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Abstract: The Taklamakan Desert and the Gobi Desert in East Asia constitute the second-largest
sources of dust in the world. In particular, dust originating from the Gobi Desert is more susceptible
to long-range transport, with consequent impacts in downwind Asian countries and the Northwest
Pacific region. Two intensive dust events (the 3·15 dust event and the 3·28 dust event) were ex-
perienced in North China in March 2021. The 3·15 dust process was rated as the most intensive
dust process in China in the past 10 years. In this study, by using a combination of spaceborne
remote sensing datasets from geostationary and polar-orbiting satellites, ground-based columnar
observations of aerosol optical parameters, meteorological reanalysis data, and backward trajectory
simulations of air masses, the transport pathways and the three-dimensional structure characteristics
of dust aerosols during the transport of the two dust events in March 2021 were cross-validated.
The results of the study indicated that the two dust events were induced by the Mongolian cyclone.
Due to the different configurations of the ground meteorological system conditions, a backflow
process occurred during the 3·15 dust event transmission process. After passing over North China
and the Bohai Sea, the direction of transport of the dust plume was reversed. The wind deflected
from northwest to northeast, and the dust reached the eastern coastal areas of China and was finally
deposited on land. The 3·28 dust event exhibited aerosol stratification in the transport path, the
higher pure dust layer reached up to 9 km height, and the lower layer underwent aerosol mixing and
became a polluted dust aerosol. This study implies that the investigation of dust aerosol transport
and the deposition processes, the impact on the ocean, and the impact of marine aerosols on land also
needs to be taken into consideration; the integration of advanced satellites and ground-based remote
sensing data, the meteorological reanalysis data and the backward trajectories simulation, which
complemented and verified each other, can enhance the ability to delineate the transport pathways
and the three-dimensional structural characteristics of dust events.

Keywords: Eastern Asia dust; aerosol optical properties; dust transport; Mongolian cyclone

1. Introduction

Dust storms are an essential manifestation of desertification and land degradation,
contributing to significant environmental impacts [1]. According to estimates from various
numerical models, about 2000 Mt of dust is emitted into the atmosphere each year, with
approximately 75% being deposited on land and 25% deposited in the ocean [2–7]. Dust
aerosols directly affect the radiation budget of the Earth system by scattering and absorbing
solar radiation. Furthermore, as cloud condensation nuclei, dust also participates in the
aerosol–cloud interaction and indirectly affects the climate system [8,9]. Thus, a better
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understanding of the aerosol properties of dust can reduce the uncertainty of aerosol
radiative forcing. Another focus of dust research is to understand the effects of dust
deposits on the new productivity of marine biomass and associated atmospheric-ocean
carbon exchange [10]. The iron-containing dust is transported mainly from the great deserts
through the atmosphere to the oceans, modifying the marine biogeochemical cycle and
hence creating feedback on the climate and dust production [11]. Scientists have established
the concept of the dust cycle in the context of the global biochemical cycle, where dust
is one of the climate indicators. With the improved technology of dust monitoring and
numerical simulation, understanding of the dust cycle’s physical mechanism is deepening,
associated with the establishment of the quantitative analysis from the global perspective
of the dust cycle [12].

Dust storms occur depending on the combined effects of surface conditions and mete-
orological factors [13]. Surface conditions, vegetation cover [14], soil, and topography [15]
were the main factors affecting dust emission. Meteorological conditions such as wind
speed, which is the essential factor, affect both the initial and transport process of the
dust [16]. Other factors such as temperature, precipitation, and soil moisture [17–19] indi-
rectly affect dust emissions by changing the surface condition of the dust source regions.
The Taklimakan Desert (TD) and Gobi Desert (GD) are two major dust source regions in
East Asia [20], acting as the second largest contributor to global dust aerosols [21]. The GD
covers parts of northern China, northwestern China, and southern Mongolia, which are
semi-arid regions. The strongly high-level northwestern flow over the GD and the loose
surface are advantageous for ejecting and transporting the GD dust over East Asia [15].
Spring is the season with the highest dust frequency in East Asia; the main dust transport
height is distributed at 2~4 km, the wind field at 700 hPa shows a pattern from northwest
to southeast, and the dust plume forms a sand belt toward the east [22]. Dust and sand
originating in the GD often pass through the Loess Plateau, North China, and, finally,
extend to the Western Pacific [23].

Some large-scale field experiments in East Asia were also conducted, such as the 2001
ACE-Asia (Asian Pacific Regional Aerosol Characterization Experiment) [24–30], the East
Asian Study of Tropospheric Aerosols and their Impact on Regional Climate (EAST-AIRC)
in 2005 [31,32], The 2008 China–U.S. joint field experiment [33], and the Intercontinental
Chemical Transport Experiment, Phase B (INTEX-B) during the spring of 2006 over the
eastern Pacific Ocean. Through these field experiments, researchers carried out plenty of
studies focusing on the transport and evolution of dust in East Asia [15,32,34–39], dust
aerosol optical properties [33,40–43], the relationships between Asian aerosols and their
climatic impacts [31,44,45], and the physicochemical characteristics of Asian dust [27,46–48].
On the other hand, the long-scale continuous satellite observations complement detailed
(but sparse) in situ observations [49], and a complementary synergistic observation pattern
has been established.

Satellite datasets were widely used to investigate the tempo-spatial distribution,
vertical structures of dust aerosols [23,24,42], and the long-distance transport of Asian
dust [23,39,50]. Active remote sensing measurements such as the Cloud-Aerosol Lidar
with Orthogonal Polarization (CALIOP) onboard the Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite Observations (CALIPSO) satellite provide aerosol types and vertical
structures on a global scale [51,52]. Analysis of the particulate depolarization ratio of
CALIOP over a five-year period from 2007 to 2011 showed that the optical properties
of the dust particles might change during the transport from the dust source region in
East Asia to the Pacific Ocean due to mixing with pollutants or other types of aerosols
from developed industrial regions [50]. By a synergetic analysis of space-borne CALIOP,
ground-based Mie backscatter lidar observations, and Regional Atmospheric Modeling
System (RAMS), springtime outflow of Asian dust and air pollutants patterns associated
with different meteorological systems in East Asia were determined [53]. FY-4A (the first
satellite in the FengYun-4 geostationary series) [54,55] and Himawari-8 [56–58] are both
the new generation geostationary meteorological satellites. Continuous observations can
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provide new levels of capacity for identifying, tracking, and monitoring rapidly changing
weather events. The dust test product from Fengyun-4A [59], 500 nm Aerosol Optical
Depth (AOD), and Ångström exponent (AE) products based on Himawari-8 visible and
near-infrared during the daytime are used to monitor Asian dust [58,60]. The recent boom
in satellite-based observations (both polar-orbiting satellites and geostationary satellites)
has provided ideal tools for identifying the distribution of dust aerosols with extensive
spatial and temporal coverage [61].

The AErosol RObotic NETwork (AERONET) program provides highly accurate aerosol
optical and physical properties for an increasingly extensive geographic distribution; the
accuracy of the quality-assured point observation is considered a “ground truth” for most
satellite and model comparison purposes [62–67]. Based on 12 AERONET site observations
in China, aerosols are categorized into dust, mixture, strongly-scattering fine-mode particles,
slightly absorbing fine-mode particles, moderate absorbing fine-mode particles, and high
absorbing fine-mode particles [68]. Combined with the AERONET observation data and
meteorological data, the variation in aerosol optical properties showed that a high AOD in
Yulin was mostly from the Mu Us desert and deserts of West China and Mongolia in spring,
and the impacts of anthropogenic pollutant particles from the middle part of China in the
other seasons [69].

These previous efforts provided valuable and varying perspectives with satellite
datasets, ground-based observations, or modeling results. However, every single obser-
vation system could only provide a partial picture of the tempo-spatial distributions, the
transport characteristics, and the optical properties of the dust aerosol. A combination
of ground-based observation and space-borne remote sensing is an effective method for
studying aerosols’ spatial and temporal distribution characteristics. There is plenty of
research focused on the characters and transport of Asian dust, which raised the question:
What could we find that was new?

This study investigated two strong dust events that significantly influenced North
China in March 2021. Scholars have carried out some research works on the weather
dynamics [19], the transport process and optical properties [70,71], and an assessment of
the impact produced on the environment [72] of these two intensive dust events. In our
previous work, we studied the important role and impacts of transport paths on the growth
of marine phytoplankton in northweastern Pacific [73], but the detailed examination of
the three-dimensional characteristics of these dust events is lacking. In this study, we aim
to reveal the full aspects of the occurrence and transport processes of the two spring dust
events in East Asia. To achieve this goal, our strategy to integrate the observations was
as follows: we used continuous observations from Himawari-8 geostationary satellites
to obtain the spatial and temporal variation characteristics of dust aerosols; we used
AERONET in situ observations as validation to obtain the distribution characteristics
of dust aerosol optical properties along the dust transport pathway; the aerosol vertical
profile products provided by CALIPSO polar-orbiting satellite were used to perform the
variations in vertical structures of dust aerosols at the source region and the transport
pathways; and finally, the weather dynamics features of dust events were analyzed using
ERA-5 meteorological reanalysis datasets, and cross-validated using HYSPLIT backward
trajectory simulations. As the object of the study was dust aerosols, we made full use of the
depolarization ratio, which was a crucial indicator in identifying dust aerosols and other
types of aerosols. Based on the above research strategy, the three-dimensional tempo-spatial
distributions of the dust aerosol optical properties and transport processes of the two dust
events were investigated.

Integrating multi-source observation datasets, which complemented and verified each
other, and portraying the whole picture of the dust process as carefully as possible will
provide a research basis for quantitative estimation of dust aerosols for further studies.
Moreover, it can improve our understanding of the relationship between dust aerosols
and the climate, atmosphere, and marine environment, as well as human health effects in
East Asia.
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2. Materials and Methods
2.1. AERONET Data

The AERONET uses the CE318 series of automatic sun photometers that could provide
direct solar radiation observations, including 440, 675, 865, 940, and 1020 nm. In addition
to 940 nm for the inversion of the column water vapor content, solar direct radiation
observations in other bands are used to calculate AOD. It can also be combined with almu-
cantar and main plane scanning observations to derive aerosol volume size distribution,
Single Scattering Albedo (SSA), and other parameters [63,64,74]. The accuracy of AOD is
0.01~0.02 [40], and the inversion accuracy of SSA is approximately 0.03 [64]. The AERONET
Level 1.5 database was defined as near-real-time automatic cloud screening and automatic
instrument anomaly quality controls data. Cloud-screening procedures are designated to
remove or reduce cloud-contaminated AOD measurements. After data quality control, the
two principal threshold criteria (triplet stability criterion and smoothness criteria) were
applied to identify the cloud. The procedure has been tested in different geographical and
optical conditions, and results show that the algorithm eliminates from ~20% to 50% of the
initial data depending on cloud conditions [75]. Thus, the Level 1.5 database was used in
the study.

The daily averaged AOD, Fine Mode Fraction (FMF), Ångström Exponent, and SSA in
four AERONET sites (Dalanzadgad, Beijing, Gwangju, and Osaka), as shown in Figure 1,
were used to analyze the variations in the dust aerosol optical properties along with the
transport pathways of the two dust events. AOD is a crucial parameter measuring the
amount of aerosol extinction on a vertical column through the atmosphere. The Ångström
exponent (AE) used for aerosol characterization and apportionment studies describes the
dependence between AOD and wavelength. It is estimated from AOD measurements at
two different wavelengths using Formula (1):

AODλ2

AODλ1

=

(
λ2

λ1

)−α

(1)

where AODλ1 and AODλ2 are the optical depth at wavelength λ1 and λ2, respectively, and
the α has come to be widely known as the Ångström exponent. AE is inversely related
to the average size of the particles in the aerosol: the smaller the particles, the larger the
exponent, and vice versa. Therefore, the AE is often used as a qualitative indicator of
aerosol distribution; values of α ≤ 1 indicate that the coarse-mode aerosols (radii ≥ 0.5 µm)
were predominant, typically associated with dust and sea salt; and values of α ≥ 2 indicate
that the fine-mode aerosols (radii ≤ 0.5 µm) were the predominant, usually associated with
urban pollution or biomass burning [76,77]. SSA is the ratio of aerosol scattering to aerosol
extinction (the sum of absorption and scattering). The closer the SSA value to 1, the greater
the proportion of aerosol scattering to extinction, and vice versa.

Aerosol particle volume size distribution dV(r)/dlnr (µm3/µm2) is an inversion
product provided by AERONET. It is a function of particle size that can be expressed by a
bimodal lognormal distribution as follows:

dV(r)
d ln r

=
n

∑
i=1

Ci√
2πσi

exp

[
−1

2

(
(ln r− ln Ri)

2

σ2
i

)]
(2)

where index i denotes fine (i = 1) and coarse (i = 2) modes of aerosol, Ci denotes the particle
volume concentration, r is the particle radius, Ri is the median or geometric mean radius, σi
is the standard deviation of each different mode, and n is the number of lognormal aerosol
modes [78].
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Figure 1. Illustration of the two dust events in March 2021. The yellow arrows represent the pathway
of the 3·15 dust event, and the brown arrows represent the pathway of the 3·28 dust event.

2.2. Satellites Observations: Himawari-8, FY-4A, and CALIOP

Himawari-8 is a geostationary meteorological satellite that was successfully launched
in 2014 by the Japan Meteorological Agency (JMA). By loading the Advanced Himawari
Imager (AHI) sensor with 16 spectral channels, it can provide near-real-time observations
over the East Asia and Western Pacific regions with high temporal resolution of 10 min for
full disk scanning [56]. Considering that a wide range of cloud systems often accompanies
dust events, high-resolution AOD products will experience a greater lack of pixels due to
cloud contamination. We chose the AHI Level 2 daily average 500 nm AOD products with
a spatial resolution of 5 km × 5 km. The full scene of AHI measurement was 80◦E~160◦W,
60◦N~60◦S. The JAXA (Japan Aerospace Exploration Agency) Himawari Monitor P-Tree
System provides a data download service for registered users.

The FY-4A, launched on 11 December 2016, is a new generation of Chinese geostation-
ary meteorological satellites. FY-4 has improved the weather and environmental monitoring
capabilities, including having an Advanced Geosynchronous Radiation Imager (AGRI).
The FY-4A Dust Test product (DSD) combines 12 widely used dust detection indices with
the radiative properties measured by AGRI/FY-4A [55,79]. The probability density func-
tion and cumulative probability density function are calculated for different backgrounds,
including clouds, dust, vegetation, and desert. A reliability index is attached to each dust
index according to its threshold. The spatial and temporal resolution of the DSD product is
4 km× 4 km and 5 min, respectively. The National Satellite Meteorological Center provides
a data download service for registered users.

The CALIOP is the primary instrument onboard the CALIPSO satellite; it is a dual-
wavelength (1064 nm and 532 nm), polarization-sensitive elastic back-scatter lidar that
measures vertical profiling of aerosols and clouds in the troposphere and low strato-
sphere [80]. The depolarization measurement enabled the discrimination between ice
clouds and water clouds and the identification of non-spherical aerosol particles. The
particulate depolarization ratio δ is a post-extinction quantity calculated from the ratio of
the layer-integrated perpendicular and parallel polarization components of the particulate
backscatter coefficient using Formula (3):
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δ =
β532,⊥
β552,||

(3)

where β532,⊥ and β532,‖ are perpendicular and parallel components of the particulate
backscatter coefficient at 532 nm, respectively. The CALIPSO Lidar Level 2 Aerosol Profile
V3-41 was used in this study. The Earth Science Data Systems Program provides open
access to NASA’s collection of Earth science data.

2.3. ERA5 Meteorological Reanalysis Data

The ERA5 reanalysis dataset is the fifth generation of global atmospheric reanalysis
published by the European Centre for Medium-Range Weather Forecasts (ECMWF). The
ERA5 data assimilation system uses the current version of the Integrated Forecasting
System (IFS Cycle 41r2), with several added features developed explicitly for reanalysis [81].
The conventional grid resolution is 0.25◦ × 0.25◦, and the temporal resolution is one
hour. The dataset can provide various atmospheric parameters at pressure levels and
single levels. The assimilation of more probing data improves ERA5 reanalysis product
accuracy, and higher spatial and temporal resolution weather field data can capture details
of weather processes.

Geopotential at 500 hPa, vertical velocity, and divergence was accessed from the
“ERA5 hourly data on pressure levels from 1959 to present” dataset; 10 m wind vector and
mean sea level pressure was accessed from the “ERA5 hourly data on single levels from
1959 to present” dataset.

2.4. HYSPLIT Model

The online Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT), model
developed by NOAA’s Air Resources Laboratory was used to investigate the pathways
of dust plumes. In order to investigate the sources and transport of dust plumes, 48 h
back trajectories were calculated at 500 m, 1500 m, and 3000 m above ground level (AGL)
for the two dust events. On the other hand, 48 h back trajectories ending on 17 March
were calculated at 500 m, 1000 m, and 1500 m AGL for the 3·15 backflow process. The
gridded data of the Global Data Assimilation System (GDAS) with a horizontal resolution
of 1◦ × 1◦ provided by the National Centers for Environmental Prediction (NCEP) were
used in the calculation.

3. Results and Discussion
3.1. Aerosol Optical Properties
3.1.1. In Situ Observations

In March 2021, the vast area of northern China experienced two strong dust events
on 14–18 March (3·15 dust event) and on 26–30 March (3·28 dust event). According to
the analysis in Section 3.3, the two dust events were generated and developed led by the
Mongolian cyclone. Seven AERONET sites from four cities were alone with the trail of
the Mongolian cyclone: Dalanzadgad (43.58N, 104.42E) in the Republic of Mongolia, three
stations in Beijing, China (Beijing (39.98N, 116.38E); Beijing-CAMS (39.933N, 116.317E);
Beijing_RADI (40.005N, 116.379E)), Gwangju_GIST (35.23N, 126.84E) in South Korea, and
Osaka (34.65N, 135.59E) in Japan. Due to the backflow process of the 3·15 dust event, the
weather service reported that dust was observed in Xuzhou (34.26N, 117.20E), Jiangsu
province, and Fuyang (32.89N, 115.81E), Anhui province. Therefore, these two sites were
selected to monitor the properties of the dust backflow. The locations of these monitoring
sites are shown in Figure 1.

Figure 2 presents the aerosol optical properties of AERONET from 13 to 31 March 2021.
The red and blue blocks in the figure correspond to the two dust events. The Dalanzadgad
site is located south of Ulaanbaatar, which is the capital of the Republic of Mongolia. The
Dalanzadgad site is near the northern edge of the GD. Thus, the aerosol composition was
mainly sand and dust at the site. The FMF values were below 0.4 except on 20 March,
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indicating that the coarse-mode particles were predominant. The AE values were almost
below 0.6, significantly lower than the average AE of the other three sites.
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On 13 March (before Beijing was impacted by dust), the AOD, FMF, and AE values
at the Beijing site were approximately 1.09, 0.95, and 0.99, respectively, which indicated
that fine-mode particles were predominant. This was also confirmed by the volume size
distribution in Figure 3b. On 17 March, the AOD value increased to 1.82, the FMF value
was only 0.24, and the AE value was 0.22, indicating that dust coarse-mode particles were
predominant. From 14 to 15 March, the dust in Beijing was accompanied by the cloud
layer, and the AERONET data were unavailable. During the 3·15 dust event, maximum
(minimum) values of AOD (AE) were 0.80 (0.41) and 0.51 (0.46) at the Gwangju site and
Osaka site, respectively; FMF values dropped from 0.98 to 0.34 (Gwangju site) and 0.90 to
0.34 (Osaka site). Compared with the aerosol optical parameters at the Beijing site, AOD
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values were lower, and the size of aerosol particles was smaller. However, increases in dust
aerosol loading were also significant in Gwangju and Osaka during the 3·15 dust event.
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Figure 3. Aerosol volume size distribution at four AERONET sites: (a) Dalanzadgad site; (b) Beijing
site; (c) Gwangju site; and (d) Osaka site during the two dust events. Lines with a solid circle are dust
days, and red lines with an “×” label are non-dust days.

During the 3·28 dust event, AOD, FMF, and AE at the Beijing site were approximately
0.50, 0.10, and −0.01 on 28 March, respectively. The negative AE is due to a higher AOD
in the longer wavelengths, indicating the presence of dust particles. Substantial increases
in the AOD were also observed; the maxima of the AOD reached 1.33 on 29 March and
0.78 on 30 March at the Gwangju site and Osaka site, respectively. The FMF and AE of
the two sites decreased after 28 March. The AE (FMF) value decreased from 1.11 (0.68) on
26 March to 0.01 (0.12) on 29 March at the Gwangju site and from 1.17 (0.66) on 27 March to
0.56 (0.39) on 30 March at the Osaka site, which indicated that coarse-mode dust particles
were predominant.

Table 1 shows the average values of the AOD, AE, and SSA during the two dust
events and the other days of March 2021. Compared with the other days of March, the SSA
showed a lower value during the dust period. As for the daily average value of SSA, it
decreased from 0.98 on 13 March (non-dust) to 0.90 on 17 March (dust) at the Beijing site,
from 0.98 on 24 March (non-dust) to 0.90 on 29 March (dust) at the Gwangju site, and from
0.99 on 25 March (non-dust) to 0.92 on 30 March at the Osaka site. The decrease was caused
by the absorption of dust aerosol at the ultra-violet and blue bands.

Table 1. Average values of AOD AE and SSA during dust period and other days in March at four
AERONET sites.

Sites AOD AE SSA 440 nm

Dust period *

Dalanzadgad 0.48 0.22 0.92
Beijing 0.93 0.41 0.93

Gwangju 0.49 0.63 0.94
Osaka 0.41 0.82 0.91

Other days in March

Dalanzadgad 0.14 0.65 0.94
Beijing 0.90 0.90 0.95

Gwangju 0.40 1.09 0.97
Osaka 0.24 1.03 0.92

* “Dust period” represents the period during two dust events from 14 to 18 March 2021 and 26 to 30 March 2021.
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Figure 3 shows the daily average volume size distribution at four sites during the
two dust events (lines with a solid circle). Meanwhile, the volume size distribution on the
non-dust day (red line with an “×” label) was used as a comparison. During the two dust
events (14–18 March, 26–30 March), the volume concentration of the coarse-mode aerosol
(particle radius greater than 1µm) increased significantly, corresponding to a peak radius
of aerosol particle volume size distribution centered at 4~5 µm at the Beijing, Gwangju and
Osaka sites, and even as high as 7 µm at Dalanzadgad site.

3.1.2. Satellite Observations

AE was calculated from the spectral dependence of the AOD and influenced by aerosol
particle size. One criterion used to determine dust and no-dust over the land by using the
AOD and AE from MODIS deep blue retrievals was as follows: for dust over the land, pixels
with dust were defined as an AOD greater than 0.5 and AE less than 0.5; for no-dust over
the land, the AOD had to be less than 0.2, and AE had to be greater than 1.0 [82]. Combined
with AHI/Himawari-8 500 nm AOD and AE products (Figures S1 and S2), the high AOD
value (AOD > 1.2) regions in red boxes corresponding the low AE value (AE < 0.8) regions
were identified as the dust aerosol in the source regions and the transport pathways.

Based on the location of the dust over time during the two dust events, it can be seen
that both of the two dust events were originated in the Gobi Desert and transported in
a southeasterly direction, affecting northern China and the Huanghuai regions and East
China. However, there are also some differences in the transport pathways of the two dust
processes. Compared with the 3·15 dust event, the 3·28 dust event showed a southeastward
transport pathway from Mongolia to China, but the dust extended to the Yellow Sea, the
Korean Peninsula, and the Sea of Japan and reached the vicinity of Honshu Island in Japan.
The dust plume was observed in the Northwest Pacific region within the range of 120◦E
to 150◦E.

Considering that dust was transported from northwest to southeast, a 25-point moving
average (5 × 5 points) of the AOD was calculated in the sections of latitude at 40◦N and
35◦N in the two dust events (Figure 4). The red dash boxes in Figure 4 indicate areas affected
by dust plumes, including North China and the Northwest Pacific. Figure 4a shows that the
AOD at 40◦N latitude on 15 March varied between 1.0 and 3.0 in the region of 110◦E to 120◦E
(northern Shanxi Province–central Hebei Province–Beijing–northeastern Hebei Province).
On 16 March (Figure 4b), the AOD values on the cross-section of 35◦N latitude fluctuated
from 0.5 to 1.0 between 125◦E and 140◦E (central and Eastern Yellow Sea–southern Korea–
Honshu, Japan), with a small peak of 1.4 near 133◦E. On 28 March (Figure 4c), the AOD
ranged from 1.5 to 4.5 between 117◦E and 127◦E (Beijing–northern Bohai Sea–southern
Liaoning Province). On 29 March (Figure 4d), a high value of AOD (AOD > 1.0) was
observed in the region of 125◦E~135◦E (Yellow Sea–southern Korea–Honshu, Japan). It
was found that the dust plumes of 3·28 dust event reached the Yellow Sea and the Sea of
Japan on 29 March.
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3.2. Three-Dimensional Characteristics of the 3·28 Dust Event

Figure 5 illustrates the 3D structure of the 3·28 dust event using cross-sections of the
aerosol subtype products, depolarization ratio products, and extinction coefficient 532 nm
obtained by CALIOP on 26, 27, 29, and 30 March 2021. According to the dust component in
the subtype cross-section (full figures were shown in Figure S3), the schematic diagram of
the 3·28 dust event transport path could be plotted (yellow arrow on Figure 5a).

According to Figure 6a, the cross-section of the aerosol subtype on 26 March showed
that the source of the 3·28 dust event was the GD. Dust was detected in the GD region in
the south of the Republic of Mongolia and the northeast of Qinghai Province, the Qilian
Mountains, the Hexi Corridor in central Gansu, and the Badain Jalan Desert in Alxa
league of Inner Mongolia in China. As the topography of Qinghai Province and the Qilian
Mountains is above 2000 m, the height of the dust layer was much higher than that in Inner
Mongolia and the Republic of Mongolia.

The depolarization ratio of dust aerosols was high due to the non-sphericity of dust
particles. The mean dust particulate depolarization ratio was ~0.25 [52]. Figure 5b–e shows
the altitude–orbit cross-section of the depolarization ratio, and Figure 5b’–e’ show the
extinction coefficient of the CALIPSO. We selected three positions on the 3·28 dust transport
pathway and calculated the depolarization ratio and the extinction coefficient vertical
profile to reveal the variations in the dust structure during transmission. Figure 5b,c,e
illustrates the location of the three positions with a red line, and Figure 5f–h shows the
vertical profiles at the three positions.
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Figure 5. Illustration of 3·28 dust event transport path, originating in GD on 26 March and transported
to the Sea of Japan on 30 March. (a) The vertical cross-section of the aerosol subtype overlapping
the CALIPSO orbit; (b–e) The cross-section of the CALIOP depolarization ratio on 26, 27, 29, and
30 March 2021, respectively; (b’–e’) The cross-section of the CALIOP extinction coefficient 532 nm on
26, 27, 29, and 30 March 2021, respectively; (f–h) The vertical profile distribution of the extinction
coefficient 532 nm and the depolarization ratio for the three positions labeled by red line, position
correspondence: (f–b,b’), (g–c,c’), (h–e,e’).
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From Figure 5f, the position is in the GD area; the pure dust aerosol distributed from
the surface (the elevation of the dust source region was above 1 km) to 4.3 km. The near-
surface extinction coefficient was higher than 0.4 km−1 and decreased with height. Values
of the depolarization ratio of pure dust ranged from 0.3 to 0.6.

From Figure 5g, at the position located in North China, aerosols over this position
were divided into two layers. From the surface to 3 km, the polluted dust was a mixture of
pure dust and smoke particles generated from biomass burning. The depolarization ratio
values of the polluted dust layer were concentrated in the range of 0.2–0.3. The near-surface
extinction coefficient values were higher than 0.9 and decreased rapidly with height. The
pure dust layer in the upper air was from 4 to 7 km. The depolarization ratio values were
concentrated in the range of 0.2–0.6, and the extinction coefficient values were concentrated
in the range of 0.01–0.02 km−1. The extinction coefficient values decreased significantly,
indicating that only a small amount of dust from the source region could be transported to
North China.

From Figure 5h, the position located in the north of Japan, aerosols mixed with pure
dust, polluted dust, and polluted continental subtype. The mixture was distributed from
the surface to 5.5 km. The extinction coefficient values decreased with height, and the
depolarization ratio values concentrated in the range of 0.2–0.4 because the dust mixing
with other types of aerosols resulted in a reduced non-sphericity of particles.

As can be seen from Figure 5a, the dust was generated from the source region (GD)
on 26 March. After being transported to North China, aerosols stratified into a pure dust
layer and polluted dust layer on 27 March. On 29 March, the dust plume passed over
Liaoning province, the Bohai Sea, and the Yellow Sea, and the dust appeared below 5 km.
On 30 March, pure dust and polluted dust could be found at a height of 0–5 km in the Sea
of Japan and Honshu Island.

According to the analysis of aerosol subtype products, the depolarization ratio, the
extinction coefficient, and the vertical profiles provided by CALIPSO, the path starting
from the dust source region and transport direction can be illustrated in Figure 5a by the
yellow arrow.

The Beijing, Gwangju, and Osaka sites were selected to conduct backward trajectory
simulation with HYSPLIT. From Figure 6a, the air mass originated from the vicinity of Lake
Baikal and traveled from northwest to southeast, across through the Mongolian Plateau,
the Gobi region in southern Mongolia, and the Loess Plateau before arriving at Beijing. At
the Gwangju site in Korea and the Osaka site in Japan, the air mass movement showed
good consistency with that in Beijing from 26 March to 30 March, which showed a similar
path to that indicated by the dust transport arrows by CALIPSO products in Figure 5a.

3.3. Synoptic Features

According to data from National Climate Center, China Meteorological Administration,
the average temperature in Mongolia and northern China was 1–2 ◦C higher than the
climatical mean from early January to March 2021 [19]. The rank of the precipitation
amount was the second (third) most minor during 2011/12–2020/21 (1979/80–2020/21),
and there was no effective precipitation in the entire period from 1 December 2020 to
15 March 2021, which resulted in dry soil [19]. In addition, in the past 20 years, the
vegetation has decreased significantly in the southern part of Mongolia, and large areas of
bare land provided favorable sand source conditions for the generation of dust weather. The
vigorous development of the Mongolian cyclone provided powerful dynamic conditions
for the dust weather, and the dry and loose surface provided an abundant source of dust
aerosols. Therefore, severe dust events in March generated and developed in the GD, and
dust particles were transported into North China.

The sea level pressure (SLP) overlapped with the 10-m wind vector and the 500 hPa
geopotential height (GH) during the 3·15 dust event. The 3·15 and 3·28 dust events are
shown in Figures 7a–d and 8a–d, respectively. Figures 7e–j and 8e–j present the cross-
sections of vertical velocity and divergence on the dust path during the two dust events.
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Before the dusty weather formed, there was an apparent trough at 500 hPa in west Mongolia
(Figures 7a and 8a). At the same time, there were two low-pressure centers on the surface,
located at 110◦E, 50◦N (Figure 7a) and 95◦E, 50◦N (Figure 8a). The pressures of the lowest
centers were approximately 990 hPa in the 3·15 dust event (Figure 7a) and 995 hPa in the
3·28 dust event (Figure 8a). The 10-m wind speed exceeded 10 m/s around the low-pressure
center. Strong wind is supposed to be one of the essential conditions of dust uplift. The
divergence is the horizontal divergence of velocity. The solid black contour represents the
positive divergence for air that is spreading out; the dashed contour represents the negative
divergence for air that is converging. From the cross-sections in Figure 7e, the vertical
velocity was positive in the slice of 94◦E~96◦E, which means that the airflow exhibited
a downward motion. Furthermore, at the height of 775 hPa of this downdraft, positive
divergence occurred in the lower levels, and negative divergence occurred in the upper
levels; the vertical structure of the air mass was “convergence aloft, divergence below”
which resulted in a downward vertical motion of air. In contrast, in front of the moving path
of the low-pressure center, an updraft appeared in pairs with the previously mentioned
downdraft in the slice of 95◦E–97◦E. The “convergence below, divergence aloft” at the
height of 650 hPa resulted in strong updrafts. Dust in the source region was lifted to a high
altitude by the strong upward airflow and transported southeastward under the prevailing
northwest winds.

In addition, the low-pressure centers were followed by cold high pressures, leading to
positive and negative vertical velocities in the upper air, as shown in Figures 7e–h and 8e,h–j.
It is important to note that, on the one hand, the updrafts carry different types of aerosols
emitted from the surface into the upper air, and on the other hand, the downdrafts trans-
port aerosols from the upper air down to the surface. Due to the weight of the dust itself,
gravitational subsidence is also ongoing. Since uplift and deposition occur at the same time,
the composition of aerosols should be regarded as a dynamic changing process during
the transport process. The upper-air aerosol was pure dust (subtype = yellow) in the dust
source region (Figure 5a). After long-distance transport, the aerosol subtype changed to
polluted dust (subtype = brown) when reaching the populated areas of North China.

The Mongolian cyclone had taken its full shape, and the center of the GH contours
was closed (Figure 8b) at 00:00UTC on 15 March after experiencing a 24-h development.
This process took 48 h for the 3·28 dust event, and the cyclone strength was also weaker
than that of the 3·15 dust event.

3.4. Backflow during the 3·15 Dust Event

There was an obvious backflow process in the 3·15 dust event. At 00:00UTC on
16 March (Figure 7c), the Mongolian cyclone met with low pressure over the Northwest
Pacific at 45◦N, and there was the Northwest Pacific Subtropical High in the south. Then,
these two low-pressure centers tended to merge. The evolution of the 10-m wind field with
an interval of 8 h (Figure 9a–c) exhibited a reversal of the airflow direction (solid black
arrows). The original southeastward transport changed and reversed to westward and
northwestward. In this case, Jiangsu and Anhui provinces in eastern China suffered floating
dusty weather. Therefore, the two sites, Fuyang in Anhui province and Xuzhou in Jiangsu
province, were selected, and HYSPLIT was used to simulate the backward trajectory for
48 h. The air mass above these two cities came from North China and the border between
China and Mongolia, and the moving direction of the air mass was consistent with the
change in the wind field.
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Figure 7. (a–d) The sea level pressure (shading) overlapped by 500 hPa geopotential height contours
(gray contours) and 10-m horizontal wind vectors (arrow) at (a) 00:00 UTC on 14 March 2021; (b) 00:00
on 15 March 2021; (c) 00:00 on 16 March 2021; and (d) 00:00 on 17 March 2021. (e–j) The cross-sections
of vertical velocity (shading) and the divergence (black contours) along the dust path (dark line
in panel (a)), including at (e) 00:00UTC on 14 March 2021; (f) 08:00 on 14 March 2021; (g) 16:00 on
14 March 2021; (h) 00:00 on 15 March 2021; (i) 08:00 on 15 March 2021; and (j) 16:00 on 15 March 2021,
for the 3·15 event.



Remote Sens. 2022, 14, 5967 15 of 21

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 22 
 

 

 
Figure 8. (a–d) The sea level pressure (shading) overlapped by 500 hPa geopotential height contours 
(gray contours) and 10-m horizontal wind vectors (arrow). (e–j) The cross-sections of vertical veloc-
ity (shading) and the divergence (black contours) along the dust path (dark line in panel (b)) for the 
3·28 event. 

The Mongolian cyclone had taken its full shape, and the center of the GH contours 
was closed (Figure 8b) at 00:00UTC on 15 March after experiencing a 24-h development. 
This process took 48 h for the 3·28 dust event, and the cyclone strength was also weaker 
than that of the 3·15 dust event. 

3.4. Backflow during the 3·15 Dust Event 
There was an obvious backflow process in the 3·15 dust event. At 00:00UTC on 16 

March (Figure 7c), the Mongolian cyclone met with low pressure over the Northwest Pa-
cific at 45°N, and there was the Northwest Pacific Subtropical High in the south. Then, 
these two low-pressure centers tended to merge. The evolution of the 10-m wind field 

Figure 8. (a–d) The sea level pressure (shading) overlapped by 500 hPa geopotential height contours
(gray contours) and 10-m horizontal wind vectors (arrow). (e–j) The cross-sections of vertical velocity
(shading) and the divergence (black contours) along the dust path (dark line in panel (b)) for the
3·28 event.
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Figure 9. Dust backflow process analysis on 16 and 17 March 2021. (a–c) The sea level pressure
(shading) overlapped by 10-m wind vectors (arrow) and 500 hPa geopotential height contours (gray
line) at (a) 00:00 on 16 March 2021; (b) 08:00 on 16 March 2021; (c) 16:00 UTC on 16 March 2021;
(d–f) Dust test product from FY-4A (red dash); (d) 05:15 UTC on 15 March 2021; (e) 05:15 on 16 March
2021; (f) 13:15 UTC on 17 March 2021; (g) 48 h backward trajectories ending at Fuyang; (h) and
Xuzhou on 16 March.

Figure 9d–f shows the dust test (DSD) products from FY-4A/AGRI during the backflow
process. Starting from 00:00UTC on 16 March, the dust plumes covered China’s Huanghuai
and Jianghuai regions with a changing wind direction. In addition, it rained in the North
China Plain on 18 March; thus, most of the dust particles in the 3·15 event were trapped
and deposited on the land. However, the 3·28 dust event pathway had always been from
northwest to southeast, and it passed through North China and South Korea and finally
reached the south coast of Japan. Part of the dust particles was deposited in the Northwest
Pacific Ocean.

4. Conclusions

Two strong dust events originated in GD and were driven by the Mongolian cyclone
across Eastern Asia in March 2021, which influenced most areas of North China. In this
study, the AOD and DSD products from Himawari-8 and FY-4A geostationary satellites
were used to monitor the tempo-spatial distributions of dust events. The dust aerosol
optical characteristics on the transport paths were analyzed using ground-based AERONET
observations. The vertical structure of the dust event was from the CALIPSO satellite. The
ERA5 meteorological field data and HYSPLIT backward trajectory simulation were used
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to analyze the synoptic dynamic characteristics of the two dust events and the backflow
process of the first dust event. The main conclusions are as follows:

1. During the dust periods, aerosol optical parameters at four AERONET sites on the
dust transport path showed that the 500 nm AOD values exceeded 0.50, with the
maximum value at 2.18. The FMF was less than 0.40, and the AE was below 0.50. The
peak radius of coarse-mode aerosol was approximately 4 µm, and even as high as
7 µm in the dust source region. At the same time, due to the strong absorption of dust
aerosol at UV and near-UV bands, SSA showed a decreasing trend when the dust
reached a specific site (from 0.99 to 0.91 in Dalanzadgad; from 0.98 to 0.90 in Beijing;
from 0.96 to 0.93 in Gwangju; and from 0.99 to 0.90 in Osaka). The appearance of dust
can be determined according to the change in aerosol optical parameters.

2. The Himawari-8500 nm AOD combined with the results of the HYSPLIT backward
trajectory model showed that the two dust events originated in the GD, and dust
plumes passed through North China, the East coast of China, the Bohai Sea, and the
Yellow Sea. Compared with the 3·15 dust event, the dust plume of the 3·28 dust event
was transported eastward to the Sea of Japan and Honshu Island on 30 March, finally
reaching the Northwest Pacific Ocean.

3. The altitude of the dust layer was from the surface to 4 km in the source region, and
the aerosol type was pure dust. Along with the transport pathway from the GD to
the southeast, the dust layer was divided into two layers. The upper layer was pure
dust and reached 9 km. The low-layer aerosol subtype changed to polluted dust
in North and East China. The values of the particulate depolarization ratio of pure
dust varied from 0.3 to 0.6, while the depolarization ratio values of polluted dust
varied from 0.2 to 0.4. The extinction coefficient values of the upper pure dust layer
concentrated in the range of 0.01–0.02 km−1, with a sharp decrease indicating that
only a small amount of dust from the source region could be transported to North
China. The backward trajectory simulation results were consistent with the dust
transport pathway revealed by CALIOP data.

4. The two dust events were induced by the Mongolian cyclone, which was the main
driving factor of dusty spring weather in East Asia. At the same time, there were
differences in the transport pathways between the two dust processes. On 16 March,
the wind direction at 00:00 UTC shifted from northwest to northeast over East China
and the coastal areas, and the wind direction changed to the east at 08:00UTC and then
to the southeast at 16:00 UTC. The dust plume over North China was transported to
the inland of East China due to the wind direction change, resulting in dust weather in
Jiangsu and Anhui Province. The FY-4A satellite DSD product successfully recorded
the process of dust backflow in East China. Comparison of the diversity between
the two dust event transport pathways provides us with a new perspective on the
circulation and transmission of the natural aerosols. In addition to aerosol transport
and the deposition processes, the impact on the ocean and the impact of marine
aerosols on land also need to be taken into consideration.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/rs14235967/s1, Figure S1: Himawari-8 daily average AOD distribution
(left column a–c) and AE distribution (right column a’–c’) during 3·15 dust event. High AOD values
(AOD > 1.2) in red boxes correspond to the low AE values (AE < 0.8). Figure S2. Himawari-8 daily
average AOD distribution (left column a–c) and AE distribution (right column a’–c’) during 3·28 dust
event. High AOD values (AOD > 1.2) in red boxes correspond to the low AE values (AE < 0.8). Figure
S3. (a–d) The cross-sections of the CALIOP subtype product on 26, 27, 29, 30 March 2021, respectively.
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