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Abstract: Olives are an essential crop for Greece and constitute a major economic and agricultural
factor. Diseases, pests, and environmental conditions are all factors that can deteriorate the health
status of olive crops by causing plant stress. Researchers can utilize remote sensing to assist their
actions in detecting these sources of stress and act accordingly. In this experiment, Sentinel-2 data
were used to create vegetation indices for commercial olive fields in Halkidiki, Northern Greece.
Twelve machine learning algorithms were tested to determine which type would be the most efficient
to detect plant stress in olive trees. In parallel, a test was conducted by testing 26 thresholds to
determine how setting different thresholds for stress incidence affects model performance and which
threshold constitutes the best choice for more accurate classification. The results show that among all
tested classification algorithms, the quadratic discriminant analysis provided the best performance
of 0.99. The stress incidence threshold used in the current case to generate the best-performing
model was 6%, but the results suggest that setting customized thresholds relevant to specific cases
would provide optimal results. The best-performing model was used in a one-vs.-rest multiclass
classification task to determine the source of the stress between four possible classes: “healthy”,
“verticillium”, “spilocaea”, and “unidentified”. The multiclass model was more accurate in detection
for the “healthy” class (0.99); the “verticillium” and “unidentified” classes were less accurate (0.76);
and “spilocaea” had the lowest score (0.72). Findings from this research can be used by experts as a
service to enhance their decision-making and support the application of efficient strategies in the
field of precision crop protection.

Keywords: disease detection; remote sensing; classification models; hyperparameter optimization;
incidence thresholds

1. Introduction

The olive (Olea europaea L.) is one of the most important crops in the Mediterranean
Basin, representing 95% of global production. Olive-growing has been traditionally local-
ized in the Mediterranean Basin for thousands of years. According to the International
Olive Council (IOC, http://www.internationaloliveoil.org/, accessed on 21 June 2022),
there is more than 11 million ha of olive trees in more than 47 countries. The majority
of this surface (97.9%) is localized in the Mediterranean countries, with Greece being the
third-largest producer after Spain and Italy. However, new intensive orchards have been
planted in the Mediterranean and in new regions (e.g., Australia, North and South America)
over the last 20 years. This expansion and intensification of olive growing, as along with
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the perception of olive oil and table olives as healthy foods, has greatly increased both the
production and demand of these products [1].

According to Eurostat (2016) (https://ec.europa.eu/eurostat/databrowser/view/ef_
lpc_olive/default/table?lang=en, accessed on 21 June 2022), olive trees are the most widely
grown trees in Greece, covering an area of 700.000 ha. Almost 124.000 ha is occupied by
agroforestry systems, where different crops or pasture are planted in the understory of
olive trees [2]. All regions with a mild Mediterranean climate are home to olive trees, which
can be found growing alone or in orchards [3]. In the conventional systems, almost all
olive trees come from grafted wild species. The primary outputs of olive trees are edible
olives and olive oil, while minor goods include firewood and animal feed. In Greece, olive
cultivation has been combined with grazing animals such as sheep, cattle, goats, pigs,
chickens, or even honeybees. Olive trees have also been co-cultivated with cereals such as
wheat, corn, or alfalfa, with grape vines or vegetable crops such as potatoes, melons, and
onions, or with beans and fava beans, and in many cases with wild herbaceous vegetation,
some of which is edible [2]. All agricultural units face environmental adversities during
their biological cycle in the form of pests, diseases, and climate conditions such as extreme
temperature and precipitation. These adversities are often expressed as plant stress. Grace
and Levitt [4] proposed that plants are subjected to many forms of environmental stress.
Some stress sources are abiotic physicochemical stressors, such as drought, cold, heat,
or high salinity, while others are biotic, such as herbivory, disease, and allelopathy. The
authors noted that the common feature of stress is the formation of reactive oxygen species
at the cellular and molecular levels, which are strong oxidants that can cause significant
damage to membrane systems and plant DNA. Often, the term “plant stress” is used in a
broad sense, and so it is useful to define better it as a concept. Lichtenthaler [5] recognized
this need and provided insight into the matter by defining plant stress as “Any unfavorable
condition or substance that affects or blocks a plant’s metabolism, growth, or development.
Vegetation stress can be induced by various natural and anthropogenic stress factors”.

More specifically, plant diseases have constantly been a significant concern for horti-
culture, since they strongly and adversely affect the production and quality of products.
The impacts of biotic crop stresses, such as diseases and pests, fluctuate from minor side
effects to extreme losses of whole yields, which bring about major expenses for agricultural
businesses and intensely affect the agricultural economy. Evasion of these significant disas-
ters can be accomplished via various strategies focusing on timely identification of stress
factors. It has to be said that it is difficult for growers to apply these strategies, as a signif-
icant number of them are inaccessible and regularly require explicit domain knowledge,
and they are often costly and resource-intensive. The absence of reliable, dedicated, and
far-reaching services restricts growers’ actions in being proactive in their efforts towards
the containment of epidemics, as ground-level detection is hard to apply continuously and
consistently. With respect to defining stress, it was deemed important to try to define the
procedure that is followed when a classification model has to determine if and when the
experimental target—for example, a plant or a field—is suffering from a stress factor (e.g.,
disease) or not. This was also researched by Zhang et al. [6], who evaluated the effectiveness
of a disease incidence strategy in enhancing disease detection algorithms. More specifically,
in their study, Zhang et al. investigated the effects on the sensitivity of disease detection
algorithms when setting different thresholds for separate regions. Their results indicated
that compared to applying the same algorithm and threshold to the whole region, setting
an optimal threshold in each region according to the level of disease incidence (i.e., high,
middle, and low) enhanced the sensitivity.

A way to frequently and efficiently monitor crop health in large areas is by using re-
mote sensors such as satellites, airplanes, and UAVs. Satellites provide the widest possible
coverage at the lowest relative cost, as they provide a multitude of data at various wave-
lengths beyond the visible, over large regions. Remote sensing also supports methodologies
that can assess crop health via the utilized sensors—sometimes even more accurately than
experts in the field. In recent years, Sentinel-2 data have gained the attention of the re-
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mote sensing community for cropland mapping due to their high spatial (10 m), temporal
(5 days), and spectral (13 bands) resolution, free and open access, and availability for cloud
computing (Google Earth Engine, GEE) [7]. For example, Sentinel-2-derived data have been
successfully used to detect and discriminate between different coffee leaf rust infection
levels caused by Hemileia vastatrix [8]. Sentinel-2 data and vegetation indices have also
been used to quantify the severity of hail damage to crops [9]. In a brief review, Yang [10]
provided an overview of remote sensing and precision agriculture technologies that have
been used for the detection and management of crop diseases. The instruments discussed
in the review were airborne or satellite-mounted multispectral sensors and variable-rate
technology used for detecting and mapping fungal diseases. The authors of [11] compared
the efficiency of fungicide applications based on different application strategies in terms of
product, dose, and timing selection in cereal crops in Australia and New Zealand. In their
work, they addressed the advantages, disadvantages, and efficiency of fungicide applica-
tion based on plant development stage or disease threshold. The onset of disease in wheat
crops, along with the disease threshold to determine fungicide sprayings, was deemed
to be an important factor concerning the efficiency of fungicide spraying. In [12], disease
incidence thresholds were used to determine whether chemical control would be applied
to coffee plants. The threshold for disease incidence was calculated by dividing the number
of leaves with coffee leaf rust symptoms (i.e., lesions) by the total number of leaves of each
plant. This result was then multiplied by 100 to provide a % range. For their experiment,
they selected a 5% disease incidence threshold for chemical control. The authors of [6]
tested the effects of different alert thresholds on the performance of detection algorithms for
disease outbreaks. It was found that selecting different, parameterized thresholds instead
of fixed alert thresholds for each region and incidence category improved the aberration
detection performance of the tested algorithms.

The usefulness of the utilization of optical sensors to accurately detect plant diseases
was recognized by Kuska and Mahlein in their study [13], although they recognized that
there are challenges to the practicality of applications in the field, and that the development
of sophisticated data analysis methods is required.

The need to solve problems in applying such techniques for more effective plant
disease protection is also recognized. In the research carried out by Yuan et al. [14], the
capacity of satellite information to monitor pests and diseases was also shown. Worldview
2 and Landsat 8 data were used to compute vegetation indices and environmental features.
Immitzer et al. [15] utilized preliminary Sentinel-2 data and a variety of analysis approaches
to map vegetation in order to produce land cover maps. Part of their research used Sentinel-
2 data to differentiate crop types and seven deciduous and coniferous tree species for forest
management. Their results suggest that many of their analysis methods achieved high
accuracy. In a study by Ruan et al. [16], Sentinel-2 reflectance data and vegetation indices
were used to develop a multi-temporal wheat stripe rust prediction model. The model’s
results suggest that early disease prevention is achievable. Dhau et al. [17] used 10 m
Sentinel-2 data and vegetation indices in 2021 to successfully detect and map maize streak
virus.

Vegetation indices are combinations of the surface reflectance of two or more wave-
lengths. They can be correlated with a specific property of vegetation and highlight it—a
procedure that can simplify detection of the correlated property, i.e., damage levels in
crops [18]. In a study by Isip et al. [19], vegetation indices derived from Sentinel-2 data
were evaluated for their ability to detect twister disease—caused by the fungus Gibberella
moniliformis—on onions. Hornero et al. [20] used Sentinel-2 data to calculate spectral in-
dices able to provide spatiotemporal indications for tracing and mapping Xylella fastidiosa
damage on olives. Navrozidis et al. [21] also used vegetation indices derived from Landsat
8, as a wide cover, and Pleiades-1A, as a very-high-resolution satellite, for Stemphylium
purple spot detection purposes on asparagus plants. PlanetScope high-resolution satellite
data were used to detect sudden death syndrome in soybeans [22]; in their analysis, the
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authors employed spectral bands, the normalized difference vegetation index (NDVI), and
crop rotation data to build a random forest model.

Machine learning utilizes satellite data efficiently, supports big data analytics, and
provides crop health assessment models. Using remote sensing data, machine learning
classification algorithms such as SVM, ANNs, LDA, and RF can be utilized to detect plant
diseases proactively. Binary, multiclass, multi-label, and hierarchical classification tasks
are common in machine learning. Plant stress detection can be binary to discriminate
between healthy and stressed plants or multiclass to identify disease classes [23]. In their
study, Koklu and Ozkan [24] investigated the ability to differentiate between dry bean
seed varieties using a computer vision system. Their aim included using images from a
high-resolution camera and testing various machine learning classifiers in order to find the
best-performing model. They achieved high performances in the testing of all classifiers,
with SVM performing the best. Another multiclass study was carried out by Pirotti et al. [25],
where nine machine learning algorithms were tested for accuracy and training speed in
the classification of land cover classes, using Sentinel-2 data. Chakhar et al. [26] used data
from Landsat 8 and Sentinel-2 and tested the robustness of 22 nonparametric classification
algorithms for classifying irrigated crops.

Based on the presented literature for detecting biotic and abiotic plant stresses in
olive fields, it can be noted that there is no available tool able to provide information on
stress assessments for large areas at low cost and with sufficient accuracy. Additionally,
because of the plethora of available approaches for machine learning classification models,
their performance was investigated for tasks concerning plant stress detection. Finally, the
methodology that is being proposed in this work can support the reduction in user/observer
bias in classification tasks by encouraging customization of incidence thresholds for the
labelling process, thereby highlighting the best-performing classification algorithms in
machine learning tasks.

The aim of this work was to develop a methodology for detecting stress incidence
in olive orchards utilizing Sentinel-2 data and machine learning. The specific objectives
were (i) to identify the best-performing classifier, (ii) to select the optimal threshold for
characterizing plant stress (disease incidence thresholds), and (ii) to identify the source of
the stress.

2. Materials and Methods
2.1. Test Area

The prefecture of Halkidiki is located in Northern Greece (Figure 1) and is an active
agricultural zone, with a large amount of the agricultural land used for olive cultivation.
Varieties cultivated in Halkidiki include the region’s namesake “Halkidikis”, but also “Am-
fissis”, “Kalamon”, and other local varieties such as “Galano”, “Metagitsi”, and “Agioritiki”
used to produce green and black olives or virgin olive oil. One of the most commonly
used varieties of olive in the region is the “Halkidikis” variety, which produces a very
high-quality final product but is also one of the varieties most heavily affected by biotic
and abiotic stresses—and especially water stress.

The main crops in the area incorporate monocultures of cereals and olive orchards.
There are also scattered agroforestry systems composed of olive trees intercropped with
cereals and grasses, as cover crops, with the trees’ density ranging from 20 to 60 trees/ha [2].
The mean annual temperature of the area is 16.5 ◦C and the mean annual precipitation
is 598 mm. In order to achieve high yields, the majority of growers irrigate their fields,
mostly using private groundwater pumps, resulting in favorable growth conditions for
soil-borne fungal pathogens, such as Verticillium dahliae, as well as airborne pathogens,
such as Spilocaea oleaginea. The disease caused by V. dahliae is called Verticillium wilt,
with symptoms that greatly resemble extreme water stress conditions in olive trees, and is
claiming increasing numbers of fields each year. The most important part of the biological
cycle of olive trees, with respect to their optimal development, is between April and June
in Northern Greece. Sampling for this experiment took place during these months in the
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years 2019 and 2020. The disease caused by S. oleaginea is commonly known as peacock’s
eye internationally, and locally as Cycloconium.
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Figure 1. Test site of the olive orchards located in the region of Halkidiki, Northern Greece.

2.2. Sampling Procedure

In order to reach the set objectives, two types of data were necessary: ground-truth
data from olive orchards, and Sentinel-2 data for the noted samples.

The samples collected for ground truthing and later used for this analysis were poly-
gons inside the borders of olive orchards in Halkidiki (Figure 2).
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Figure 2. Polygons as samples in olive orchards in Halkidiki, Greece.

The term polygons, referring to the samples, is used interchangeably with the term
sampling units throughout this text, each representing a single sample. Each sample’s
location was selected in representative parts of the orchard to which it belonged; based on
the distances between each individual tree in the orchards, the mean was 18 olive trees in a
sample, while based on the mean radius of trees’ vegetation there was a mean 195 m2 of
olive tree vegetation per sample. In total, 222 samples were collected.

Sampling units contain information associated with biotic- and abiotic-stress-related
assessments carried out by visual inspection and laboratory analysis of samples with
ongoing symptoms. That is, each sample, in addition to the polygon and its geographical
information, also includes assessments that were recorded in the form of percentages of
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symptoms observed in the total olive tree vegetation surface present in each sampling unit.
Accompanying the assessments is a list of factors that may affect reflectance data from
the sampling units. These include ground cover vegetation, tree biomass, and irrigation
of the crop, as well as the variety of the assessed trees. Vegetation present in the ground
is always included in the reflectance value of each pixel and accounts for all reflectance
corresponding to the sampling unit that is not attributed to tree foliage.

Symptom percentages were attributed to three possible classes:

• Verticillium dahliae;
• Spilocaea oleaginea;
• Unidentified stress factors.

The values recorded were used to characterize healthy trees and the percentages of V.
dahliae, S. oleaginea, and unidentified stress factor (USF) symptoms in the samples. USFs
were used to denote all other non-classified surveyed symptoms attributed to diseases,
pests, or abiotic-stress-related damage.

2.3. Creation of Stress Incidence Thresholds

Symptom percentages were summed to compute the “total stress” present in each
sampling unit, the distribution of which is presented in Figure 3. This “total stress” value
can be used, at the agricultural expert’s discretion, to determine the minimum plant stress
percentage necessary to characterize a sample as stressed or healthy, without specifically
attributing the source of plant stress to one of the classes. This minimum value is referred
to as the “stress incidence threshold” or “threshold” in this manuscript and is used to create
binary labels for each sample of “stressed” (1) or “not stressed” (0). For example, when
setting a hypothetical threshold at 10%, all samples with a “total stress” value of 10% and
above would be labelled as “stressed”, while samples with a “total stress” value below 10%
would be labelled “not stressed”, resulting in a 10% label set.
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Figure 3 displays the stress intensity from 0 to 100% for the samples recorded during
the years 2019 and 2020 for the period May–July. Each bar represents a 10% class range
for stress incidence. Most samples were attributed to the 0–10% class, which comprised
32.4% of the dataset, followed by the classes 10–20% and 20–30%. The size of the rest of the
classes steadily decreases down to the smallest class of 90–100%, which accounted for the
lowest number of samples.

In the above context, it can be said that setting a stress incidence threshold to classify a
sample is subjective. To provide a less expert-related and unbiased answer to the issue of
stress detection, 26 stress incidence thresholds—ranging from 5% up to 30%—were tested.
To perform this test, 26 separate labelled sets were generated: one for each threshold. The
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procedure of applying a random search, as explained below in Section 2.9 “Classification
algorithms”, was applied to each labelled set to find the threshold that could provide the
best-performing model.

Thresholds lower than 5% and higher than 30% were excluded from the optimal
thresholds for model selection, as they do not provide insight into the matter of stress
detection. This is because these thresholds provide oversensitive and imprecise models
(thresholds lower than 5%) that rely on symptoms that are non-existent or on unspecific
models (higher than 30%) that require such a strong presence of damage in the crop to be
able to detect it that it is not practical to use remote sensing or there are no practices to be
applied to remedy the tree. This test can help identify the best-performing classification
model for detecting apparent stress in olive orchards for each tested threshold, and it can
also be used to display the differences in model performance per threshold tested.

2.4. Assignment of Stress Source

The stress incidence threshold found to provide the best-performing model among all
tested labelled sets was also used for the purpose of completing the objective of identifying
the source of detected stress in each sample. This was achieved by creating a field containing
labels (“verticillium”, “spilocaea”, or “unidentified”) for stressed samples depending on
the highest contributing stress class recorded, or “healthy” for unstressed samples.

2.5. Geographical and Satellite Data

SW Maps—a mobile mapping and GIS app—was used to store the geographical infor-
mation of the collected samples in shapefile format so that they could later be accessed and
processed. (https://play.google.com/store/apps/details?id=np.com.softwel.swmaps&
hl=en&gl=US, accessed on 13 August 2020).

Sentinel-2 data were utilized in this study in the form of ready-to-use, bottom-of-
atmosphere products (Level 2A) of 4 bands, with a maximum spatial resolution of 10 m for
blue, green, red, and near-infrared. The satellite images collected complement the sampling
period that took place between May and July in the years 2019 and 2020 (29 May 2019, 8
June 2019, 3 July 2019, 3 May 2020, 13 May 2020, 12 July 2020 and 17 July 2020).

Sentinel-2 data were accessed by using Sentinel Hub’s Feature Info Service (FIS,
now “Statistical API”). This service from Sentinel Hub (https://www.sentinel-hub.com/
explore/eobrowser/, accessed on 3 August 2020) was used to perform elementary statistical
computations on the data used for the test area. This step facilitated access to specific pixels,
rather than entire images, thereby making data processing more effective.

The final dataset acquired and used for analysis was a .csv file containing the sample
ID, coordinates, image dates, and reflectance values (of atmospherically corrected Sentinel-2
product L2A) of the four 10 m Sentinel-2 bands mentioned above, along with the mean
values of the vegetation indices computed using FIS, via pixels inside or covering the
sample’s perimeter.

2.6. Data Analysis Tools

Python 3 with Jupyter Lab was used for all analysis steps, as it provides a convenient
interface for data exploration, visualization, and model building. As an open-source
software platform, Project Jupyter aims to facilitate interactive data science and scientific
computing across all programming languages. Microsoft’s Power BI was used to generate
and enhance visualization of the results.

2.7. Index Computations

All disease symptoms are attributed to anatomical and physiological deteriorations
which, as a result, have a reflectance that is different from the typical reflectance of a
healthy plant. Additionally, these deteriorations are often correlated with fluctuations
in the concentrations of chlorophyll and carotenoids in plant tissues. Chlorophyll and
carotenoid concentrations can be more easily correlated in specific spectral regions such as

https://play.google.com/store/apps/details?id=np.com.softwel.swmaps&hl=en&gl=US
https://play.google.com/store/apps/details?id=np.com.softwel.swmaps&hl=en&gl=US
https://www.sentinel-hub.com/explore/eobrowser/
https://www.sentinel-hub.com/explore/eobrowser/
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green, red, red-edge, and near-infrared. For this reason, 10 vegetation indices were used. In
the current experiment, vegetation indices were calculated by incorporating the relevant
spectral regions from Sentinel-2′s data (Table 1).

Table 1. List of created vegetation indices calculated and used as training features.

Vegetation Index Index Formula Reference

NDVI Normalized difference vegetation index (NIR − RED)/(NIR + RED) [27]

RDVI Renormalized difference vegetation index (NIR − RED)/sqrt(NIR + RED) [28]

GNDVI Green normalized difference vegetation index (NIR − GREEN)/(NIR + GREEN) [29]

SAVI Soil-adjusted vegetation index (NIR − RED)/(NIR + RED + 0.5) × (1.0 + 0.5) [30]

EVI Enhanced vegetation index 2.5 × ((NIR − RED)/(NIR + (6 × RED) −
(7.5 × BLUE) + 1)) [31]

TVI Transformed vegetation index sqrt(((NIR − RED)/(NIR + RED)) + 0.5) [32]

ARI1 Anthocyanin reflectance index 1 (1/GREEN) − (1/NIR) [33]

ARI2 Anthocyanin reflectance index 2 NIR × ((1/GREEN) − (1/NIR)) [34]

CRI1 Carotenoid reflectance index 1 (1/BLUE) − (1/GREEN) [33]

CRI2 Carotenoid reflectance index 2 (1/BLUE) − (1/NIR) [33]

2.8. Data Cleaning and Data Augmentation—Oversampling

To remove outliers from the collected dataset and improve model performance in
general, the interquartile range (IQR) data cleaning method was applied as shown on
Equation (1). IQR is a good statistic for summarizing a non-Gaussian distribution sample
of data by calculating the difference between the 75th and the 25th percentiles of the data.

IQR was used to identify outliers in the initial generated dataset containing spectral
data, vegetation indices, and all features documented during sampling. This was achieved
by defining limits on the sample values, i.e., a factor k of the IQR below the 25th percentile
(Equation (2)) and above the 75th percentile (Equation (3)). A common value for the factor
k is 1.5. A factor k of 3 or more can be used to identify values that are extreme outliers
or “far-outs” when described in the context of box-and-whisker plots, but this was not
relevant for our analysis.

IQR = Q3 − Q1. (1)

Lower bound = (Q1 − 1.5 × IQR), (2)

Upper bound = (Q3 + 1.5 × IQR), (3)

With the binary grouping of the samples into the categories “Healthy” and “Stressed”,
it is unavoidable—depending on the stress incidence threshold selected—to have one of the
two classes under-represented in the resulting dataset. This derived “imbalanced dataset”
is a common occurrence in classification objectives. When machine learning techniques are
used to train a model, the minority class is often ignored, and the resulting model has a poor
performance in classifying it. In order to address this issue, the minority class samples were
oversampled. This was achieved by using the synthetic minority oversampling technique
(SMOTE) [35] to synthesize data. SMOTE utilizes a k-nearest neighbor algorithm to create
plausible new synthetic examples from a class that were relatively close in feature space
to existing examples. SMOTE data augmentation was applied to each labelled set in both
classes (“stressed” and “healthy”) to reach a maximum number of 200, which was derived
by applying different incidence thresholds (5–30%) in order to create comparable datasets
for every threshold.
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2.9. Classification Algorithms

To find the best-performing classification model, a series of models were trained and
evaluated, mainly utilizing the Python libraries pandas and scikit-learn. Models were
trained for all different classification algorithms, hyperparameters, and threshold levels,
retaining 33% of the data as a validation set. The algorithms tested belong to eight major
machine learning categories for classification, as seen below:

• Ensemble modelling:

• Random forest;
• Gradient boosting machines;

• Artificial neural Networks:

• Multilayer perceptron;

• Kernel methods:

• Support-vector machines;

• Decision trees:

• Decision trees;
• Adaptive boosting;

• Discriminant analysis:

• Linear discriminant analysis;
• Quadratic discriminant analysis;

• Regression analysis:

• Logistic regression;

• Bayesian networks:

• Naïve Bayes Gaussian;
• Naïve Bayes multinomial;

• Instance-based methods:

• k-Nearest neighbors.

To identify the optimal model, a “randomized search” (RandomizedSearchCV) multi-
class classification method was used, applying 10-fold cross-validation. The randomized
search implemented a search over the grid of parameters displayed in Table 2, where
each setting was sampled from a distribution over the associated parameter values. The
highest number of iterations for the randomized search was 100, during which the method
searched for a better-performing model. The algorithm stopped this search earlier if no
better-performing models were found for a selected number of consecutive iterations.

The testing procedure used leads to identification of the best-performing model, with
respect to hyperparameter tuning, for each tested classifier and each stress incidence thresh-
old. The different classification algorithms, along with the accompanying hyperparameters
that were trained and evaluated, can be seen in the following table (Table 2).

This testing procedure resulted in 312 models, of which the best-performing model for
each of the 12 classifiers for each incidence threshold was selected based on the AUROC
score. The evaluation metrics that were used—and are presented in the next section to
provide information about the performance of the tested models across all classification
algorithms and stress incidence thresholds—were confusion matrix, accuracy, precision,
sensitivity (recall, or true positive rate), specificity, false positive rate, F1-score, and area
under the ROC curve (AUROC).

Confusion matrices were used to define the individual metrics mentioned above to
help interpret the quality of the model outputs. The overall accuracy is given by the
proportion of correctly classified samples, which explains the ability of the trained model
to classify healthy and stressed samples correctly. Precision, in our case, describes the
percentage of “stressed” classifications that were assigned correctly. Sensitivity describes
the percentage of correctly classified stressed samples; it showcases how sensitive the
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classifier is in detecting positive instances. This is also referred to as the true positive rate,
or recall. Specificity describes the percentage of correctly classified healthy samples.

Table 2. List of classification algorithms utilized in the randomized search, along with the related
hyperparameters.

Classification Algorithm Tested Parameters Min–Max Ranges of Tested Parameters

SVM
Gamma Scale, auto, 0.001–10.0

C 0.001–100.0
Kernel Rbf, sigmoid, linear

Random forest
N_estimators 100–500

Criterion Gini, entropy
Min_samples_split 2–8

Decision tree
Criterion Gini, entropy
Splitter Best, random

Min_samples_split 2–10

Ada_boost
N_estimators 20–150
Learning rate 0.01–2.0

Gradient boosting
Learning rate 0.01–2.0
N_estimators 20–150

Criterion Friedman_mse, mse

Logistic regression C 0.001, 100.0
Max_iter 50–500

Naive Bayes Gaussian Var_smoothing 0.000000001–0.1

Naïve Bayes multinomial Alpha 0.001–1000.
Fit_prior True, False

k-Nearest neighbors N_neighbors 1–20
P 1–5

Weights Uniform, distance
Algorithm Auto, ball_tree, kd_tree, brute

N_jobs (−2)–1

MLP

Hidden layer sizes 50–150
Activation Identity, logistic, tanh, relu

Solver Lbfgs, sgd, adam
Alpha 0.001–0.1

Learning rate Constant, invscaling, adaptive
Max_iter 400–1000

Linear discriminant
Solver Lsqr, eigen

Shrinkage None, auto, 0.01–1
Store covariance True, false

Quadratic discriminant Reg param 0.0–0.5
Store covariance True, False

tol 0.001

F1-score provides information by producing a single metric combining the precision
and recall of a classifier by calculating their harmonic mean. While this is suitable for com-
paring performances between multiple classifiers, it is often used in cases with imbalanced
datasets. In the current case, since the data were oversampled, priority was given to the
AUROC metric to evaluate performance.

The receiver operating characteristic (ROC) curve is a graphical representation of the
performance of a classifier over all possible thresholds, indicating the diagnostic ability
of the model. In an AUROC graph, the false positive rate and true positive rate are
plotted on the x- and y-axes, respectively. The area-under-the-curve values range from
0.5 to 1 for a totally inaccurate or an ideal model, respectively. To avoid confusion, the
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threshold related to the AUROC score refers to the internal classifier threshold that the
algorithm uses to determine how to classify a sample, and this is not to be confused
with the stress incidence thresholds mentioned in the rest of the manuscript. To assess
the performance of every trained model and, most importantly, its ability to equally
differentiate between healthy/negative (0) and stressed/positive (1) samples, the area
under the receiver operating characteristic curve (ROC curve—AUROC) was the key
performance metric computed to evaluate the overall model performance for identifying
stress incidence in the test set.

3. Results and Discussion
3.1. Classification Model Performance Comparison

The average performance for each tested classification algorithm is displayed in
Figure 4. Across all eight tested classifier categories, the average performance ranged from
0.52 to 0.75. The best average performance was achieved by the nearest neighbors category,
with an AUROC value of 0.75, closely followed by the performance of ensemble modelling,
with an AUROC of 0.74. The performance of nearest neighbors was 44% better than the
worst-performing category, i.e., the Bayesian networks. When each classifier was examined
separately, across 12 tested classifiers, the average performance ranged from 0.51 to 0.76.
Gradient boosting and random forest provided the same highest average performance
for all thresholds, with 0.76, followed by k-nearest neighbors with 0.75 and multilayer
perceptron with 0.74. The performance of gradient boosting and random forest was 48%
higher than the lowest average of the naive Bayes Gaussian algorithm, with a performance
of 54%. Figure 4 also displays the average sensitivity and specificity for each classifier and
threshold. For sensitivity, at 0.67, random forest had the highest average, while the least
sensitive was naive Bayes Gaussian at 0.43. Specificity had the highest average when using
the adaptive boosting algorithm, with 0.73, and the lowest average with logistic regression,
at 0.41. The greatest divergence between sensitivity and specificity occurred for the logistic
regression algorithm, with a difference of 0.23, which suggests it was the best algorithm for
detecting stressed samples but the worst for detecting healthy samples.
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The best performance for the tested classification algorithms, along with the highest
sensitivity and specificity, is presented for the various tests of the hyperparameters and
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thresholds examined (Figure 5). Across all 12 models, sensitivity ranged from 0.67 to 1,
while specificity ranged from 0.74 to 1. The logistic regression, naïve Bayes multinomial,
and quadratic discriminant analysis managed to produce models with 0.99 sensitivity and
specificity. Naïve Bayes Gaussian had the biggest divergence between the two metrics,
with a difference of 0.21 for the highest achieved scores.
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The objective of the testing carried out in this approach was to assess and present the
ability of Sentinel-2-derived data and vegetation indices to create a classification model
for plant stress detection on olive orchards. The tests included classification algorithms
belonging to categories widely used in classification problems such as ensemble modelling,
nearest neighbors, neural networks, support-vector machines, Bayesian networks, etc. In
the presentation of the results, the performances of both the broader classification categories
and the individual classification algorithms are displayed along with their sensitivity,
specificity, and performance on different thresholds. The results suggest that stress can be
detected in olive orchards, but the classification algorithm that provides the best results
varies depending on what is the main interest of the user. For example, the second-best-
performing classifier was SVM, but it had worse results than other classifiers concerning
specificity, and an even lower sensitivity. On the other hand, quadratic discriminant analysis
provided the best-performing model, while also retaining sensitivity and specificity, as
shown in Figure 5.

In the results, it is generally observed that when comparing classifiers and their
categories in terms of the average performance achieved across all thresholds, the best-
performing models are found by using different classifiers, depending on which statistical
metric is important for the researcher or which incidence threshold is the most appropriate
in each case. An overall suggestion concerning the selection of a “best” model would be
to take into consideration which aspect of stress detection is the most important for the
user—i.e., quality of predictions for stressed samples or overall quality of predictions—and
select the model accordingly.

3.2. Evaluation of Stress Incidence Thresholds

To determine which stress incidence threshold provides the most efficient classifier and
assess the effects of different incidence thresholds on classification performance, thresholds
ranging from 5% to 30% were investigated. The heatmap in Figure 6 displays the best-
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performing model of each category for each threshold using the AUROC as the performance
metric.
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incidence threshold, while the last column displays the highest performance.

This heatmap supports a more thorough examination of the classifier category per-
formance for each individual threshold, instead of their mean performance, and helps to
pinpoint the best and worst performance achieved. The y-axis represents the categories of
the classification algorithms tested, while the x-axis represents the thresholds to determine
the incidence or absence of stress. Each value inside a cell represents the highest AUROC
score of the hyperparameter combination used to achieve it for the respective classification
algorithm and incidence threshold. The heatmap suggests that setting a low incidence
threshold provides better-performing models in all classification algorithms. Some cat-
egories, such as Bayesian networks and regression analysis, do not perform well at any
threshold, having achieved their best AUROC scores around 0.5–0.6, meaning that they
categorize classes close to randomly, which would be an AUROC score of 0.5. For the
remaining models, the best scores are achieved on the lowest thresholds (5–10%) and are
above 0.85, after which they start dropping as the thresholds move towards 30%. Discrimi-
nant analysis algorithms are the most efficient based on the performance across all tested
thresholds, but they also provided the best-performing models, with AUROCs of 1 and
0.99. This suggests that it becomes easier for any tested model to detect stress when we
set a lower threshold rather than a higher one, meaning that stress can be better detected
when trying to assess early symptoms of crop damage before it spreads.

Figure 7 displays the average performance (AUROC), sensitivity, and specificity for
each threshold computed from all classifiers. Looking at the average performance for each
threshold, the lower-end thresholds seem to provide better average performance, showing
a slight decline as they go higher. Across all 26 tested thresholds, AUROC ranged from 0.57
at threshold 26 to 0.82 at threshold 5; in contrast, sensitivity ranged from 0.49 at threshold
27 to 0.79 for threshold 5. Specificity ranged from 0.47 at threshold 29 to 0.83 for threshold
8. AUROC had the fewest fluctuations between the three presented metrics across all
thresholds, and it can be observed that in the majority of the thresholds, specificity was
higher than sensitivity, which means that in most thresholds the models produced were, on
average, better at detecting healthy orchards than stressed ones.

Figure 8 shows the best performance (AUROC) and the highest sensitivity and speci-
ficity achieved between all tested classifiers for each threshold. Examining the highest per-
formance achieved for each threshold among all tested classifiers, the lower-end thresholds
provide the best-performing algorithms, albeit declining in performance as the thresholds
are set higher. Across all 26 tested incidence thresholds, the best sensitivity ranged from
0.66 to 1, the best specificity ranged from 0.65 to 1, and the highest AUROC ranged from
0.64 to 1. The best model performance was indicated at thresholds 5 and 6 for all metrics,
thresholds 18, 19, 21, 23, and 29 for sensitivity, and thresholds 14, 15, 16, 27, and 28 for
specificity. Relative to the average performance observed previously, although higher, most
of the models had higher scores for specificity.
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It can be deducted from the threshold performance plots that setting a higher threshold
and, thus, accepting larger vegetation surfaces with various symptoms on an orchard,
provides worse-performing algorithms. This observation suggests that all models are
more accurate when trying to detect the incidence of stress at early stages, where the
agronomist or producer is not willing to accept high presence of symptoms on the orchard
to characterize the status as normal, healthy, or unstressed. Alternatively, it is more difficult
for the models to distinguish between healthy and stressed orchards when the overall
symptoms are present in higher amounts or are more spread-out.

To determine whether setting different stress incidence thresholds affects the detection
performance of classification algorithms, a test was carried out where 26 labelled columns
were created, scaling from thresholds of 5 to 30—increasing in increments of 1. Based
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on this, each sample was allocated values of 0 for “not stressed” or 1 for “stressed”,
depending on the sample’s total stress value being lower or equal-or-greater than the
threshold, respectively, and decided by individual total accumulated stress, as measured
by symptoms per vegetation surface in the sample.

The results showed that setting different thresholds affects the average performance,
sensitivity, and specificity of all models, showing a pattern of higher scores on lower
thresholds (5–8) and deteriorating as the thresholds increased, until threshold 23 where the
scores presented a slight increase up to threshold 30. A similar pattern can be observed in
the maximum achieved performance where, although the highest scores are highlighted
for each threshold, the highest performance is again evident in the lowest thresholds
(5–9), followed by a constant decrease until threshold 26, where the performance starts
increasing until threshold 30. Contrary to the presented pattern for the highest achieved
performances, the highest achieved sensitivity and specificity for the thresholds can found
at thresholds 5 to 6, but high scores appear again at thresholds 14 to 29 for sensitivity
and specificity, suggesting that the most efficient threshold to use on each occasion would
be best selected by incorporating the user’s domain knowledge and the case’s specific
attributes. Comparatively, Zhang et al. [6] also tested the effects of setting different alert
thresholds on the performance of disease detection algorithms. The alert thresholds for
disease outbreaks were individually adjusted in various regions in accordance with the
incidence of disease there to test how different levels of disease incidence affected the
effectiveness of epidemic detection methods. The comparison took place between opting
to apply the same algorithm and threshold to the whole region vs. setting an optimal
threshold for each region according to the levels of disease incidence. In their results, it
was demonstrated that adopting customizable surveillance alert thresholds by incidence
category could improve the performance of the selected algorithms for disease detection.
This insight was also evident in the current case, as the fluctuation in model performance,
sensitivity, and specificity could be observed with different thresholds and classifiers. This
suggests that selecting specific incidence thresholds could be more relevant for different
cases of apparent stress in olive orchards.

Based on the evaluation of all applied tests for classifiers and thresholds, as described
in the previous Section, the classifier that provided the best-performing classification model
for stress detection was the quadratic discriminant algorithm, with 0.99 AUROC when
setting the threshold for stress incidence at 6%. The AUROC plot for the indicated model
can be seen below (Figure 9).
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The accompanying hyperparameters that were used to produce this quadratic dis-
criminant analysis model were as follows: covariance storing was set to true in order to
explicitly compute and store class covariance matrices, and the regularization parameter—
which was used to regularize the per-class covariance—was set to 0.0. For further practical
comprehension of the model outputs, and based on the description for each metric, the
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explanation of the model’s performance metrics regarding stress detection is presented in
Table 3. Based on accuracy, the model was 85.8% accurate in its predictions for overall stress;
it was 97% correct when detecting stressed vegetation and 96% correct when detecting
healthy vegetation. When a sample was stressed, the model was able to detect it 100% of
the time. In comparison, when the sample was healthy, the model—based on the false
positive rate—was wrong at a 4% rate.

Table 3. Performance metrics for the quadratic discriminant analysis model at a stress incidence
threshold of 6.

Performance Metric Value

Overall accuracy 0.98
Average precision 0.97

F1 score 0.98
Sensitivity (recall, or true positive rate) 1.00

Specificity 0.96
False positive rate 0.04

AUROC 0.99

With respect to the applicability of the classifications, it should be noted that this
classification does not provide any information about any specific stress sources. More-
over, it is not indicative of the stress intensity present in the sample, providing only the
information that it has more than 6% stress. However, by providing information about the
best-performing classifier category for the incidence thresholds tested, an opportunity is
provided for the user to decide which threshold for stress incidence is more practical or
relevant for a specific case and which classifier is most appropriate for detection.

3.3. Plant Stress Source Classification

By testing for the stress incidence threshold and the classification algorithm that
provided the best-performing model, a threshold of 6% and the quadratic discriminant
analysis algorithm were pinpointed as the optimal combination to detect plant stress.
This optimal threshold (6%) was used to determine the stress incidence for each sample.
After the labelling of a sample, an additional stress source label was added to the sample,
belonging to four possible categories of stress: “healthy” (i.e., no stress), “spilocaea”,
“verticillium”, or “unidentified”. This label was chosen depending on the stress factor that
contributed most to the sample. The practical outputs of this Sentinel-2-based classification
model are (1) to determine whether a field has a lot of ongoing symptoms or damage and
should subsequently be considered stressed, and (2) to provide additional information as
to what is the main source of the stress.

An overview of the dataset and how the samples are distributed in binary classes is
presented in Figure 10a. Additionally, the density of labelled samples attributed to the
four different “Stress source” classes—namely, “healthy”, “spilocaea”, “verticillium”, and
“unidentified”—is shown in Figure 10b.

The one-vs.-rest (OvR) multiclass classification method used in this case compares
the probability of a prediction belonging to a specific class against the probability of it
belonging to any other class, and this procedure is repeated for each class. One class
(one) is considered the “positive” class, while all other classes (the rest) are considered the
“negative” class. By following this categorization procedure, the multiclass classification
is essentially divided into a number of binary classifications—one for each class. The
outputs of the model provide an AUROC for each class, as shown in Figure 11, along with a
histogram of the probabilities of the classifier predicting the target class vs. all other classes.
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Figure 11. One-vs.-rest binary classification probabilities for each class and “Rest” pair (top), and
the accompanying ROC plots for each pair (bottom) used as an evaluation overview. The green
lines represent a 1:1 True Positive to False Positive ratio for a model with 0.5 AUROC. The blue lines
represent the True Positive to False Positive ratio for each class comparison with the “Rest”.

The top row of Figure 11 presents bar graphs of the probability of the samples for each
binary comparison belonging to the “Rest” category or the target category, by classifying
them using 0.5 as the probability threshold, while the bottom row presents an accompanying
AUROC curve for each bar graph. Observing the pairs of bar and AUROC graphs, “healthy–
Rest ” is the comparison providing the most correct classifications between the classes,
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while “spilocaea–Rest” displays the most mixing between the two categories and produces
the worst-performing binary classification among the four, as is also apparent from the
slope of the accompanying AUROC graph. As shown in the confusion matrix (Figure 12)
and Table 4, the model has a mean AUROC score of 0.81. According to the depictions on
the ROC charts shown in Figure 11, the healthy classification performance is the highest,
with an AUROC score of 0.99, followed by the “verticillium” and “unidentified” detection
performances with a score of 0.76 each. There is a slight drop in performance for “spilocaea”
detections, at 0.72 AUROC.

Remote Sens. 2022, 14, x FOR PEER REVIEW 20 of 23 
 

 

 
Figure 12. Confusion matrix for true vs. predicted labels for all classes. 

Table 4. Performance metrics for the one-vs.-rest multiclass classification model. 

 AUROC Precision Sensitivity F1-Score Support 
Spilocaea oleaginea 0.72 0.60 0.56 0.58 27 

Healthy 0.99 1.00 0.75 0.86 20 
Unidentified 0.76 0.47 0.45 0.46 20 

Verticillium dahliae 0.76 0.44 0.63 0.52 19 
 

Mean AUROC 0.81     
Accuracy      0.59 86 

Macro average  0.63 0.60 0.60 86 
Weighted average  0.63 0.59 0.60 86 

Based on the rest of the presented scores in Table 4, which mostly follow the pattern 
displayed by the performance for each class, it can be seen that the precision for the 
“healthy” class is 1.00, meaning that when the model predicts that a sample is “healthy” 
it is always correct. If we observe the sensitivity for the “healthy” class, when a sample is 
actually healthy, the model predicts it correctly 75% of the time, which is still the most 
accurate classification among all classes, but significantly lower compared to precision. 
The “verticillium” class provides the highest difference between precision and 
sensitivity, with values of 0.44 and 0.63, respectively. The precision for “verticillium” 
predictions is the lowest of the four classes, with a rate of 44% in identifying V. dahliae 
infections, so it is more probable that the prediction belongs to one of the other classes 

Figure 12. Confusion matrix for true vs. predicted labels for all classes.

Table 4. Performance metrics for the one-vs.-rest multiclass classification model.

AUROC Precision Sensitivity F1-Score Support

Spilocaea oleaginea 0.72 0.60 0.56 0.58 27
Healthy 0.99 1.00 0.75 0.86 20

Unidentified 0.76 0.47 0.45 0.46 20
Verticillium dahliae 0.76 0.44 0.63 0.52 19

Mean AUROC 0.81
Accuracy 0.59 86

Macro average 0.63 0.60 0.60 86
Weighted average 0.63 0.59 0.60 86

Based on the rest of the presented scores in Table 4, which mostly follow the pattern
displayed by the performance for each class, it can be seen that the precision for the
“healthy” class is 1.00, meaning that when the model predicts that a sample is “healthy”
it is always correct. If we observe the sensitivity for the “healthy” class, when a sample
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is actually healthy, the model predicts it correctly 75% of the time, which is still the most
accurate classification among all classes, but significantly lower compared to precision.
The “verticillium” class provides the highest difference between precision and sensitivity,
with values of 0.44 and 0.63, respectively. The precision for “verticillium” predictions is the
lowest of the four classes, with a rate of 44% in identifying V. dahliae infections, so it is more
probable that the prediction belongs to one of the other classes instead of the predicted class.
In contrast, when a sample is infected with V. dahliae, this model has the second-highest
probability to identify it correctly, with a 63% rate. The “spilocaea” class has the lowest
AUROC of all of the classes but has the lowest differences between its performance metrics;
a 0.60 precision means that when predicting the “spilocaea” class, the model is correct
60% of the time. In the same pattern, having a sensitivity of 0.56 is translated as a 56%
efficiency in detecting the presence of stress in a sample with stress symptoms attributed to
S. oleaginea. The “unidentified” class has similarly low precision to that of the “verticillium”
class (0.47), so the model is correct 47% of the time when predicting “unidentified”, but
also has a similarly low sensitivity (0.45), being capable of correctly predicting a sample
stressed by unidentified sources at a 45% rate, which constitutes the worst performance
among all classes.

When a sample is stressed, the model appears to confuse the correct class with other
categories of stress, but not with healthy samples, following the high sensitivity and
precision of the best binary model produced. This becomes more evident if we specifically
observe the predictions for the “unidentified” class in the confusion matrix, where more
samples are categorized as “verticillium” and “spilocaea” than the actual “unidentified”.
On the other hand, when a sample is healthy, the model misses a low number of samples,
but the misclassification is more uniform. Overall, based on macro-averaged precision
(63%) and recall (60%) scores, it is evident that the model is not as efficient in terms of its
ability to identify the correct source of stress on a sample.

The outcomes of this research can contribute to precision plant protection measures
applied in olive fields. Regular stress assessments, as facilitated by using the developed
models for each new Sentinel-2 image made available, provide a guide for agronomists
monitoring the area of interest. They can use the presented methodology to choose an
appropriate disease incidence threshold for a field or agricultural area and be alerted to
areas where olive vegetation stress is occurring. In this way, any strategic plant protection
actions can be coordinated at the proper time, while also avoiding actual transfer to each
individual field and, therefore, reducing transport costs.

Moreover, by exercising the option to set a low threshold, an expert can be informed
of emerging damage in an otherwise healthy field. Additionally, the ability to monitor
a specific field or region using a stress incidence threshold of the user’s choice allows
for fewer unwanted alerts, since a selected threshold is more representative of the field’s
vegetation state.

4. Conclusions

In this study, a methodology is presented for detecting and classifying plant stress in
olive orchards using Sentinel-2 spectral data and machine learning. After preprocessing the
dataset, it was considered important to apply an oversampling technique on the labelled
data, so as to be able to diminish the effects of class imbalance—especially because of the
method changing the stress threshold, which produced differently sized data.

After testing to find the best-performing algorithm among those tested, quadratic
discriminant analysis was found to be the classifier with the best performance among all
tested classification algorithms (0.99); SVM (0.93), random forest (0.93), and multilayer
perceptron (0.93) also provided high performances. On evaluating the effects of setting
different stress incidence thresholds, it was demonstrated that different incidence thresholds
can provide more sensitive or specific models, and that user choice based on background
domain knowledge plays an important role in generating efficient models. To a great
degree, setting lower thresholds provided an overall better performance based on the
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majority of the tested classifiers. When using quadratic discriminant analysis—the best-
performing classifier discovered—for a stress threshold of 6% to classify different sources of
stress, the classification results were of lower accuracy compared to the binary classification,
but they provided sufficient suggestions for healthy trees or trees with more apparent
Verticillium-induced stress. The procedure for the multiclass classification follows the
one-vs.-rest methodology, where each class is predicted against the remaining classes, and
the label is decided based on the highest probability. The most accurate class to be predicted
by the model was “healthy”. Samples with ongoing stress from unidentified sources were
also mixed up with V. dahliae and S. oleaginea classes by the model, but not with healthy
samples. The models produced could be further improved by the hybrid use of machine
learning methods, deep learning, and new algorithms.

Based on these results, it can be concluded that Sentinel-2 satellite images do not
provide sufficient information for pathogen identification. Instead, Sentinel-2 data can be
used as a large-scale monitoring and alert system for olive orchards in Greece, assisting
crop protection experts in forming adapted, site-specific solutions. Machine-learning-based
supervised classifiers were proven to be able to provide the necessary tools to create highly
accurate models appropriate for a wide array of user-determined thresholds.
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