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Abstract: The spontaneous combustion of coal gangue dumps after reclamation causes severe harm to
the ecological environment surrounding mining areas. Using remote sensing technology to determine
vegetation heat stress levels is an important way to evaluate the probability of a spontaneous
combustion disaster. The canopy spectra and chlorophyll fluorescence (ChlF) parameters of alfalfa
were collected through pot experiments to simulate different heat stress levels. Time series analyses of
three ChlF (chlorophyll fluorescence) parameters showed that the regularity of the quantum efficiency
of photosystem II (PSII) in light-adapted conditions (Fv′/Fm′) was stronger during the monitoring
period. The correlation coefficients between the three ChlF parameters and the canopy raw spectrum,
first derivative spectrum, and vegetation indices were calculated, and the spectral features were found
to be more correlated. Lasso regression was used to further screen spectral features, and the optimal
spectral features were the raw spectral value at 741 nm (abbreviated as RS (741)) and NDVI (652, 671).
To discriminate among heat stress levels accurately and automatically, we built a time convolution
neural network. The classification results showed that when the sequence length is 3, the heat stress
is divided into three categories, and the model obtains the highest accuracy. In combination with
relevant research conclusions on the temperature distribution law of spontaneous combustion in coal
gangue dumps, three heat stress levels can be used to assess the potential of spontaneous combustion
in coal gangue dumps after reclamation. The research results provide an important theoretical basis
and technical support for early warnings regarding spontaneous combustion disasters in reclaimed
coal gangue dumps.

Keywords: heat stress; coal gangue dump; chlorophyll fluorescence parameters; spectral features

1. Introduction

Coal is one of the primary global energy sources [1]; coal production exceeded 8 billion
tons in 2021. Although it provides energy security for the economy and society, coal
mining also leads to great pressure on the ecological environment. The main by-product
of coal mining is coal gangue, which is an important solid waste and one of the main
sources of pollution in mining areas [2]. Under different mining methods and geological
conditions, gangue accounts for about 10–15% of the total coal production [3]. Coal
gangue is usually piled up, forming a coal gangue dump [4]. With long-term exposure
to the natural environment, coal gangue will undergo weathering, oxidation, and other
reactions. Organic matter and inorganic matter in waste rock oxidize and heat up, which
could induce spontaneous combustion [5]. Further, the accumulation of coal gangue
could provide favorable conditions for spontaneous combustion. When a spontaneous
combustion disaster occurs, carbon monoxide, hydrogen sulfide, sulfur dioxide, and other
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gases are released, which leads to severe atmospheric pollution. In addition, it also causes
heavy metal pollution in soil and groundwater [6,7].

With yearly increases in coal production, the number of coal gangue dumps is also
increasing. According to statistics (which are still incomplete), there are nearly 10,000 coal
gangue dumps in China, of which more than 1700 have experienced spontaneous com-
bustion [8,9]. In light of this, in 2018, the Chinese government launched a three-year
environmental protection plan. This plan has led to the treatment of coal gangue hills
in major economic zones in China. However, field investigations have found that the
reclaimed coal gangue dumps may still experience re-ignition [10]. This phenomenon is not
only found in China but has also been reported all over the world in related research [11,12].
In addition to polluting the environment, the spontaneous combustion of reclaimed coal
gangue dumps will also lead to surface soil cracking and large-scale vegetation dam-
age [13,14], leading to severe ecosystem damage. The best way to avoid a spontaneous
combustion disaster is prevention, the key to which is establishing an appropriate early
warning method.

The surface temperature of exposed gangue dumps should be monitored using ther-
mal infrared remote sensing to identify internal fire sources [15–18]. However, reclaimed
gangue dumps often have covers of soil and vegetation; only when spontaneous combus-
tion results in the destruction of surface vegetation can the thermal infrared sensor play a
role. In recent years, reports that vegetation can be used as an early warning indicator of
spontaneous combustion disasters in reclaimed coal gangue dumps have appeared [19,20].
Abramowicz et al. [20] found that changes in the health of vegetation in gangue mountain
ecosystems could indicate increases in the ground temperature and can even help determine
the direction of spontaneous combustion through vegetation, while discussing the possi-
bility of identifying potential ignition points at the surface through vegetation. Sloss [21]
identified the process of heat release rates with time for internal shade combustion and
complete ignition spontaneous combustion of the potential ignition point of coal gangue
mountains, concluding that the best time for fire prevention and control—irrespective of
whether the fire source is shade combustion or final ignition—is the early heat release rate in
the rising process, that is, the stage of heat accumulation. At this stage, the soil layer in the
corresponding area is heated, and the surface vegetation experiences heat stress. Different
intensities of fire sources will lead to different heat stress levels on surface vegetation; it is
worth focusing on the use of this relationship to warn of spontaneous combustion disasters.
The first problem to be solved is the accurate discrimination of the heat stress level.

Under different environmental stresses, vegetation’s physiological and biochemical
parameters change significantly [22,23]. Remote sensing technology can monitor vegetation
stresses quickly and accurately [24]. Spontaneous combustion of potential fire sources in
coal gangue dumps is a form of typical environmental stress for surface vegetation. The
selection of stress-sensitive physiological and biochemical parameters of vegetation can
amplify the differences between different stress levels and facilitate the discrimination of
stress levels using remote sensing.

Several studies have demonstrated that ChlF is an effective measure reflecting plant
photosynthetic function [25], and is widely used in studies on functional changes in the
photosynthetic structure of plants subjected to environmental stresses [26–28]. According
to the different measurement methods for ChlF, it can be divided into laser-induced fluo-
rescence and sunlight-induced fluorescence [29]. In this paper, laser-induced fluorescence
is used, which is an important means to study the fluorescence remote sensing of terrestrial
vegetation. Fv/Fm and Fv′/Fm′ represent the quantum efficiency of photosystem II (PSII)
in dark-and light-adapted conditions, respectively, and the healthy vegetation generally re-
mains above 0.7 [30]. PhiPS2 is the actual photochemical efficiency of PS II, which decreases
obviously when plants are stressed. qP and qN are the photochemical burst coefficient
and non-photochemical burst coefficient, respectively, which represent the coefficients for
plants to convert the total light energy into chemical energy and heat dissipation. From
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the point of view of applicability, this paper focuses on changes in the ChlF parameters of
vegetation in heat stress and light-adapted conditions in coal gangue dumps.

The theoretical basis of ChlF indicates that it can adequately reflect the health status of
vegetation experiencing stress. In recent years, many researchers have determined envi-
ronmental stresses based on the spectral features of ChlF parameters. Alexander et al. [29]
used steady-state fluorescence Fs to track changes in the photosynthesis processes of plants
under water, temperature, and nitrogen stress through remote-sensing monitoring. The
results show that water stress is related to decreases in the Fs signal intensity of red light
and far-red light measured at the leaf and canopy level, and heat stress leads to an unstable
decrease in Fs, exhibiting a downward trend. Gu et al. [31] extracted spectral features
based on hyperspectral data and inverted several ChlF parameters of plants at different
growth stages under waterlogging stress by constructing a back propagation neural net-
work (BPNN) model. Their experimental results showed that the spectral features of ChlF
parameters extracted were strongly correlated with plant waterlogging stress in different
periods. Jia et al. [32] explored the quantitative relationship between spectral features such
as the vegetation index, red edge position, and wavelet features and Fv/Fm and Fv′/Fm′

through winter wheat nitrogen stress experiments. Their results showed that traditional
vegetation indices and wavelet features could successfully detect Fv/Fm and Fv′/Fm′ in
various scenarios. Further, under high-temperature stress, the ChlF parameters are excel-
lent indices reflecting the photosynthetic performance of vegetation [33–35]. Therefore,
it is feasible to evaluate the vegetation stress using the spectral features of chlorophyll
fluorescence [36].

From this perspective, the objectives of this study include: (1) ascertaining the spectral
features most related to vegetation ChlF parameters under heat stress; (2) building a time
convolutional network model with powerful generalization capability to discriminate the
vegetation heat stress level based on multivariate spectral features; and (3) discussing,
through relevant research on the distribution law of the spontaneous combustion tempera-
ture of coal gangue dumps, the applicability of discrimination results of the heat stress level
for early warning systems regarding the spontaneous combustion of coal gangue dumps
after reclamation.

2. Materials and Methods
2.1. Experimental Design

The heat stress simulation experiment was carried out in the canopy of Yangzhou
University’s potted experiment site in Yangzhou City, Jiangsu Province (119◦25′N, 32◦23′E)
in the autumn of 2020. Alfalfa, a common herbaceous plant used in coal gangue dump
reclamation, was selected as the plant under study, and Algonquin was the tested alfalfa
variant [37]. Sowing occurred on 10 September 2020, with a sowing density of 10 holes in
each pot and two seeds in each hole. When the sample grew to three leaves, the seedlings
were fixed as 10 plants in each pot and harvested on 15 November 2020. The diameter of
the pelvic floor was about 20 cm, the largest diameter was about 28 cm, the height of the
pelvic floor was about 31.5 cm, and the vacant weight was about 0.54 kg. Before sowing,
10 kg of air-dried loam after drying was filled in each pot, and 5.28 g of compound fertilizer
(N-P-K ratio of 15%-15%-15%) was mixed. After sowing, about 1 kg of soil was evenly
covered, and the relative water content of all treated soils was controlled to about 60%. The
test site design is shown in Figure 1.

The first crop of alfalfa was sown for about 60 days to flowering. The heat stress
gradient experiment commenced on 16 October 2020, one month before flowering. By
15 November 2020, data was collected eight times. A control group and five experimental
groups were set: T1 = 60 ◦C, T2 = 90 ◦C, T3 = 120 ◦C, T4 = 150 ◦C, and T5 = 180 ◦C, where
experiments were repeated five times each. The heat source was placed at a depth of 30 cm
in the soil layer according to the thickness of the surface cover [38], which is usually the
case in reclamation.
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Figure 1. Potted simulation of alfalfa under heat stress.

2.2. Data Acquisition
2.2.1. Measurement of ChlF Parameters

ChlF parameters were obtained using an LI-6800 photosynthetic-fluorescence measur-
ing instrument (LiCOR Inc., Lincoln, NE, USA). LI-6800 comprises the main engine and
an analyzer. The main engine is connected to the analyzer through a signal transmission
line and a gas duct. The front end of the analyzer is a fluorescent leaf chamber, which can
sandwich plant leaves with an area of few than 6 cm2. Before measuring the fluorescence
parameters, the alfalfa leaves were put into the fluorescence leaf chamber, and the main
parameters were then set at the main engine: the gas flow rate was 500, the ambient tem-
perature and air humidity were consistent with the humidity of the test site on the same
day, the carbon dioxide concentration was set to 400, the induced light intensity was set
according to the light intensity at the time of measurement, and the induced pulse light
was multiphase. Fluorescence measurement began at about 11:00 a.m. on the monitoring
day. Three pots were selected for each treatment, three plants were selected for each pot,
and flag leaves were selected for measurement. In this experiment, ChlF parameters in
light-adapted conditions were obtained; therefore, the dark-adapted process of leaves
was not designed before each measurement. The main fluorescence parameters obtained
include PhiPS2, Fv′/Fm′, and qP; their calculation equations are shown in (1)–(3).

Fv′/Fm′ = (Fm′ − Fo′)/Fm′ (1)

PhiPS2 = (Fm′ − Fs)/Fm′ (2)

qP = 1− (Fs− Fo′)/(Fm′ − Fo′) (3)

In the equations, fluorescence intensity values—including steady-state fluorescence
(Fs), maximum fluorescence (Fm′) in light-adapted conditions, minimum fluorescence (Fo′)
in light-adapted conditions, and variable fluorescence (Fv′) in light-adapted conditions—
can be measured.
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2.2.2. Measurement of Canopy Spectrum

The hyperspectral data was acquired using a portable ground object spectrometer SVC
HR-1024i (Spectra Vista Corporation SVC HR-1024I). The alfalfa canopy reflectivity was
measured in the range of 350–2500 nm, with sampling intervals of 1.5 nm (350–1000 nm),
3.8 nm (1000–1885 nm), and 2.5 nm (1885–2500 nm); the resampling interval was 1 nm.
Because ChlF is mainly located in the visible wavelength region [39], only the 400–800 nm
band is used in this paper.

The measurement was synchronized with the temperature gradient test, which was
measured for the first time on 16 October 2020, and thereafter every four days. Sunny
and windless weather was chosen, the canopy reflectivity data was measured from 10:00
to 14:00, and rainy days were disregarded. Up to 15 November 2020, spectral data were
collected 8 times. A standard whiteboard was used for calibration during measurement. A
hand-held optical fiber probe was used to measure alfalfa potted plants, and 3 pots were
selected for the control group and each temperature treatment, and each pot was measured
6 times. The measured mean value for each group was taken as the true value for alfalfa
canopy spectral reflectance. During the measurement, the standard whiteboard correction
was carried out every 30 min.

2.3. Methods
2.3.1. Spectral Data Processing

(1) Raw spectrum

To suppress noise, all of the collected canopy original spectral data were smoothed.
The smoothing algorithm adopted the Gaussian weighted moving average and used the
spectral curves collected using Matlab 2017a (MathWorks, Natick, MA, USA) to calculate
the average value, which helped reduce the intra-group differences. Then, the mean spectral
curve was smoothed by one-dimensional Gaussian filtering along the spectral direction.
The sliding window was set to 5.

(2) First derivative spectrum

The differential processing of the canopy spectrum can decrease the influence of
background information on spectral data [40]. The first-derivative spectrum of spectral
reflectance is calculated to highlight the target spectral features by Equation (4).

R′(λi) = [R(λi + 1)− R(λi − 1)]/2∆λ (4)

where λi is the wavelength; R(λi) and R′(λi) are the reflectance and first-derivative spec-
trum of the wavelength λi, respectively; and ∆λ is the interval between the wavelength
λi − 1 and λi.

(3) Vegetation Index

The vegetation index was constructed using the two-band combination method of the
raw canopy spectrum and compared with the conventional index (Table 1). The two-band
combination method included the ratio vegetation index (RVI (λ1, λ2)), normalized differ-
ence vegetation index (NDVI (λ1, λ2)), and difference vegetation index (DVI (λ1, λ2)).
The band combinations were available between 400 and 800 nm, and their equations [41]
are as follows:

NDVI (λ1, λ2) = (Rλ1 − Rλ2)/(Rλ1 + Rλ2) (5)

RVI (λ1, λ2) = Rλ1 /Rλ2 (6)

DVI (λ1, λ2) = Rλ1 − Rλ2 (7)

where λ1 and λ2 are wavelengths (nm); Rλ1 and Rλ2 are the reflectances at wavelengths λ1
and λ2, respectively; and λ1 6= λ2.
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Table 1. Vegetation indices related to ChlF parameters.

Index Type Index Name (Abbreviation) Equation 1

ChI VI

Transformed chlorophyll absorption in reflectance index (TCARI) 3× [(R710 − R680)− 0.2× (R700 − R560)(R710/R680)] [42]

Modified chlorophyll absorption ratio index (MCARI) (R700 − R670)− 0.2× (R700 − R550)(R700/R670) [43]

MERIS terrestrial chlorophyll index (MTCI) (R750 − R710)/(R750 − R680) [44]

Modified MERIS terrestrial chlorophyll index (MMTCI) (R750 − R680 + 0.03)(R750 − R710)/(R750 − R680) [45]

Pigment VI Plant pigment ratio (PPR) (R550 − R450)/(R550 + R450) [46]

Structure VI

Structure insensitive pigment index (SIPI) (R800 − R445)/(R800 − R680) [47]

Optimized soil-adjusted vegetation index (OSAVI) 1.16× (R800 − R670)/(R800 − R670 + 0.16) [48]

Green normalized difference vegetation index (GNDVI) (R750 − R550)/(R750 + R550) [49]

1 Rλ = reflectance at wavelength λ.

2.3.2. Spectral Feature Extraction of ChlF Parameters

(1) Correlation Analysis

The spectral parameters (raw spectra, first-order derivative spectra, and vegetation
indices) were correlated with the alfalfa ChlF parameters (PhiPS2, Fv′/Fm′, and qP) using
Pearson correlation coefficients (Equation (8)). The highly correlated spectral features were
selected in the appropriate band range.

r(X, Y) =
Cov(X, Y)

δXδY
(8)

where Cov(X, Y) is the covariance of X and Y, δX is the variance of X, and δY is the variance
of Y.

(2) Lasso Regression Analysis

The Lasso (least absolute shrinkage operator) regression model is an important regres-
sion model in the field of machine learning [50]. The method obtains a relatively stable
model by constructing a penalty function. This allows the model to compress the coeffi-
cients of some independent variables. Through regularization, the regression coefficients of
some independent variables are compressed to zero. At the same time, Lasso regression
retains the advantage of subset shrinkage and is a biased estimation model dealing with
multicollinearity data (Equation (9)).

min
β0,β

(
1

2N

N

∑
i=1

(yj − βxT
i − β0) + λ

p

∑
j=1

∣∣β j
∣∣) (9)

where N is is the sample number, yj is the predicted true value, xi is the observed value, β0
is the bias, β is the weight of the observed variable, and λ is a non-negative regularization
parameter. λ∑

p
j=1

∣∣β j
∣∣ is called L1 regularization.

2.3.3. Discrimination of the Heat Stress Level Using TCN

The modeling of time series data is the key to distinguishing the heat stress levels
by using the spectral features of ChlF parameters of alfalfa. In recent years, rapid devel-
opments in deep learning have made important contributions to solving this problem.
Among them, sequence modeling is primarily based on recurrent neural networks (RNNs),
and their variants—LSTM, gated recurrent units (GRUs), back-propagation through time
(BPTT), etc. However, studies have shown that convolution structures are superior to
RNNs in series modeling tasks in recent years [51]. A time convolution network (TCN)
originates from a convolution neural network, it performs better in time series prediction
tasks than LSTM [52]. TCN has a stronger generalization ability, it can not only process
one-dimensional time series data but can also process two-dimensional images. TCN
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k in this paper primarily comprises two one-dimensional convolution layers, two full
connection layers, and a softmax classification layer. Similar to image data processing, a
three-dimensional matrix of input data was constructed with dimensions of (1) specific
features, (2) time series, and (3) stress levels, as illustrated in Figure 2a.
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Because of the causality of convolution, the architecture of TCN ensures that time
series data does not go missing. Convolution structures emphasize the use of 1D fully
convolution network (FCN) architectures, set each hidden layer to maintain the same length
as the input layer, and keep the length at zero (kernel size). It can be simply described
as follows:

TCN = 1D FCN + causal convolutions (10)

Simple causal convolution can only deal with linear time series data in a network. In
some long-time series tasks, a linear review of the data alone is not sufficient. An expo-
nential receptive field is achieved in the TCN structure by the dilated convolution method.
That is, for a one-dimensional sequence input x ∈ Rn and a filter f : {0, . . . , k− 1} → R ,
the dilated convolution operation F on sequence element s is defined as

F(s) = (X ∗d f )(s) =
k−1

∑
i=0

f (i) · Xs−d·i· (11)

where d is the dilated factor; k denotes the filter size; and s-d·i is the past direction. It can be
seen from the formula that the basic principle of expansion involves adding a filter with a
specific step size between adjacent nodes. The stronger expansion enables the output to
obtain a wider range of inputs at the upper layer, effectively expanding the receptive field
of the convolution network, as illustrated in Figure 2b.

The application of residual links in the time convolution network has improved owing
to the high-quality research on deep residual networks (Resnet) [53] conducted in 2016.
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The TCN residual block contains a branch that leads to a series of transformations F , the
output of which is added to the input X of the block:

o = Activation(X +F (X)) (12)

In the residual block, TCN has two layers of extended causal convolution and non-
linearity, for which we use a rectified linear unit (ReLU). Further, weight normalization
is applied to the convolution filters. In addition, spatial attenuation is added after each
dilated convolution for regularization, as illustrated in Figure 2c.

In this study, the main data source for discriminating heat stress levels is one-dimensional
hyperspectral data. Considering practical applicability, the data sources in the large-scale
monitoring of coal gangue hills are mostly UAV images or satellite remote sensing images;
the advantages of TCN form the basis for its use in this study and subsequent work.

2.3.4. Evaluation Criteria

The sample data for constructing the model were divided into a training set (segmen-
tation scale = 0.8) and test set (segmentation scale = 0.2). The coefficient of determination
(R2) and root mean square error (RMSE) were used as indicators of its accuracy [54]
(Equations (13) and (14)). Accuracy is defined as the degree of consistency between the
model results and the true categories (Equation (15)). Ten-fold cross-validation was adopted
for the training set [55].

RmSE =

√
∑n

i=1 (ŷi − yi)
2

n
(13)

R2 = 1− ∑n
i=1 (ŷi − yi)

2

∑n
i=1 (yi − yi)

2 (14)

Accuracy =
nclass

n
× 100% (15)

where yi is the true value, ŷi is the predicted value, yi is the mean value, n is the number of
samples, and nclass is the number of correctly classified samples.

3. Results
3.1. ChIF Parameter Time Series Analysis

ChlF parameters are important indicators of the photosynthetic capacity of alfalfa.
Under different heat stress levels, the ChlF parameters of alfalfa changed significantly.
On 16 October 2020, the day after the first data collection, the soil layer was heated, and
the ChlF parameters of alfalfa were measured eight times. Figure 3 shows the significant
differences between the control group and the experimental groups at each measurement
date, and the changes in the PhiPS2, Fv′/Fm′, and qP with time under different treatments.
When the samples were collected on 16 October, the topsoil was not heated. At this time,
the growth trend of alfalfa in the control group and the experimental group was similar,
but there was no obvious difference in PhiPS2 and qP among the groups. After heating
began, the significant differences between PhiPS2, and qP at each measurement date were
weak in regularity. When focusing on the time series trend of fluorescence parameters
in the overall monitoring period, the following can be observed: (1) PhiPS2: The control
group exhibited little change during the entire monitoring period, while all treatments
in the experimental group showed a downward trend. T3, T4, and T5 increased slightly
after a rapid decline on 20 October. By 7 November, all experimental groups began to
decline rapidly. Generally speaking, the PhiPS2 value in the control group was larger
than that in the experimental group on each monitoring date, but it was difficult to find a
consistent change rule in each treatment of the experimental group either on a single date
or in the overall monitoring cycle; (2) Fv′/Fm′: As shown in Figure 3, the control group
was larger than the experimental group on all dates, and the experimental group exhibited
a downward trend. After 24 October, the size of each experimental group was consistent
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with the stress level. From 11 November, the experimental group dropped to a low point;
T5 was lower than 0.4, and the vegetation was irreversibly damaged, which remained the
same on 15 November. (3) qP: The change range of the control group was small during the
monitoring period, while the experimental group still exhibited a decreasing trend. The
changes in qP under different treatments were different on each date, which clearly had
nothing to do with the stress level. After 7 November, T2, T4, and T5 decreased rapidly in
the experimental group, but T1 and T3 did not change much.
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According to the abovementioned analysis, ChlF is a suitable parameter to reflect
the heat stress levels of alfalfa. The temporal change law is in accordance with the actual
situation, and the photosynthetic capacity of plants is positively correlated with Fv′/Fm′,
which is suitable for discriminating the heat stress levels of alfalfa [56].

3.2. Correlation Analysis of the Spectral Features and ChlF Parameters
3.2.1. Correlations among the Raw Spectrum, Derivative Spectrum, and ChlF Parameters

A correlation analysis of PhiPS2, Fv′/Fm′, and qP was performed using raw canopy
spectrum and first-derivative spectrum data from the entire monitoring period (16 October–
15 November; Figure 4). The results show that the change trends of the three parameters
in the monitoring period are similar, the correlation between the raw spectrum and the
first-order differential spectrum is uncertain, the correlation of Fv′/Fm′ is stronger than the
other two parameters on the whole, and the maximum correlation coefficient also belongs
to Fv′/Fm′. The maximum value of the raw spectrum and Fv′/Fm′ correlation appears at
741 nm (r = −0.61), and the maximum value of the first-order differential spectrum and
Fv′/Fm′ correlation coefficient appears at 516 nm (r =−0.71). The spectral reflectance of the
400–800 nm band has no effect on water vapor absorption, and the first-order differential
spectrum can suppress background noise to a certain extent; its correlation analysis with
ChlF parameters is slightly better than that with the raw spectrum.
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3.2.2. Correlation between Vegetation Indices and ChlF Parameters

In the hyperspectral remote-sensing monitoring of plant ChlF parameters, a large
number of studies have shown that the relevant index located in visible light and red edge
band can be used for the inversion of fluorescence parameters [57]. Therefore, we first
calculated the correlation between the vegetation index of the canopy spectrum (Table 1)
and PhiPS2, Fv′/Fm′, and qP. The results are shown in Table 2. There are three absolute
values of the correlation coefficient for the index calculation selected by the canopy spec-
trum greater than 0.6, including TCARI (r = 0.67) with Fv′/Fm′ and MMTCI (r = 0.62) and
MMTCI (r = 0.64) with PhiPS2. The calculation results in Table 2 show that the correlation
between these classical vegetation indices and fluorescence parameters is relatively weak.
To determine better spectral features, it is necessary to construct vegetation indices with
better correlations.

Table 2. Coefficients of correlation (r) between existing spectral reflectance indices and the ChlF Parameters.

VI
r

VI
r

PhiPS2 Fv’/Fm’ qP PhiPS2 Fv’/Fm’ qP

SIPI 0.59 0.59 * 0.59 * MCARI 0.51 0.56 * 0.52
OSAVI 0.51 0.52 0.50 PPR 0.42 0.49 0.46
GNDVI 0.31 0.36 0.29 MTCI 0.39 0.40 0.39
TCARI 0.53 0.67 * 0.55 MMTCI 0.62 * 0.64 * 0.59

* Indicates significant differences at the 95% confidence level.

To find the best VI for estimating the ChlF parameters, the correlations between the
ratio (RVI), the normalized difference (NDVI), and the difference (DVI) vegetation indices of
the two bands in the 400–800 nm range with PhiPS2, Fv′/Fm′, and qP were systematically
analyzed. Figure 5 shows a matrix of the correlation coefficients based on the different
band combinations of the raw full-band spectrum and the ChIF parameters.

The results show that the main reason for the difference in the overall correlation
between the spectral index and ChlF parameters is the construction mode of band combina-
tion, that is, the ratio and normalization are stronger than the difference, and the maximum
correlation coefficient in each constructed index appears in the correlation analysis with
Fv′/Fm′. The vegetation index was more strongly correlated with Fv′/Fm′ than PhiPS2
and qP. From Figure 5d–f, the three indices with the highest correlation coefficient r were
selected, RVI (599, 611), DVI (570, 634), and NDVI (652, 671), with r being 0.71, 0.76, and
0.70, respectively. The three indices have a high correlation with Fv′/Fm′, which can be
used as spectral features for ChlF parameter estimation.

3.3. Spectral Features of Lasso Regression Analysis

According to the previous analysis, Fv′/Fm′ values at the canopy scale are suitable
to reflect the heat stress of alfalfa. After preliminary screening, five spectral features were
obtained: RS (741), FDS (516), RVI (599, 611), DVI (570, 634), and NDVI (652, 671). The bands
that constitute spectral characteristics are mainly concentrated in red-light and edge areas.
Many spectral features obtained through correlation analysis may suffer from collinearity
and other problems; therefore, it is necessary to further optimize spectral features. Lasso
regression is used to reduce the dimensionality of feature parameters.
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Figure 5. Coefficients of correlation between PhiPS2, Fv′/Fm′, and qP with RVI (λ1, λ2), NDVI (λ1,
λ2), DVI (λ1, λ2), and ratio/normalized difference/difference vegetation indexes constructed from
raw spectral data. (a) Correlation between PhiPS2 and RVI (RVI band combinations based on the raw
reflectance relationship with EWT); (b) Correlation between PhiPS2 and DVI; (c) Correlation between
PhiPS2 and NDVI; (d) Correlation between Fv′/Fm′ and RVI; (e) Correlation between Fv′/Fm′ and
DVI; (f) Correlation between Fv′/Fm′ and NDVI; (g) Correlation between qP and RVI; (h) Correlation
between qP and DVI; and (i) Correlation between qP and NDVI.

The Lasso regression model can reduce the dimensionality of multi-dimensional
inputs. Figure 6 maps the training process and fitting results of selected canopy spectral
features using Lasso regression. First, we need to determine the optimal regularization
coefficient lambda (λ) and use 10-fold cross-validation for the dataset (n = 48). The training
process of the Lasso regularity coefficient at the canopy scale is shown in Figure 6a. After
many iterations, we obtain λ with the smallest RMSE as the optimal regularity coefficient
of the model. The compressed spectral characteristic parameters are then obtained and the
accuracy of the regression model is tested. The results are shown in Table 3 and Figure 6b.
Table 3 shows that the regression coefficients of RVI (599, 611) and DVI (570, 634) are both
0, which means that they are eliminated by the model. The R2 and RMSE of the Lasso
regression model with RS (741), FDS (516), and NDVI (652, 671) as independent variables
were 0.67 and 9.10 × 10−3, respectively.
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Table 3. Spectral features were selected by Lasso regression.

Lasso Regression

Spectral Parameters Regression
Coefficients R2_CV RMSE_CV

RS (741) 2.80 × 10−3

0.67 9.10 × 10−3
FDS (516) −4.94 × 10−2

RVI (599,611) 0
DVI (570,634) 0

NDVI (652,671) 1.82
Bias 2.12 × 10−2

Equation 1 y = 2.8× 10−3x1 − 4.94× 10−2x2 + 1.82x3 + 2.12× 10−2

1 y = Fv′/Fm′; x1 = RS (741); x2 = FDS (516); x3 = NDVI (652,671).

In the reflectance spectrum, the spectral information of ChlF is concentrated in the
red-light and far red-light regions [58]. Although FDS (516) performs well in quantitative
analyses, it has no physical significance and is not suitable for use as the spectral feature of
Fv′/Fm′. Therefore, the optimal results for spectral characteristics are RS (741) and NDVI
(652, 671).

3.4. Discrimination of the Heat-Stress Level

Using the spectral features of ChlF parameters to accurately discriminate the stress
levels of plants should fully consider the time-series changes of spectral data, and while
single-period estimation is sometimes feasible, these methods are often not well generalized.
To solve this problem, this study uses the spectral features of time series as inputs to
construct an SF-TCN model, which transforms the discrimination of plant stress levels
into a classification problem; Figure 4 shows the network structure. To find the optimal
model, the input layer data is set with uniform spectral features and different time series
lengths, and different classification strategies are used to carry out experiments: (1) Fv′/Fm′

spectral features are used as input: RS (741) and NDVI (652, 671); (2) time series: the time
series length is divided into 3, 5, and 7 (each time series length is a continuous date and
does not repeat in reverse); (3) classification strategies: two categories (control group and
experimental groups), three categories (control group; T1 and T2; and T3, T4, and T5),
and six categories (control group and each of the five experimental groups). The number
of samples in each test was determined by the length of the time series, and the ratio of
the training set to the verification set was 4:1. The number of output layer categories was
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consistent with the number of stress level categories. The initial learning rate was 0.001, and
the batch size was adjusted according to the sample size. The adaptive moment estimate
(Adam) was selected by the network optimizer and the cross-entropy error function was
adopted as the loss function. The model training and test results are shown in Figure 7.
The model training accuracy under the six strategies in the figure is too low, and loss is
difficult to converge, so it is not drawn.
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As shown in Figure 7, the classification determines the overall accuracy of the model.
The loss and accuracy of the training set and verification set of the two-class strategy are
lower than those of the three-class strategy. When the heat stress level is divided into three
categories, the accuracy of the model is obviously improved. When the time series length
is 3, the convergence of model training set loss and accuracy is better, the accuracy of the
test set is relatively highest, and the highest accuracy of the test set accuracy is about 87%.
With increases in the length of the time series, the accuracy of the model decreases, and
the effect is the worst when the time series length is 7. Overall, the SF-TCN model based
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on spectral features is suitable for discriminating the heat stress levels of alfalfa when the
classification strategy is 3 and the time series length is 3.

4. Discussion

In this study, a conduct gradient test was conducted by simulating alfalfa heat stress
in a coal gangue dump after reclamation. ChlF parameters and canopy spectra on alfalfa
were collected. The stress level in alfalfa under heat stress was estimated by the SF-TCN
model. The spectral features of ChlF parameters and the discrimination model of heat
stress are crucial for the assessment of spontaneous combustion disasters of coal gangue
after reclamation, which requires further discussion.

4.1. Fv′/Fm′ as an Indicator to Respond to Heat Stress t

High temperatures may cause irreversible damage to the photosynthetic system of
plants [59], including PSII inactivation, PSII electron transport rate decreases, and thylakoid
disintegration [33,60]. The high soil temperature caused by fire sources inside gangue
dumps is more harmful to surface plants than high air temperatures [61]. Studies have
proved that ChlF can quickly capture the instantaneous changes in plant physiological
states and their responses to various environmental stresses [32,62]. Practically, when
detecting plant responses to stress, dark-adapted conditions are usually impossible to
achieve; therefore, the three ChlF parameters selected in this paper are all in light-adapted
conditions. The results of the time-series analysis show that the value of Fv′/Fm′ for the
higher temperature treatment exhibited a decreasing trend, followed by increases and then
decreases, characterizing the physiological process from the stress response to irreversible
damage in vegetation under heat stress, which is consistent with the actual situation;
however, the rest of the parameters performed poorly. Fv′/Fm′ is a suitable parameter to
respond to heat stress, and it is an excellent indicator for evaluating plant stress, nutrient
status, and health status [29], which is consistent with previous studies [63].

4.2. Spectral Feature Selection and Heat Stress Level Discrimination Model

This study focuses on the spectral features of ChlF parameters that can reflect vege-
tation heat stress. The spectral features used to monitor ChlF parameters are reflectance
information characterizing the fluorescence intensity, rather than definite physical quan-
tities [64]. Furthermore, ChlF signals belong to weak information in the reflection spec-
trum [65], which must be enhanced and screened using mathematical methods. Through
correlation analyses, we preliminary obtained the spectral features of ChlF parameters, and
further determined that Fv′/Fm′ is a suitable parameter to respond to the heat stress of
alfalfa. Multivariate variables may also exhibit collinearity. Lasso regression can reduce
the dimensionality of data, and further optimize the three spectral features: RS (741), FDS
(516), and NDVI (652, 671) through the results of regression analysis. The chlorophyll fluid
emission spectrum ranges from around 650 nm to 850 nm and includes two broad band
peaks centered in the red (685 nm) and far-red (740 nm) wavelength range [66]. Although
FDS (516) is highly correlated with Fv′/Fm′, it cannot be used as an indicator. RS (741) and
NDVI (652, 671) are in the sensitive spectral range of ChlF, which are ideal spectral features.

4.3. Potential for Early Warning of Spontaneous Combustion Disasters in Coal Gangue Dumps
Using Heat Stress Levels

The discrimination of heat stress levels is crucial for evaluating the spontaneous
combustion disasters of reclaimed coal gangue dumps. We constructed an SF-TCN model
to classify the heat stress levels. The model classification results show that the accuracy
is the highest when the stress level is divided into three categories (control group; T1
and T2; and T3, T4, and T5). The results are highly consistent with those of previous
studies. Ref. [67] found that, in the heat accumulation stage, the best early warning time
for spontaneous combustion of coal gangue dump is when the temperature on the critical
surface (30 cm for the soil layer in this study) is about 60–80 ◦C, and the state of the internal
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heat source is relatively stable at this time, which is the best time for fire extinguishing.
With the passage of time, the temperature gradually increases, and the heat source point
may move inside, causing an area fire. When the temperature reaches 200 ◦C and above, the
possibility of an above-ground fire increases sharply and is the time of highest fire danger.

Based on the discrimination results of the heat stress level in this study and previous
research conclusions, the early warning of spontaneous combustion can be divided into
three grades according to the fire danger degree: the control group is O grade; 60 ◦C and
90 ◦C are I grade; and 120 ◦C, 150 ◦C, and 180 ◦C are II grade, as shown in Figure 8. During
field applications, remote sensing data acquisition is mainly based on the canopy scale. The
classification accuracy of the SF-TCN model constructed using multi-dimensional spectral
features is high, and CNN as the core structure makes the model have strong generalization
ability, which can be extended to the processing of unmanned aerial vehicle or satellite
remote sensing images, giving it the strong potential to assess spontaneous combustion
disasters of reclaimed coal gangue dumps. In the future, through remote sensing images,
the heat stress level discrimination model can be used to draw a schematic, as shown in
Figure 8, and divide the early warning levels of the spontaneous combustion of reclaimed
coal gangue dumps.
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5. Conclusions

Early warning of spontaneous combustion of gangue dumps is of great significance
for ecological safety in mining areas. This study focuses on using the spectral features of
ChlF parameters to discriminate the heat stress level of surface vegetation of reclaimed
coal gangue dumps, and then contribute to the early warnings of spontaneous combustion
disasters in reclaimed coal gangue dumps. The results showed that Fv′/Fm′ was more
sensitive to heat stress than other parameters. RS (741) and NDVI (652, 671) were used
as inputs to successfully construct an SF-TCN model with three heat stress levels. The
consistency between the discrimination results of the heat stress level and previous research
conclusions was discussed. The SF-TCN model has potential applicability in the early
warning of spontaneous combustion disasters in reclaimed coal gangue dumps. Therefore,
the focus of future research will be to use UAV remote sensing images or high-resolution
satellite images for field monitoring. Further, this study also provides a new perspective
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on the remote-sensing monitoring of environmental stress such as drought stress and
high-temperature stress.
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