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Abstract: The scope of this research was to provide rice growers with optimal N-rate recommenda-
tions through precision agriculture applications. To achieve this goal, a prediction rice yield model
was constructed, based on soil data, remote sensing data (optical and radar), climatic data, and farm-
ing practices. The dataset was collected from a rice crop surface of 89.2 ha cultivated continuously for
a 5-year period and was analyzed with machine learning (ML) systems. A variational autoencoder
(VAE) for reconstructing the input data of the prediction model was applied, resulting in MAE of
0.6 tn/ha, with an average yield for the study fields and period measured at 9.6 tn/ha. VAE learns
the original input data representation and transforms them in a latent feature space, so that the
anomalies and the discrepancies of the data are reduced. The reconstructed data by VAE provided a
more sophisticated and detailed ML model, improving our knowledge about the various correlations
between soil, N management parameters, and yield. Both optical and radar imagery and the climatic
data were found to be of high importance for the model, as indicated by the application of XAI
(explainable artificial intelligence) techniques. The new model was applied in the 2022 rice cultivation
in the study fields, resulting in an average yield increase of 4.32% compared to the 5 previous years
of experimentation.

Keywords: topdressing nitrogen fertilization; XAI (explainable artificial intelligence); VAE (varia-
tional autoencoder); Sentinel-1; Sentinel-2

1. Introduction

Nitrogen (N) is the most significant macronutrient for rice growing, limiting yield
when not supplied in sufficiency [1]. However, if the rice crop is oversupplied with N, then
expenses for N fertilization, rice lodging risk, and N losses to the environment increase [2].
On the other hand, growers are reluctant to fertilize with low N doses, because if the yield
is reduced, then the economic saving due to the reduced cost of N fertilization cannot
compensate for the economic losses caused by yield reduction [3].

The progress of machine learning (ML) allows for recognizing patterns within the data
to automatically predict future events or aid in decision making [4,5]. As ML algorithms
can capture nonlinear relationships within data, they can uncover complex data structures,
which normally characterize the environmental data and make predictions based on knowl-
edge gained from the data. The progress—in parallel—of remote sensing and the increased
availability of data coming from satellites provides a wealth of useful information that is
difficult to model using the commonly known statistical methods [6].

Rice growth simulation models, such as RiceGrow, ORYZA2000, SIMRIW, and CERES-
Rice, have been used for predicting the phenology and organ biomass of rice in relation to
environmental parameters [7–10]. However, these models are difficult to use under opera-
tional conditions because they require data that cannot be recorded by the growers [11].
Plant growth models are important for validating scientific hypotheses or plant processes
observed in a laboratory through experimentation. The scope of crop growth models is to
predict, among other things, canopy growth based on varying a particular factor, such as N.
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This can confirm scientific hypotheses or data collected in a laboratory, but as mentioned
above, it is difficult to use under commercial conditions for making assumptions for fertil-
izer recommendations. As crop models have high requirements for data that are difficult to
obtain under operational conditions, often crop models cannot respond as expected to the
environmental factors. However, due to their mechanistic nature, crop growth models are
useful for research purposes, as testing parts of the model can result in improvement of the
final error in growth predictions and provide better understanding of the factors affecting
plant growth [12]. Nonetheless, data-driven prediction models using open-source remote
sensing data seem to be a more viable option in operational farming practice.

There is currently a trend to predict crop yield late in the season (close to harvest) to
enable growers to diagnose crop conditions and adopt necessary measures for the next
season. Jeong et al. [13] showed that a long–short memory (LSTM) network along with a
one-dimensional convolutional layer (1D-CNN) had good performance (R2 = 0.859) for
predicting yield two months before rice yield. However, this prediction cannot provide
information for the current season’s N fertilization, as N topdressing fertilization in rice is
done 3 months before harvest. Moreover, N optimal dose is affected by current weather
conditions and plant growth and cannot be estimated based solely on soil data or manage-
ment practices. However, these models are useful for enabling better management of food
supplies and food security.

In early 2021, Iatrou et al. [2] published a model on topdressing fertilization of rice in
Greece using machine learning techniques. The model included meteorological data of the
critical period from seeding to pre-booting (normally, early July), but did not incorporate
similar data of the postfertilization period (as the main intension was to predict immediate
topdressing fertilization needs). After less than a month, however, exceptionally high
temperatures hit the area of the Thessaloniki Plain for 10 consecutive days, affecting
seriously rice fertility rates and consequently lowering the yield three months later. That
was a great lesson, showing the necessity to include meteorological data of the flowering
season too, in predicting topdressing fertilization needs based on weather particularities
of the entire cultivation season and not only the “before” period. In the case of high
temperatures, the fertilization rates should be higher than normal and vice versa. This is
because high N levels contribute to higher numbers of panicles, spikelets per panicle, and
grain weight alleviating the effect of high temperatures on rice production [14].

Environmental data, such as temperature and precipitation, earth observation data,
and soil data, can have high variance within a field or from field to field and from year
to year. This variance can affect the output of an ML yield prediction algorithm, as the
ML algorithm learns how each variable correlates with high or low yield. To deal with the
problem of making an ML that superficially understands the data, i.e., learning from events
that occurred in the continuous series of events that took place during experimentation,
representation learning should be adopted. Representation learning provides the ML
algorithm with a more abstract representation of the data so that the anomalies and the
discrepancies of the data are reduced. Thus, variational autoencoders can be used that
provide latent variables of the initial input variables that are a lower order representation of
the initial data. In practice, the autoencoders are models designed to capture the underlying
distribution of the input data and replicate the original data to another level. This level did
not exist in the original data, but it could have existed based on the underlying patterns in
the original data [15].

The scope of this research was to develop a decision support tool for providing
rice growers with sound N fertilizer recommendations in the framework of precision
agriculture applications. Precision agriculture (or precision farming) is a management
strategy considering within-field crop variability towards improved resource use efficiency,
productivity, quality, profitability, and sustainability of agricultural production [16,17].

To achieve the research aims, a rice yield prediction model was constructed using
machine learning (ML) systems, based on soil and climatic data, remote sensing indices
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and farming practices (including day of seeding and cultivar) collected from extended
surfaces cultivated intensively with rice for a continuous 5-year period (2017–2021).

2. Materials and Methods
2.1. Study Area

The study area is in the Thessaloniki Plain, Greece, a low-lying coastal area of about
22,400 ha and the main rice production zone of Greece. The climate of the area is typical
Mediterranean, with temperate summers suitable for rice cultivation, even for genotypes
of indica type. Rice is the main crop in the area, about 75%, and rotated with maize, cotton,
and alfalfa.

The alluvial soils of the plain are mostly silty clay, poorly drained, and classified as
typic xerofluvents. However, salinity levels remain too low to imply any soil degradation
hazard, according to recent experiments conducted by Litskas et al. [18].

Sowing is carried out in mid-May, while harvesting is carried out in October, depend-
ing on grain moisture levels (which must ideally be from 19% to 21%). The plain produces
the highest recorded yield (almost 10 ton/ha on average) among all the rice producing
plains in Greece (8.89 ton/ha on average).

A surface of 89.2 ha comprising part of the rice farm of Mr. Kostas Kravvas and located
around the rural town of Chalastra (40.6265◦N, 22.7307◦E, 6 m altitude) was selected for the
study. The selected fields were continuously cultivated with rice with precision agriculture
methodologies for the studied period, i.e., from 2017 to 2021. The mean extent of the
studied fields was 3.18 ha (Figure 1).
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Figure 1. The study rice fields located in the Thessaloniki Plain, Greece.

2.2. Dataset Preparation

A multisource dataset covering the study fields was collected for five continuous
cultivation seasons (2017–2021). The nature of the original data can be distinguished
into soil properties, climatic measurements, farming practices, crop spectral properties,
and yield.

a. Soil properties
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Soil properties are of particular importance to fertilization recommendations [19]. Soil
properties in this research were derived from original soil sampling surveys in the studied
rice fields conducted in 2016 (61 samples), 2018 (40 samples), and 2020 (111 samples)
(totally, 212 samples). In 2016 and 2018, the sampling design followed a site-specific scheme
according to the crop heterogeneity patterns detected in satellite image time series [19]; in
2020, the sampling design followed a 90 × 90 m regular grid. The site-specific design (2016,
2018) resulted in a density of one sample per 0.88 hectares, while the regular design (2020)
resulted in one sample per 0.80 hectares; thus, both surveys resulted in similar densities.

Cylindrical soil columns 30 cm deep were extracted from naked soil surfaces in
winter at each sampling point and sent for full analysis to the Soil and Water Resource
Institute, Hellenic Agricultural Organization (DEMETER). The samples underwent full
analysis for a set of 18 soil properties: weight percentage of sand, clay, and silt, bulk
density, soil acidity (pH), electrical conductivity (EC), organic matter (OM), CaCO3, nitrate
nitrogen, phosphorus, potassium, magnesium, iron, zinc, manganese, copper, boron, and
calcium [20].

Finally, the point sample map was converted into raster surfaces for all measured soil
properties using the inverse distance weighting (IDW) spatial interpolation method, thus
resulting in a set of 18 soil surfaces.

b. Climatic measurements

Surface temperature influences the growth stage during the whole growing season.
The combined thermal condition of the atmosphere within the planetary boundary layer
is connected to the parameter of land surface temperature (LST). The MODIS sensor was
used to retrieve the LST during the day and night, and more specifically, the MOD11A1
V6.0 product, which provides LST minimum, maximum, and mean values for 5-day
intervals [21].

Air temperature is an important determinant in plant growth and development [22].
Six-hour step temperature data for the study period were obtained from ECMWF’s ERA 5—
land dataset with spatial resolution of 0.1◦ × 0.1◦, from which sum, minimum, maximum,
and mean temperature for each point were calculated for 5-day intervals.

The effect of rainfall on rice crop depends on the specific growth stage. In general,
heavy rainfall events dilute the content of nutrients, decreasing their reproduction rate.
Hourly precipitation data were obtained from the integrated multisatellite retrievals for
GPM (IMERG) gridded precipitation repository [23] at a spatial resolution of 0.1◦ × 0.1◦,
from which accumulative daily precipitation values, as well as sum, minimum, maximum
and mean values for 5-day intervals, were calculated.

All the required climatic parameters were collected for the period between 15 May
and 31 August for each of the years 2017–2021.

c. Farming practices

Farming practices may affect crop growth dramatically, as they concern the type of
cultivars seeded, the specific seeding dates per year per field, as well as the rest of the
farming work done in the rice fields (beyond fertilization), such as irrigation and drainage,
weed management, disease control, etc. Information on all these practices was available by
the farmer, found in his very meticulous and detailed annual calendars.

The main farming practices, however, are the fertilization applications of the previous
years’ applications, which are taken as input data in the prediction of N requirement of the
current year’s cultivation. Fertilization applications can be distinguished into broadcasting
and topdressing ones. All the applications of the studied period were conducted with
a variable rate technology (VRT) system, namely, a Kverneland Geospread model with
a Tellus Pro terminal. The Geospread system on the Kverneland disk spreaders enables
farmers to reduce the spreading pattern in sections of 1 m with the highest accuracy.

The terminal was supplied with digital maps containing the fertilization recommen-
dations in XML files, which were derived from shapefiles originally created within a
geographic information system (GIS) and in which every polygon corresponds to a man-
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agement zone. Throughout the years of the study, these zones were evolved from quite
simple (for 2017, 2018, and 2019) to more complicated ones (for 2020 and 2021). In 2017
and 2018, the fertilization recommendations were formulated by expertise based on the
international literature [1,24].

d. Crop spectral properties

In Mediterranean countries, optical satellite data are the main source of information
for precision agriculture applications, due to the good weather conditions [25,26].

The main use of the collected optical satellite data in the current study was to extract
leaf nitrogen concentration (LNC), an important index of photosynthetic capacity of the
crops [27]. LNC is irreplaceable for farmers in making their decisions on fertilization,
especially the topdressing one [28].

In this research, LNC was estimated from Sentinel-2 images acquired from the Open
Access Hub (copernicus.eu) of the Copernicus Land Monitoring Service on a variety of
dates over the 5-year study period in the mode of surface reflectance (BOA). The original
top of atmosphere (TOA) module of 2017 images was atmospherically corrected using the
Sen2Cor algorithm by STEP software (Sen2Cor—STEP (esa.int)).

The equation for LNC estimation was established originally from hyperspectral data
by Stroppiana et al. [29]; while Karydas [30] calibrated LNC values derived from Sentinel-2
using similar hyperspectral data:

LNC = 4.060 ∗ NDRE + 0.43 (1)

where NDRE is the Normalized Difference RedEdge index ((R790 − R720)/(R790 + R720)),
R720 reflectance at 720 nm (Band-5 of Sentinel-2), and R790 reflectance at 790 nm (Band-7
of Sentinel-2).

In parallel with LNC, NDVI was also extracted as a biomass vigor indicator for the
same surfaces: NDVI = (R840 − R670)/(R840 + R670), R840 reflectance at 840 nm (Band-8
of Sentinel-2), and R670 reflectance at 670 nm (Band-4 of Sentinel-2).

In addition to the optical satellite data, the SAR backscatter data in the mode of vertical
transmit—horizontal receive polarization were also extracted (for the same grid points)
from Sentinel-1 images acquired between 31 May and 24 June for each of the study years.

e. Yield

As the required output parameter, rice yield was mapped throughout the studied
period, with a 7.5 m wide Trimble yield monitor mounted on a Claas harvesting machine;
guidance and field scanning were automated. The original data were first cleansed of
unrealistic values (usually null, very small, and extremely high) and then calibrated with
weighted rice yield data available per field and provided by the farmer.

Furthermore, areas affected seriously by factors other than the applied fertilizers, such
as poor irrigation or rapid drainage, extreme weed infestations, bad tillage, application
misfires, etc., were removed from the studied cultivation surface. That was found necessary
because yield could have been affected by all these unmeasured or estimated parameters,
thus the result could have been biased. The required information about this kind of “noise”
in the prediction process was extracted from farmer’s knowledge, which is considered a
reliable source of information about crop variance in all different ways [31,32].

2.3. Experimental Design

A regular grid of 30 × 30 m was designed within the studied rice fields, thus resulting
in a point shapefile of 993 records in the study GIS. A 0.09-ha surface was found appro-
priate for providing the necessary detail in studying N requirement in rice crop, without
overloading data collection and processing.

The attribute table of the grid shapefile was gradually populated by the soil properties,
the farming practices, and the yield at every point, by extracting the associated values from
the original or processed geospatial layers.
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The variables for the climatic measurements and the crop spectral properties at every
grid point were estimated using Google Earth Engine (GEE, https://earthengine.google.
com/, accessed on 10 May 2022). GEE is a free cloud-based computational platform
that accesses and processes petabyte quantities of remotely sensed data on a worldwide
scale [33]. The GEE data catalogue primarily consists of satellite observations, such as
the full Landsat archive, Sentinel-1, 2, and 3, MODIS, and ASTER imagery, as well as
some land cover data and a variety of other environmental, climatic, geophysical, and
socio-economic datasets. GEE employs JavaScript-based language and Geospatial python
libraries to preprocess Earth observation data [34,35].

The index data values were extracted for all clear-sky days (specifically, for those with
less than 20% cloudiness) in the period between 15 May and 31 August for each of the years
2017–2021. In cases where satellite images were unavailable for a specific date, or when
feature extraction from satellite images was not possible due to cloud cover, the required
features were extracted from the last available image before the targeted date.

Then, the climatic and spectral properties were joined to the common grid point
shapefile. Finally, the dataset was cleaned and harmonized through meticulous visual
inspection and geostatistical tests.

The full dataset underwent analysis with machine learning (ML) systems, towards
the construction of a rice yield prediction model, from which detailed and accurate N-
recommendations for topdressing VRT applications would be derived.

2.4. Machine Learning

a. Model methodology

The dataset used for constructing the rice yield prediction model relied—after
cleaning—on 4884 records. The data were randomly split into training and test sets
consisting of 80% (3908 rows) and 20% (976 rows). For dimensionality reduction and
elimination of the nonsignificant features, the random forest algorithm was used [36]. Thus,
the low-importance variables were removed after fitting a random forest algorithm and
obtaining the feature importance score [37].

The subset of the initial variables that remained after removing the low-importance
features was checked for collinearity using Spearman’s rank correlation. The mean absolute
error (MAE) for the test set was checked every time a colinear feature was removed. If
there was not a substantial increase in the error, the feature evaluated as less important by
the random forest algorithm was finally removed.

The final feature space included the ideal combination of parameters. Three high-
performing boosting machine learning (ML) algorithms, i.e., XGBoost, CatBoost and Light-
GBM, were tested for constructing a yield prediction model for rice [6,38,39]. The new
CatBoost and LightGBM algorithms are currently giving state-of-the-art results in the ML
framework, as they provide categorical feature support, and they also include some new
features. For example, the LightGBM algorithm provides a more sophisticated splitting
method of the samples, avoiding overfitting. Also, gradient-based one-side sampling
(GOSS), which is a novel sampling method of the LightGBM algorithm, allows selection of
samples based on gradients. GOSS retains samples with large gradients and performs a
random selection of samples with small gradients [39]. Also, CatBoost has been shown to
give better results than previous leading ML algorithms [40]. A novelty of the CatBoost
algorithm is the ordered boosting, which is a modification of the standard gradient boosting
algorithms, allowing the prevention of target leakage, which is an inherent issue of the
gradient boosting algorithms [41]. Ordered boosting allows the obtainment of training
samples sequentially in time.

b. Feature engineering

The ML algorithms were constructed based on the full set of variables, including soil
properties, remote sensing spectral indices, and hindcast climatic data for explaining yield
variance based on real climatic data. Then, the algorithms were fitted removing the hindcast

https://earthengine.google.com/
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climatic data from the feature space and including seasonal forecast anomalies on single
levels from the European Centre for Medium-Range Weather Forecasts (ECMWF), because
the hindcast data will not be available at the time of N topdressing for rice growing.

Thus, for fitting the algorithm with the hindcast data, the following 20 features
were used:

• SAR backscatter vertical transmit—horizontal receive polarization rolling mean for 4
consecutive image acquisitions in June divided by the days from seeding (SAR_VH_
June/Days_from_seeding);

• Variety (long grain or medium grain);
• An LNC parameter divided by the days from seeding (LNC/Days_from_seeding);
• Backscatter values obtained by the last SAR image in June divided by the days from

seeding (SAR_VH_June/Days_from_seeding);
• Mean precipitation of May (Precipitation_May);
• Total N need (N_need);
• Mean temperature of July (Temperature_July);
• Mean precipitation in June (Precipitation_June);
• N rate broadcasting before seeding (Broad_N);
• Silt content in soil (Si);
• Mean temperature for June, July and August (Temperature_mean);
• Mean precipitation in July (Precipitation_July);
• Soil acidity (pH);
• Clay content in soil (C);
• Mean temperature in August (Temperature_August);
• Organic matter content in soil (OM);
• Mean precipitation in August (Precipitation_August);
• Mean precipitation of June, July, and August (Precipitaton_mean);
• Mean temperature of June (Temperature_June; and
• CaCO3 content in soil (CaCO3).

For fitting the algorithm with forecasting climatic data, 18 features were used, because
precipitation anomalies (i.e., Precipitation_August and Precipitaton_mean) were not in-
cluded, as they were not found to be significant for the model. As a result, the hindcast
meteorological data were replaced by the following forecasting climate anomalies:

• Mean temperature anomaly of August (Temperature_August_anomaly);
• Mean temperature July anomaly (Temperature_July_anomaly);
• Mean temperature of anomalies for June, July, and August (Temperature_mean_anomaly);
• Mean temperature anomaly of May (Temperature_May_anomaly); and
• Mean temperature anomaly of June (Temperature_June_anomaly).

Only the mean precipitation of May was used for the model with forecasting climatic
data, as the mean precipitation of May is available at the time of topdressing N application
preparation.

c. Hyperparameter optimization

The efficiency of Catboost, XGBoost and LightGBM depends a lot on the optimal
selection of the hyperparameters, because they use the gradient boosting framework,
i.e., boosting ensemble learning, and are prone to overfitting if they are not properly
parameterized [19]. Thus, Optuna (a hyperparameter optimization technique) was used
for hyperparameter tuning of the three models [42]. Optuna allows a large combination
of hyperparameters to be tested quickly and efficiently. A total of 400 trials with different
combinations of hyperparameters for each model were tested and the combination of
parameters that minimized the MAE were selected. The optimized hyperparameters for
all models are presented in Table 1. The min_child_weight, colsample_bylevel, reg_alpha
parameters were identified as the most influential for the XGBoost, CatBoost, and LightGBM
models, respectively.
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Table 1. The optimum hyperparameter values for the XGBoost, CatBoost and LightGBM models
trained on the normal data.

Hyperparameter XGBoost CatBoost LightGBM

n_estimators 10,000 1000

reg_lambda 0.003 8.60

alpha 0.0098

colsample_bytree 1 0.4

subsample 0.6 0.7

learning_rate 0.014 0.03 0.01

max_depth 13 10 20

min_child_weight 6

loss_function RMSE

l2_leaf_reg 0.18

colsample_bylevel 0.096

boosting_type Plain

bootstrap_type Bayesian

min_data_in_leaf 16

one_hot_max_size 16

bagging_temperature 5.94

depth 10

iterations 1000

reg_alpha 0.024

num_leaves 851

min_child_samples 5

cat_smooth 85

metric RMSE

min_data_per_group 85

d. Variational autoencoder

To avoid affection of the ML algorithms by any discrepancy or noise in the initial
dataset, an innovative technique was used, namely the variational autoencoder (VAE).
Discrepancy and noise are inherent in data coming from environmental and agricultural
resources due to high within- and between-field variance, which can affect the output of an
ML yield prediction algorithm.

VAE reduces the effect of an observation that does not conform to normal patterns
in the data [43], by performing reconstruction of the input data before feeding them into
the ML algorithms, so that the obtained output is given to the ML algorithm as input for
training the model. Reconstruction is based on the intrinsic properties of the input data
and does not require the target data, i.e., yield for the present work. Thus, VAE learns the
original input data representation and transforms them in a latent feature space. The latent
feature space obtained by the VAE is clean and represents normal behavior compared to
the initial data providing though a more abstract representation of the original data.

The Fast.ai framework was used for constructing the VAE for the scopes of the present
study [37]. The mean R2 for all continuous variables between the predicted transformed
variables and the initial normal data was equal to 0.90. The accuracy for the categorical
variable, i.e., variety, was 0.94. As the correlation between the transformed representation
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and the initial normal data was quite strong, the compressed data could be used to build a
better model.

A neural network for the autoencoder was settled on 1024 nodes and finally a 128-
dimension hidden representation was obtained for the encoder. The latent features were
given to the three ML algorithms, and the hyperparameter tuning procedure using Optuna
was followed again, providing new hyperparameters that are presented in Table 2. The
importance of the hyperparameters is shown in Figure 2.

Table 2. The optimum hyperparameter values for the XGBoost, CatBoost and LightGBM models
trained on the reconstructed data by the VAE.

Hyperparameter XGBoost CatBoost LightGBM

n_estimators 10,000 1000

reg_lambda 4.42 0.21

alpha 0.09

colsample_bytree 0.8 0.4

subsample 0.4 0.7

learning_rate 0.012 0.03 0.014

max_depth 13 10 100

min_child_weight 1

loss_function RMSE

l2_leaf_reg 0.18

colsample_bylevel 0.096

boosting_type Plain

bootstrap_type Bayesian

min_data_in_leaf 16

one_hot_max_size 16

bagging_temperature 5.94

depth 10

iterations 1000

reg_alpha 0.038

num_leaves 346

min_child_samples 14

cat_smooth

metric RMSE

min_data_per_group 29
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e. SHAP analysis

To shed light on the underlying factors that influence rice yield according to the fitted
ML models, Shapley additive explanations (SHAP) analysis was used [44,45]. SHAP is an
XAI (explainable artificial intelligence) technique adopting a concept coming from game
theory and reflects a feature’s influence on a model’s prediction [46,47]. SHAP generates a
value (a Shapley value) by changing the input data for all rows and for all features, keeping
all the data equal to the initial and varying one for each trial.

Thus, SHAP values are calculated for each prediction separately and explain a single
prediction. They finally calculate the difference between the model’s prediction and the
prediction generated by varying a feature in the row. If the sum of differences is highly
positive, then the feature is highly important and has a positive correlation with the
prediction for this specific row. If the sum of differences is highly negative, the feature has
a negative correlation with the prediction and if the sum of differences is close to zero, the
feature has low importance.

In practice, SHAP builds a small explainer model for a single observation to explain
how the prediction was achieved by the model for this observation. Finally, the benefit
from this procedure is that for each specific row the contribution of each feature can be
assessed regardless of the underlying model [48]. This is highly important for nonlinear
methods, such as CatBoost, LightGBM, XGBoost, because—even though these algorithms
are powerful and reduce error in the predictions—it is difficult to understand how the
output was obtained.

Matplotlib and seaborn were used to make visualizations [49,50]. The SHAP library
was used for constructing the visualizations of feature importance and SHAP depen-
dence plots. Data analysis, model construction and visualizations were carried out using
Python [51].

3. Results

a. Model performance

The mean absolute error (MAE) for the CatBoost model was lower than the Light-
GBM and XGBoost yield models for the hindcast data. MAE for CatBoost, XGBoost and
LightGBM rice yield models were equal to 0.576, 0.581 and 0.583 tn/ha, respectively. The
CatBoost model for the forecasting climatic data gave a slightly higher MAE of 0.6 tn/ha.
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The feature important plot for the CatBoost model based on the hindcast data is
presented in Figure 3a. The calculated rolling mean of SAR backscatter values for four
consecutive images in June (SAR_VH_June_rolling_mean) was identified as the most
influential parameter for the yield model. For more detailed information on the SAR
backscatter values for crop monitoring, see [52]. The variety variable (long or medium
grain) was the second most influential parameter for the yield model. The LNC parameter
divided by the days from seeding (LNC/Days_from_seeding) was the third most influential
parameter.
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The SAR_VH_June/Days_from_seeding, the values obtained by the last SAR image in
June divided by the days from seeding, was identified as the fourth most significant feature.
The LNC and the backscatter values obtained by SAR imagery were divided by the days
from seeding, because the LNC and SAR values increase as plant growth increases and
thus normalization is necessary for capturing the maximum information from these indices.
The N need for rice crop was identified as the sixth most important feature according to
the CatBoost model. Silt, which is a kind of mineral particle related to soil density, was
identified as the most significant soil attribute.

The feature importance plot for the yield model based on the forecast climate data is
presented in Figure 3b. Only the mean precipitation of May was based on hindcast data
because May precipitation was available at the time of preparing the recommendation
advice (end of June). The N need variable dropped from 6th to 10th position in the order of
feature importance.

Fitting the CatBoost, LightGBM and XGBoost models with the reconstructed data
using VAE and including only the forecasts for the climate data, the LightGBM model gave
the lowest MAE, i.e., MAE for LightGBM, XGBoost and CatBoost rice yield models using
VAE were equal to 0.576, 0.583 and 0.6 tn/ha, respectively. Thus, MAE for LightGBM using
VAE was lower compared to the CatBoost model fitted on the normal data including the
forecasting climate data (0.6 tn/ha) and equal to the MAE obtained by the CatBoost model
fitted on the normal data including the hindcast climate data.

b. Model explanation with SHAP

SHAP dependence plots show that yield increases as the SAR backscatter by image
taken just before N topdressing and divided by the days from seeding increases and present
the interactions that exist between SAR backscatter with LNC and N (Figure 4a,b). Thus,
for high SAR values, if the LNC is high, the N need is low and vice versa. There was a
negative correlation between the mean SAR backscatter by all the June images and the
predicted yield and a positive correlation between LNC divided by the days from seeding
and predicted yield (Figure 4c,d).

N need showed a positive correlation with the predicted yield having its strongest
correlation with the organic matter content of soil (Figure 4e). Thus, the yield is high for
high N rate when the organic matter in soil is low. Silt had a positive correlation with the
predicted yield and its strongest interaction was with the sand content of soil (Figure 4f).
As the silt content in soil increases, the predicted yield increases and the sand content in
the soil is reduced.

c. Yield response curves to N fertilization

Yield curves were created according to different N levels for evaluating the effect
of N rate on the yield prediction according to the CatBoost model for the normal data
and the LightGBM model for reconstructed data using VAE. The LNC was separated into
different equally sized discrete bins according to the LNC levels. Then, curves of yield
prediction according to the trained algorithm were fitted for various N levels to select the
N dose maximizing yield for each LNC bin. According to the yield curves, the optimum N
fertilization dose is determined where yield begins to decrease [2,53,54]. The LNC bins were
discretized as follows: (1) 0.19–0.34, (2) 0.34–0.62, (3) 0.62-0.92, (4) 0.92–1.22, (5) 1.22–1.52,
(6) 1.52–1.82, (7) 1.82–2.12, (8) 2.12–2.42, (9) 2.42–2.72 and (10) 2.72–3.02.

Silt was also discretized in two bins for soils with low silt levels, i.e., from 26.6 to
46.14% and for high silt levels, i.e., 46.14 to 66.13%, as silt was identified as a significant
soil parameter by the CatBoost model. Figure 5 shows the yield curves provided by the
CatBoost and LightGBM models, across various N levels, for reconstructed data using VAE
and normal data for the various LNC bins, respectively. The dashed lines show soil units
(grids) where yield is maximized for N rate less than 250 kg/ha. The yield curves on the
reconstructed data by the VAE in Figure 5a show that for soils where yield is maximized
for N rate less than 250 kg/ha, yield increases up to 240 kg/ha for the LNC bins 2 to 7 and
then starts reducing. Yield is maximized at 220 kg/ha for soils with low N requirement
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only for high LNC values, i.e., for LNC bins from 8 to 10. On the other hand, yield curves
on normal data show that yield is always maximum at the lower rate, i.e., 220 kg/ha, for
soils with low N requirement across all LNC bins.
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the prediction of the CatBoost model for yield and their main interactions, i.e., LNC divided by
days from seeding, N_need, Temperature of June, precipitation of July, and organic matter and Sand,
respectively.
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Figure 5. Effect of different N levels on yield prediction according to the ML model based on (a) data
reconstructed using VAE and (b) normal data for rice requiring high and low N doses.

Figure 6a shows that for low silt levels and high LNC values, i.e., for LNC bins from
8 to 10, rice yield was reduced at greater rate as N rate increased compared to rice plants
grown in soils with high silt levels according to the LightGBM model using VAE. On the
contrary, Figure 6b shows that for normal data, LNC bins from 8 to 10, and low N need rice
plants, there was no effect of N rate on rice yield.
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Figure 6. Effect of different N levels on yield prediction according to the ML model based on (a) data
reconstructed using VAE and (b) normal data for rice requiring high and low N doses and grown in
soils with high and low silt levels.

Leaf nitrogen content (LNC) obtained by Sentinel-2 imagery at the end of June, i.e.,
some days before nitrogen topdressing, was higher for 2017 than all other years (Figure 7a).
This correlated with higher mean precipitation in May compared to other years (Figure 7b).
The coolest June was in 2020, and this correlated with lower LNC for 2020 compared to all
other years (Figure 7c). Significantly lower yield was obtained for the medium grain rice
variety (cv. Ronaldo) in 2020 compared to the other years (p < 0.001). On the other hand,
significantly higher yield was harvested in 2017 for both medium- and long-grain varieties
compared to all other years (p < 0.001) (Figure 3b).
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4. Discussion

a. N need as a significant determinant of the model

The N application rate (N_need) is the sixth most important parameter, which was
expected, as N is required by the rice crop in the largest quantity and is the most limiting
factor in rice productivity if not supplied by fertilizers. Thus, N was identified as a
significant predictor for the model, which is an improvement of the current algorithm
compared to the model published by Iatrou et al. [2].

The MAE presented for the current rice yield model (0.576 tn/ha with the hindcast
climate data and 0.576 with the forecast data using VAE) is lower compared to the 0.629
tn/ha MAE and 0.73 tn/ha root mean square (RMS) presented by Iatrou et al. [2]. However,
this difference in the error was expected, as more data were gathered for 5 consecutive
years, providing a better algorithm for rice yield prediction and the current work included
more information, such the SAR backscatter and climate data.

b. The importance of SAR backscatter on the model’s performance
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Feature evaluation showed that the SAR backscatter rolling mean is the most signif-
icant parameter for the CatBoost yield model trained on the hindcast climate data. As
expected, the variety (Var_en) was the second most important parameter, because the
long grain rice varieties are less productive compared to the medium-grain rice varieties.
Interestingly, the mean precipitation of May and the mean temperature of July were the
fifth and seventh most important parameters for rice yield. It is generally known that the
weather interacts with N on crop yield, because environmental factors, such as temperature
and rain, exert a large influence on seasonal N mineralization and availability in soil [55,56].

c. Water effect on rice productivity

High precipitation in July and May correlates with high yield, unlike June precipitation,
which correlates with low yield, as shown in Figure 7a. High precipitation in May and
July ensures water sufficiency for the rice crop because water is limiting for rice growing
in Greece, especially for intense summer droughts. If the growers fail to establish a flood
on rice fields and there are periods of water draining, there is an aerobic period in soil,
resulting in nitrification. When the field is reflooded and becomes anaerobic, the N is lost
as N2O [1,57]. On contrary, if the weather is rainy in June, growers tend to drain their rice
fields for longer, because June is the time of herbicide application. Thus, despite the water
being sufficient for establishing a permanent flood, the growers tend to drain their fields
for longer, aiming at finding a time window without rain for targeting the weeds, and
inevitably the N losses are high.

The effect of precipitation in May and July on yield is due to the uptake of N, as
establishing a permanent flood for longer results in reduced N losses. According to Espino
et al. [24], rice plants growing in deep water are taller throughout the season and this is
probably linked with LNC index. Thus, the LNC probably depicts both the N uptake and
the size of the rice plants. Using SHAP dependence analysis, though, which displays the
effect of LNC on yield (Figure 4d), the yield was shown to increase with increased LNC
according to the yield prediction model. This could probably be because of the increased N
uptake during the early stages of plant growth (May–June) and not because of the size of
the plant, as Espino et al. [24] found that tall plants are not necessarily more productive
than short plants.

However, as yield and LNC in June of 2017 crop season were significantly higher than
the other crop seasons, these data also confirm previous studies on rice claiming that N
losses at the beginning of the cropping season result in yield losses that later cannot be
restored by increased topdressing N fertilization [1]. This is shown in Figure 5a,b, where
the maximum yield is obtained for high LNC values, i.e., LNC bin from 9 and 10. For very
low LNC values, i.e., LNC bin equal to 1, yield increases with N rate increase, but cannot
outreach 10 tn/ha.

A frequently used operational farming practice currently in Greece includes a low N
rate before seeding, keeping waters very low for long periods for controlling the weeds
efficiently with herbicides, and applying a high dose of N at topdressing reaching in total
260 to 270 kg/ha, as growers know from experience that this is a safe way of obtaining
high yields (close to 10 tn/ha). The results of the current study confirm this operational
perception, as rice plants belonging to LNC bin 1 can reach high yields with excessive N
fertilization, as shown in Figure 5a. However, with the current levels of fertilizer prices,
—925, 315, 170 US dollars per metric ton for June 2022, May 2021, and May 2017—following
a conservative cultural practice with reduced N losses and low N rates is crucial for rice
growers nowadays.

Furthermore, having the plants starving for N does not ensure that the plants will
uptake low N, as there are plants grown on fertile soils having high organic matter levels,
high clay content and high-water availability and thus these plants will not necessarily
have low LNC levels. Applying the currently developed ML model using VAE in practice
can aid the growers obtain high yields with lower N rates. This proves that the capacity of
the currently developed prediction model using VAE has high commercial benefit for rice
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growing, as the model can identify areas within the crop with high or low N requirement
and recommend high or low N fertilization at topdressing, respectively.

d. The effect of soil texture on rice productivity

Twelve percent of the experimental area consists of clay soils, while 87% of the fields
are silty, loamy, or sandy loamy. This is probably why silt was identified as the most
important soil attribute by feature evaluation using SHAP for the yield model. According
to the growers’ experience, rice crops grown on sandy soils or soils with low content in clay
or silt tend to be more vulnerable to high N doses. This was clearly identified by the ML
model using VAE, as shown in Figure 6a, because for the high LNC values, i.e., LNC bins
from 8 to 9, and for the rice crops with low N requirement, yield drop was greater, with N
rate increase for the soils with low silt content. There are many references in the literature
showing that excessive N fertilization in sandy soils affects root anchorage, rice lodging,
and finally yield [58–60]. According to commercial experience, rice crops in sandy soils
obtaining high growth can sometimes be disappointingly low in yield.

e. The importance of VAE for accurately predicting the N requirements

The results of the current study show that reconstructed data using VAE gave a
significant improvement on the yield prediction algorithm compared to the normal data.
The relationships between N and predicted yield better described the real conditions in
field, as is known from commercial experience, and the yield model using VAE and based
on forecasting climate data gave an equal MAE to the yield model using normal data and
hindcast climate data.

Furthermore, the model trained on the normal data showed that for the low-N-
requirement rice plants, the yield was always maximum at the lowest rate (220 kg N/ha)
across the different LNC values, which does not agree with the commercial experience, as
rice crops under the Greek rice growing conditions rarely provide high yields when sup-
plied with 220 kg/ha N (Figure 5b). The improvement in the yield prediction model using
VAE relies mainly on the optimization of the variance inherent in the environmental and
weather data. The improved performance of the model using the reconstructed data by the
VAE was rewarded in the operational application of the model, as there was an increase for
the yield of 2022 cropping season of 4.32% compared to the average of 2017–2021 cropping
seasons.

An overview of the role of the VAE in data treatment and processes is presented in
Figure 8.
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f. SHAP analysis shedding light on the model

SHAP analysis clarified the effect of variables on yield prediction and their interactions.
Interestingly, there was a significant interaction between SAR backscatter with LNC and
N need (Figure 4a,b). If the LNC was low, the N need was high for high SAR values and
vice versa. This shows that the model can identify rice plants having high N need due to
reduced N uptake (low LNC). An interesting finding was, also, the negative correlation of
the SAR rolling mean (all June SAR images) with yield, because probably the early SAR
images can identify water within the rice lagoons, which is critical for rice growing and N
uptake. SAR rolling mean interacts significantly with temperature, as June temperature
correlates with plant growth and N uptake affecting rice yield. In addition, there is positive
correlation between LNC, N need and silt with the predicted yield.

Unsurprisingly, the most significant interaction for N need is the organic matter
content of soil. Thus, for high N doses the yield increases for the low fertility soils with
low organic matter, as there is increased release of available N from soil organic matter [61].
Soil density also plays a significant role in rice growing, as mentioned above, and thus silt
has a positive relation with the predicted yield (Figure 4f).

5. Conclusions

This research was focused explicitly on empirical modeling, an option justified by the
operational direction of the attempt and rewarded by the results. Data reconstructed by a
VAE provided a more sophisticated and detailed ML model, improving our knowledge
about the various correlations between the soil, N management parameters and yield.
Moreover, the development of the ML project allowed us to discover patterns, such as the
improved yield potential by reducing N rate when the rice crop has properly grown from
seeding to topdressing with reduced N losses.

Apart from the current approach itself, the fact that both types of the satellite data used
(optical and radar) were found at the highest levels of importance for the employed ML
algorithms, together with their combination as input variables in the rice yield prediction
modeling, could be seen as innovative points of this research. Use of a high-resolution grid
(30 × 30 m), which facilitates holistic multisource data treatment, could also be seen as a
novelty of the approach. Such a grid facilitates easy and fast conversion of output data
into detailed site-specific fertilization maps for automated applications with variable-rate
technologies (VRT).

Yield prediction can never be perfect, as yield can be affected by the weather even at the
late stages of plant growth. However, the scope of the yield prediction model presented here
is to estimate the N dose that will potentially maximize yield. Even modest benefit from the
yield prediction model can make a big difference, as a small yield increase or N savings may
affect the economics of the agricultural enterprise. Indicatively, the average yield in 2022
rice cultivation in the study fields (with N-recommendations based on the current analysis)
increased by 4.32% compared to the previous 5 years of experimentation in the same fields
(9.96 t/ha vs. 9.54 t/ha). We should not also ignore environmental protection (because of
the reported fertilizer input reduction) and cropping land sustainability (because of the
potential soil fertility maintenance).
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