.com
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form
http://www.gscloud.cn/
https://doi.org/10.5281/zenodo.5879022
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Table A2. Biometeorological and topographic factors.

Variable Code Unit

Annual mean temperature bio01 ◦C/a
Temperature seasonality bio04 ◦C/a

Max Temperature of warmest month bio05 ◦C/a
Min temperature of the coldest month bio06 ◦C/a
Mean temperature of wettest quarter bio08 ◦C/a
Mean temperature of driest quarter bio09 ◦C/a

Mean temperature of warmest quarter bio10 ◦C/a
Annual precipitation bio12 mm/a

Precipitation seasonality bio15 %/a
Elevation elevation m

Topographic Slope slope ◦C
Surface net solar radiation ssr J m−2

Surface solar radiation downwards ssrd J m−2

Soil temperature level 1 stl1 K
Volumetric soil water layer 1 swvl1 m3

Total evaporation e m of water equivalent
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