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Abstract: As the radar resolution improves, the extended structure of the targets in radar echoes can
make a significant contribution to improving tracking performance, hence specific trackers need to
be designed for these targets. However, traditional radar target tracking methods are mainly based
on the accumulation of the target’s motion information, and the target’s appearance information
is ignored. In this paper, a novel tracking algorithm that exploits both the appearance and motion
information of a target is proposed to track a single extended target in maritime surveillance scenarios
by incorporating the Bayesian motion state filter and the correlation appearance filter. The proposed
algorithm consists of three modules. Firstly, a Bayesian module is utilized to accumulate the motion
information of the target. Secondly, a correlation module is performed to capture the appearance
features of the target. Finally, a fusion module is proposed to integrate the results of the former
two modules according to the Maximum A Posteriori Criterion. In addition, a feedback structure
is proposed to transfer the fusion results back to the former two modules to improve their stability.
Besides, a scale adaptive strategy is presented to improve the tracker’s ability to cope with targets with
varying shapes. In the end, the effectiveness of the proposed method is verified by measured radar
data. The experimental results demonstrate that the proposed method achieves superior performance
compared with other traditional algorithms, which simply focus on the target’s motion information.
Moreover, this method is robust under complicated scenarios, such as clutter interference, target
shape changing, and low signal-to-noise ratio (SNR).

Keywords: Bayes filter; correlation filter; extended target tracking; fusion module; scanning radar data

1. Introduction

Radar extended target tracking technology is widely used in military and civilian
fields, e.g., maritime target tracking. Traditional target tracking methods perform well
based on the point target hypothesis, which is appropriate, as each target produces only
one measurement per frame. Tracking filters are used to smooth the measured data during
the scans, e.g., Kalman filter (KF) provides an optimal estimation for linear systems based
on Gaussian and Markov assumptions [1]. Subsequently, for non-linear systems, several
KF variants are proposed under the Gaussian assumption, including the Extended KF
(EKF) [2] and the Unscented KF (UKF) [3]. Among them, the EKF ignores high order terms
of the system’s state by linear approximation. The UKF reduces the estimation error by
an unscented transform, which can effectively cope with highly non-linear environments.
These methods use the accumulated detector data as input with the aim of iteratively
calculating the posterior probability density function (PDF) of the target’s kinematic state.
These techniques can be described within unified Bayes filter (BF) formalism [4]. However,
traditional trackers are not suitable for an extended target, which may produce multiple
measurements with noise, since the measurements of ship targets captured by the high-
resolution radar working at scanning mode usually produce two-dimensional expansion in
range and azimuth. The higher the radar’s range resolution, the more likely the extended
target will generate measurements occupying multiple range resolution cells. In addition,
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if the radar working in scanning mode, the target may occupy multiple azimuth cells.
Additionally, the resolution cell occupied by the target’s scattering point often changes due
to the radar resolution, the reflection strength of the target or the change of the target’s
attitude, which leads to the shape of some targets’ scattering point varying.

Recently, many methods are proposed for extended target tracking [5–9]. For example,
Koch [5,6] utilized the random matrix model to describe the extension of the target appear-
ance, and derived the analytical solutions under the Bayesian framework. Granstrom [8]
proposed the extended target-Gaussian inverse Wishart-probability hypothesis density (ET-
GIW-PHD) filter based on the RM (Random Matrices) model under the PHD framework.
In addition, Granstrom [9] estimated the target’s motion state and shape by calculating the
Gamma Gaussian inverse Wishart (GGIW) distribution of each target recursively. Marcus
et al. [10,11] proposed Random Hypersurface Models to model extended targets. Random
Hypersurface Models describe the target’s profile in terms of a parametric set of geometric
shape functions, e.g., the Gaussian process model is one typical model [12]. Since each
target generates multiple measurements, it is necessary to divide the measurements of
the target. The algorithms mentioned above ensure reliability by traversing all divided
measurements. However, the effect of measurement division is unsatisfactory when faced
with the following challenging situations: overtaking, head-on meeting, and interruption
clutter. Especially in maritime, strong sea clutter could interfere with the division of mea-
surements. The clutter classified into the target cell always causes the association errors
in the above methods, which results in severe degradation of the tracking performance.
Although the extended target tracking methods mentioned above can estimate the shape
of the target, the tracker only uses the motion information of the targets. In radar target
tracking, the tracker usually only utilizes the position observation provided by the detector
because the radar only captures one or more scatter points of the target. Intuitively, taking
into account more available information would greatly improve the stability and accuracy
of the tracker.

In addition to motion information, radar extended targets can also provide appearance
information. Inspired by human visual instincts, some scholars introduce the amplitude
information of the target into tracking methods which not only use the motion information
but also take advantage of the appearance information of targets. Shui et al. [13] proposed
a new approach to exploit three features of the received time series for detection of floating
small targets in sea clutter. The difference in the statistical characteristics of amplitude
between targets and clutters are used to improve the discrimination of them [14–17].
However, these feature-aided tracking methods need to extract features manually, and it is
difficult to find a stable feature suitable for various complex maritime scenes.

The deep learning method, which has achieved remarkable results in computer vision,
are also used to extract the features of radar targets by many scholars. Chen et al. [18]
proposed to classify marine target and sea clutter by convolutional neural networks, which
suggested that the above statistical learning methods are suitable for marine target detection
and tracking, and the appearance of an extended target can provide useful features for
detection. To achieve full utilization of the information contained in radar signals and
improve the detection performance, Su et al. [19] utilized the graph convolutional network
to detect marine radar targets. The above deep learning methods had achieved a very
appealing performance on the real datasets. However, these methods require a large
amount of data for offline training.

The kernel correlation filter (KCF) is an online learning method widely used in visual
tracking [20], which can track the target in real time if given the training samples in the
first frame. KCF [20] trains the filter based on the appearance information of the target
in the current frame and the previous frame, and then performs correlation calculation
with a new frame to track the appearance of the target. In order to handle the scale chang-
ing of the target, Danelljan et al. [21] proposed to learn discriminative correlation filters
from a scale pyramid model, and Li et al. [22] gave a multiple scales searching strategy.
Zhou et al. [23] introduced the correlation filtering method into radar target tracking for
the first time, and proposed the Multiple Kernelized Correction Filter (MKCF) from the
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perspective of multi-kernel fusion, which performed satisfactorily in some challenging
situations. It indicated that this correlation filter (CF) method is promising in radar target
tracking [23]. Introducing the CF method into the traditional radar target tracking frame-
work will help to improve the radar target tracking performance. However, most of these
methods [23,24] treat the CF as a detector but not a tracker, which is not the best way to
combine CF and the traditional radar target tracking framework.

To sum up, many existing methods for radar marine extended target tracking have
been proven to be effective, but some of them suffer from poor robustness and incomplete
use of observation information. Therefore, this paper attempts to make full use of the
limited observation information of the radar targets adaptively. A new algorithm called
JCBF is proposed to track a single maritime radar extended target utilizing both the motion
and appearance information by jointing correlation filter and Bayes filter (JCBF). The
proposed algorithm consists of three main parts: (1) Bayes filter (BF) is used to estimate
the target’s motion state; (2) CF calculates the likelihood PDF of the target’s position using
the real-time appearance features from the perspective of signal estimation; and (3) the
final estimation of the target’s state is obtained by fusing the results of both filters from
maximum a posteriori estimation criterion. In addition, a specific scaling pool for radar
signals is also proposed to accommodate the extensions in distance and azimuth of targets.
Finally, the experiments are performed on the scanning data collected by X-band marine
radar to verify the proposed algorithm.

The main contributions of this paper are as follows. Firstly, a novel and specific tracker
is designed for the radar target by jointing the BF and CF from an a posteriori probability
perspective. Secondly, a strategy that can adapt to the target’s shape is employed to track
the targets with varying shape. Finally, the experiments on real data sets demonstrate that
the proposed method improves the stability of the tracker under low signal-to-clutter/noise
ratio environments. Table 1 gives a list of notations used throughout the paper.

Table 1. Table of notations.

Ip Identity matrix of order p
Op p× p matrix with zero entries
(·)T Transpose
(·)H Conjugate transpose
(·)∗ Conjugate
|·| Module of a vector
‖·‖ Frobenius norm of a matrix

det(·) Determinant of a matrix
F (·) Fourier transform
F−1(·) Inverse Fourier transform
mean(·) Mean
� Hadamard product
〈·, ·〉 Inner product

N (x; m, ∑) 1√
2π det(∑)

exp
{
− 1

2 (x−m)T∑−1(x−m)
}

2. Proposed JCBF

This section begins with a brief introduction to the basic principles of BF [4] and
KCF [20]. Next, the theoretical derivation and a specific implementation of the integrated
BF and CF approach are given in Sections 2.3 and 2.4, respectively, where the viewpoint
in [23] that analyzing the KCF in the perspective of probability is highlighted. Following
that, two strategies for improving the robustness of the tracker are given in Section 2.5
where a feedback structure is suggested to pass the fusion outcomes back to the former BF
and KCF to improve their stability, and a scale adaptive strategy is presented to ameliorate
the robustness of the tracker against shape-changing targets. Finally, the proposed method
is summarized in Section 2.6.
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2.1. Bayesian Framework

Assuming that the state equation and the observation equation of the system (linear
or nonlinear system) are as follows:

xk+1 = fk(xk) + uk, (1)

zk = hk(xk) + nk, (2)

where k ∈ N denotes the time step, xk ∈ Rn is the system state vector at time k, fk : Rn → Rn

denotes the state transition map, uk is the process noise, zk ∈ Rm is the measurement vector
at time k, hk : Rn → Rm denotes the measurement map (n > m), and nk is the measurement
noise. Note that fk and hk can denote both linear and nonlinear maps.

The Bayes filter uses the measurements set Zk ([z1, z2, . . . , zk]) to calculate the PDF of
the state xk at time k, i.e., p

(
xk|Zk

)
, k ∈ N. The steps of the Bayes filter are divided into

prediction and update, as follows:

1. Assuming that p
(

xk−1|Zk−1
)

has been obtained at time k− 1, then the PDF of the
one-step predictions of the state and measurement are (3) and (4), respectively:

p
(

xk|Zk−1
)
=
∫
Rn

p(xk|xk−1)p
(

xk−1|Zk−1
)

dxk−1, (3)

p
(

zk|Zk−1
)
=
∫
Rn

p(zk|xk)p
(

xk|Zk−1
)

dxk, (4)

where p(xk|xk−1) and p(zk|xk) are given by (1) and (2), respectively.
2. The posterior PDF is calculated using the new measurement zk obtained at time k [4]:

p
(

xk|Zk
)
=

p(zk|xk)p
(

xk|Zk−1
)

p
(
zk|Zk−1

) . (5)

2.2. Kernal Correlation Filter

KCF [20] solves the classifier by means of ridge regression. In the initial linear regres-
sion model, the optimization objective function is (6). Given the training feature-label pairs
{gi, yi}, the loss function is as in (7):

f (gi) = wT gi, (6)

min
w ∑

i
( f (gi)− yi)

2 + λ‖w‖2. (7)

Assuming that G = [g1, g2, . . . , gn]T denotes n training samples and y = [y1, . . . , yn]T

denotes their labels, it can be derived that w has a closed-form solution
w = (GHG + λI)−1GHy.

To improve the classifier’s performance, the data in original space are mapped to a
high-dimensional space with weights w as linear combinations of the input samples:

w = ∑
i

αi ϕ(gi). (8)

When putting the w in the optimization process, the detailed form of function ϕ(·) is
not necessary, only the inner product of ϕ(·) is needed, i.e., k

(
gi, gj

)
=
〈

ϕ(gi), ϕ
(

gj
)〉

.

By introducing the kernel function k(gi, gj) = exp
(
− 1

σ2
k

(
‖gi‖2 +

∥∥gj
∥∥2 − 2gT

i gj

))
,

and putting it and weights (8) into (7), the optimal solution can be converted to (9):

α = (K + λI)−1y, (9)
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where α = [α1, . . . , αn]T , K is a circular matrix with n× n dimensions, and Kij = k(gi, gj).

Since K is a circular matrix, (9) can be converted into α = F−1
(

F (y)
F ∗(kgg)+λ

)
, where kgg

denotes the first row of the circular matrix K [20].
After training the model using sample g in the last frame, the response of the new

input sample g′ in the new frame is computed by:

Y = F−1
(
F
(

kgg′
)
�F (α)

)
. (10)

Let v be the position variable of the target at a certain time step, the position v of the
target is the position of the maximum value in the response Y(v), which can be given by:

v̂ = arg max
v

Y(v) (11)

The model is updated by (12), where gt and αt denote the training sample and the
weights at time t, g′t and αg′t

denote the new sample and the new weights, and η ∈ (0, 1)
denotes forgetting rate [23].{

gt = g′t × η + gt−1 × (1− η)
αt = αg′t

× η + αt−1 × (1− η)
(12)

2.3. Joint Correlation and Bayes Filtering

In order to make full use of the target’s appearance and motion information to estimate
the target’s position vk ∈ Rm, the posterior PDF p

(
vk|Zk, Ak

)
of vk at time k is calculated

utilizing both the obtained position measurement zk and the appearance measurement ak,
where Ak ([a1, a2, . . . , ak]) denotes the appearance measurements set.

Further discussion will be much simplified if additionally assuming that the position
of the target and the appearance feature of the target are independent of each other. Such
an assumption seems to be justified in many practical cases, as follows:

p
(

Zk, Ak|vk

)
= p

(
Zk|vk

)
p
(

Ak|vk

)
, (13)

p
(

Zk, Ak
)
= p

(
Zk
)

p
(

Ak
)

. (14)

Therefore, the posterior PDF of the state vk is given by:

p
(

vk|Zk, Ak
)

=
p(Zk ,Ak |vk)p(vk)

p(Zk ,Ak)

=
p(Zk |vk)p(Ak |vk)p(vk)

p(Zk)p(Ak)

=
p(vk |Zk)p(Ak |vk)

p(Ak)

∝ p
(

vk|Zk
)

p
(

Ak|vk
)

.

(15)

Zhou et al. [23] firstly analyze the KCF in the perspective of maximum likelihood. They
propose that the response (10) can be viewed as the more advanced likelihood function
whose strength shows the probability of the target at each position v. Hence, given a
position vk ∈ Rm, the probability of vk being the center of the target measured by KCF is
the individual likelihood p

(
Ak|vk

)
, where the Ak denotes the appearance measurements

obtained by KCF. Treating the response of KCF as an appearance measurement captured by
one sensor, KCF can be considered as a filter that utilizes the target’s real-time appearance
measurements Ak to calculate the likelihood PDF of the target’s position vk.
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In KCF, the response matrix is equal to the individual likelihood distribution of
vk [23], thus p

(
Ak|vk

)
in (15) can be calculated by KCF:

p
(

Ak|vk
)
= Y(v) (16)

As discussed in Section 2.1, BF calculates the posterior PDF p
(

xk|Zk
)

of xk ∈ Rn using

the obtained measurement zk ∈ Rm and p
(

xk−1|Zk−1
)

.
The state estimation vk ∈ Rm of the target’s position is a fraction of xk, thus xk can

be decomposed into two components as xk = [vk, ek]
T , where ek ∈ Rn−m. As a result,

p
(

vk|Zk
)

is given by (17):

p
(

vk|Zk
)

=
∫

p
(

vk, ek|Zk
)

dek

=
∫

p
(

xk|Zk
)

dek.
(17)

Finally, p
(

vk|Zk, Ak
)

can be calculated by (15)–(17). As a result, the maximum a
posteriori estimation (MAP) of vk is given by (18):

v̂k = arg max
vk

p(vk|Zk, Ak)

= arg max
vk

p(vk|Zk)p(Ak|vk).
(18)

Not only the appearance information but also the motion information is successfully
utilized in (18) to estimate the target’s position vk by jointing the Bayes filter and the
Correlation filter. The overall flow of JCBF is shown in Figure 1, among which a fusion
module (Figure 1c) is used to combine the BF module (Figure 1a) and the CF module
Figure 1b.

Figure 1. Overall flow of the proposed method. (a) Bayes filter module. (b) Correlation filter module.
(c) Fusion module. The green lines indicate the feedback for correcting measurements. Both the
process of providing measurements for Kalman filter by detector and the training process of the
correlation filter are omitted in the figure.
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2.4. Specific Implementation of JCBF

This section gives a specific implementation of JCBF. Since radar measurements are
generally obtained from the distance and bearing of the target in the polar coordinate
system, this paper constructs the equations of state and observation in the polar coordinate
system and implements the proposed tracking algorithm.

2.4.1. Bayes Filter Module

In the polar coordinate, the motion state of the target can be represented by xk =

[r, θ, νr, νθ ]
T , where r denotes the radial range between the target and the radar, θ denotes

the azimuth, νr denotes the radial velocity and νθ denotes the tangential velocity. The
measurement can be represented by zk = [r, θ]T .

Due to the weak manoeuvrability of most maritime targets, for the sake of simplicity,
this paper assumes that the target’s motion model conforms to a Nearly Constant Velocity
(NCV) motion model in the Cartesian coordinate. Assuming that the radar’s scanning
period is T, the above motion model and the observation equation in the polar coordinate
system can be represented as follows [25]:

xk+1 = fk(xk) + uk, (19)

zk = Hkxk + nk, (20)

where

fk(·) =


√
(r cos θ + (νr cos θ − νθ sin θ)T)2 + (r sin θ + (νr sin θ + νθ cos θ)T)2

arctan
(

r sin θ+(νr sin θ+νθ cos θ)T
r cos θ+(νr cos θ−νθ sin θ)T

)
(νr sin θ + νθ cos θ) sin θ + (νr cos θ − νθ sin θ) cos θ
(νr sin θ + νθ cos θ) cos θ − (νr cos θ − νθ sin θ) sin θ

, (21)

Hk =

[
1 0 0 0
0 1 0 0

]
. (22)

Since the motion Equation (19) is a nonlinear model, this paper utilizes EKF [2] to
estimate the state xk. The detailed calculation process of EKF and the derivation of (21) are
displayed in Appendices A and B, respectively.

Given the measurements Zk, EKF iteratively calculates the first moment and second
moment of xk ∈ Rn, and approximates the posterior PDF of xk to a Gaussian distribution:

p
(

xk|Zk
)
= R

(
xk; mx, ∑x

)
. (23)

where mx denotes the mean of xk and ∑x denotes the covariance matrix. The expressions
for xk and ∑x are displayed in Appendix A.

As discussed in Section 2.3, the key is to solve for the posterior PDF of vk as (15). In
the motion model (19), vk denotes the range and azimuth where the target is located, i.e.,
vk = [r, θ]T . Consequently, xk = [r, θ, νr, νθ ]

T can be decomposed into two components as
xk = [vk, ek]

T , where ek = [νr, νθ ]
T . Plugging (23) into (17), the posterior PDF of the target’s

position vk can be derived as:

p
(

vk|Zk
)

=
∫
N (xk; mx, ∑x)dek

=
∫ 1√

2π det(∑x)
exp

{
− 1

2

(
[vk, ek]

T −mx

)T
∑x
−1
(
[vk, ek]

T −mx

)}
dek

= 1√
2π det(∑1)

exp
{
− 1

2 (vk −m1)
T∑−1

1 (vk −m1)
}

= N (vk; m1, ∑1),

(24)

where m1 = Hmx, ∑1 = H∑x HT and H = [I2, O2].
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2.4.2. Correlation Filter Module

The training labels of KCF are two-dimensional (2D) needle-shaped Gaussian [20,23],
if the test sample is similar with the train samples, the response f (ak) of KCF given by (1)
is a similar needle-shaped Gaussian to the training labels. Thus, the position vk can be
assumed to obey 2d Gaussian distribution, and such an assumption simplifies the further
discussion and is reasonable in most cases. As discussed in Section 2.3, given the Ak, the
likelihood PDF of position variable vk is computed by:

p
(

Ak|vk
)
= N

(
vk; m2, ∑2

)
, (25)

where m2 = µ and ∑2 = σ2 Im. For KCF, µ denotes the location of the maximum value yp

in the response map, and σ2 is inversely proportional to the yp, i.e., σ2 = 1
2πyp

.

2.4.3. Fusion Module

This module calculates the maximum posterior estimate of the target location by
fusing the results of the above two modules.

p
(

vk|Zk
)

p
(

Ak|vk
)

is given by:

p
(

vk|Zk
)

p
(

Ak|vk
)

= N (vk; m1, ∑1)N (vk; m2, ∑2)

= CcN (vk; mc, ∑c),
(26)

where

∑c =
(
∑−1

1 + ∑−1
2

)−1
, (27)

mc = ∑c

(
∑−1

1 m1 + ∑−1
2 m2

)
, (28)

Cc =
1√

2π det(∑1 + ∑2)
exp

{
−1

2
(m1 −m2)

T
(
∑1 + ∑2

)−1
(m1 −m2)

}
. (29)

According to (18), the maximum a posterior estimation of vk can be derived as (30)
and the covariance matrix of estimation errors is ∑c.

v̂k = arg max
vk

p(vk|Zk)p(Ak|vk)

= arg max
vk

CcN (vk; mc, ∑c)

= mc

. (30)

2.5. Strategies to Improve the Stability of Tracker
2.5.1. A Feedback Structure in the JCBF

A feedback module is introduced into the proposed method to improve the stability.
The fused results given by JCBF are treated as corrected measurements to re-update BF and
CF. The green lines in Figure 1 illustrate this process.

After capturing the target at time k, the correlation filter usually updates the model
with new sample, as shown in (12). However, when the target is obscured by clutter
or changes significantly in appearance, as shown in Figure 2a, the response of the filter
deteriorates significantly, which leads to inaccurate estimation of the target state. The peak
to side-lobe ratio (PSR) [26] and average peak-to-correlation energy (APCE) [27] are utilized
to evaluate the fluctuated degree of response y and the confidence level of the detected
targets, which are given by (31) and (32), respectively,

PSR =
ymax − µs

σs
, (31)
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APCE =
|ymax − ymin|2

mean

(
∑
w,h

(yw,h − ymin)
2

) , (32)

where µs and σs are the mean and standard deviation of the side-lobe, respectively, and ∑
denotes summation.

Figure 2. Common challenging situations. (a) Appearance changing. (b) Interruption measurements.

In this strategy, the reselected sample extracted from the estimated position given by the
JCBF is utilized to update the CF rather than that form the original position given by the CF.

Similarly, Bayes filter updates the model with new measurements, as in (5). When the
target passes through interference clutter or meets other targets, the measurements could
be disturbed, as shown in Figure 2b. To solve this problem, v̂k is treated as a measurement
and is fed back to the BF module together with the covariance matrix ∑c of estimation
errors to update the BF.

In addition, a confidence threshold th is set to determine whether to update the filter or
not. If the PSR is less than the threshold, both filters will not be updated and the estimation
for this frame will be replaced by the prediction of the Kalman filter.

2.5.2. A Scale Adaptive Strategy

The traditional Bayes methods [5–9] obtain an extended estimate of the target by
dividing multiple measurements of the target; however, contaminated measurements may
degrade the performance of these methods. Without relying on measurements, existing
scale-adaptive CF methods [21,22] proposed for optical images calculate the response of a
sample scaled at multiple scales by defining a scaling pool S = {ti}i=1:l = {t1, t2, . . . , tl}.
For the current frame, the template size is fixed as s = (w, h) and z with sizes in {s · ti}
is sampled to find the proper target. The scale of the sample with the largest response is
considered as the target’s size. These methods don’t distort the appearance of the target by
scaling both the length and width at the same ratio, for the reason that the optical images
have the same resolution in both dimensions. However, the resolutions of radar in two
dimensions are different, where the azimuthal resolution is determined by the beamwidth
of the antenna, and the distance resolution is determined by the bandwidth of the radar’s
emitting signal. Therefore, scaling the sample using above ratios would distort the radar
targets. In addition, the clutter may be introduced into the sample z when the size expands.
In summary, the method mentioned above with superior performance in optical images is
not suitable for radar targets.
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Unlike the targets in optical images, the expansion of radar targets in azimuth becomes
more evident as it approaches closer to the radar, but not in distance, due to the lack of
radar’s azimuthal resolution and the variation in radar’s view. Consequently, a scaling
pool (33) for radar targets is proposed which scales the length and width of the template at
different ratios, where width is scaled with a greater gradient than length. The gradient of
the scaling pool is defined as ∆S = [∆tw, ∆th]

T , and l denotes the length of scaling pool.

S = {ti}i=1:l =

{[
tw1
th1

]
,
[

tw2
th2

]
, . . . ,

[
twl
thl

]}
. (33)

The further operations are the same as in [22], except the proposed scaling pool. The
scaling size are given by (34):

t = arg max
ti

f (zti ). (34)

where zti denotes the sample z with scaling size ti.
In the end, the response of KCF with scaling size t will be used in JCBF.

2.6. Framework of the Proposed JCBF

The proposed method is summarized in Algorithm 1. Given the position and size of the
target in the initial frame, firstly, g is sampled to train KCF using (1). In the latter frame, the
response of the target is given by (10) and the p

(
Ak|vk

)
is calculated by (25). It is worth noting

that the scale adaptive strategy was only used to track the targets with varying shape. Mean-
while, a segmentation algorithm [23] (’detecor’ in Algorithm 1) is used to obtain measurements
z′ of the target. Next, the EKF module is used to calculate the p

(
vk|Zk

)
. Then, the results of

the two filters are fused to obtain the state estimation v̂ of the target, as in (30). In the end, PSR
[23,27] is utilized to determine whether to update the filter or not.

Algorithm 1: Joint correlation filter and Bayes filter.
Input
• v0: the position of the target in the initial frame;
• b0: the bounding box of the target in the initial frame;
• G: data matrix;
• N: total frames;
• S: scaling pool.

Output

• v̂: the position of the target in latter frame.

1: for k = 1 to N
2: if k = initial frame
3: Sampling g at position v0 in size of b0
4: Generating Gaussian needle-shaped label y
5: train: α = F−1

(
F (y)

F ∗(kgg)+λ

)
6: v̂ = v0
7: end if
8: if k 6= initial frame then
9: if step KCF then
10: for ti in S do
11: Sampling g′ (denotes ak) at position v̂ in size of b0 · ti

12: test : f (g′ti ) = F−1
(
F
(

kgg′
)
�F (α)

)
13: end for
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Algorithm 1: Cont.

14: t = arg max
ti

f (g′ti )

15: The response of KCF is f (gt)

16: Calculating p
(

Ak|vk
)

by (25)
17: end if
18: if step EKF then
19: zk = detector(g′)
20: Calculating p(vk|Zk) by (24)
21: end if
22: if step Fusion then
23: Calculating the estimation v̂ by (30)
24: Calculating the covariance matrix ∑c of estimation errors by (27)
25: ifpsr > th then
26: Updating KCF by (12)
27: Updating EKF using v̂ and ∑c
28: end if
29: end if
30: end if
31: end for

2.7. Parameters Setup

Table 2 lists the value of key parameters of JCBF, which are set depending on the dataset
used for the experiments. A detailed description of the dataset used in the experiments is
presented in Section 3.1.

Table 2. Key parameters settings.

Parameter Interpretation Value

w, h Sample’s width and height -
η Adaptation rate 0.075
λ Regularization 0.01
σk Feature bandwidth 0.2
σ Spatial bandwidth

√
wh

10
∆S Gradient of scaling pool [0.005, 0.001]T

l Length of scaling pool 10
th Confidence threshold 10

2.8. Evaluation Methodology

The experiments in this paper are performed using the data matrices of radar echoes.
The proposed JCBF and several selected trackers are used to track each target separately.
The results of each tracker are the center location and the bounding box of the targets. The
targets in the radar monitoring scenario are non-cooperative, so the real motion information
and the real labels of the targets can’t be obtained. In addition, the experimental results are
compared with the manually generated labels to evaluate the trackers’ performance.

Average center location error (CLE) and bounding box overlap ratio are calculated to
evaluate the difference between the results and the ground truth. For the performance criteria,
the precision curves widely applied in the visual tracking [20,23,28] are also utilized to simply
show the percentage of correctly tracked frames. Targets are considered to be tracked correctly
if the predicted target center is within a distance threshold of ground truth.

The location precision and overlap precision are given by (35) and (36), respectively:

LP(G, T , thlp) =
sum(dist(G, T ) ≤ thlp)

len(G) , (35)
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OP(G, T , thop) =
sum(overlap(G, T ) ≥ thop)

len(G) , (36)

where G and T denote ground truth set and tracking results set, respectively. dist(·)
calculates the distance between the center of ground truth and the center of tracking results,
and overlap(·) calculates the intersection-over-union (IOU) between the ground truth and
the tracking results. thlp ∈ [0, 50] and thop ∈ [0, 1] denote the location error threshold and
overlap threshold, respectively.

Three traditional Bayes tracking methods (EKF [2], RM-based trackers [5], GGIW-
based trackers [9]) and two correlation filter-based methods (KCF [20], Scale Adaptive
with Multiple Features tracker (ASKCF) [21]) are chosen to compare with JCBF. The same
measurements are provided for three Bayes methods and the proposed JCBF. In addition,
the parameters of the two correlation filters are the same as those of the proposed JCBF.

It is worth noting that KF has been used for smoothing the measurements in both
RM-based trackers and GGIW-based trackers, the KF parameters of the two trackers are
the same as those of JCBF. To show the performance improvement of the JCBF, the EKF
supplemented by the nearest neighbor data correlation is also tested on the same dataset.
Furthermore, the IOU is calculated based on the target size on the first frame, as the EKF
cannot estimate the size of targets based on the point target hypothesis.

3. Experiment and Results Analysis
3.1. Data Sets Analysis

Experimental data sets were provided by Naval Aviation University [29,30] and col-
lected on 22 July 2020. Overall, 136 frames of scanning data were collected by an X-band
marine radar near the Yantai harbor, Yantai, China. The radar scan speed is 24 rpm and
emits rectangular pulses with a PRF of 1.6 kHz. A frame of the radar image in the orig-
inal data is formatted with 2224 cells in range and 1729 cells in azimuth. The detailed
parameters of the experimental radar are displayed in Table 3.

Table 3. X-band experimental radar parameters.

Parameter Value

Operating Frequency 9.3–9.5 GHz
Output Power 50 W

Antenna Beamwidth 1.2 deg @ −3 dB
Rate of Rotation 24 rpm

Number of Range Samples 1729
Number of Azimuth Samples 2224

Range Resolution Cell 6 m
Azimuth Resolution Cell 360◦/5120

Moreover, some of the azimuth cell data in the original data are duplicated or missing,
thus the data need to be corrected, and the size of the corrected data is 2224 × 2078 (range
cells × azimuth cells).

There are twelve targets in the monitoring scene, whose manually labeled real trajec-
tories are shown in Figure 3. The radar is interfered by some unknown objects during
the scanning process, resulting in the blocking of the 571st to 716th azimuth cells, which
are marked by the white dotted boxes in Figure 3. The trajectories of the targets passing
through this area are divided into two segments because there is no useful information in
the radar echoes of the targets as they pass through these areas, e.g., target 1 (target 9) and
target 6 (target 10).
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Figure 3. Twelve trajectories of moving targets by manually labeled.

3.2. Performance Analysis

The tracking trajectories of twelve targets from the proposed method are shown in Figure 4.

Figure 4. The tracking results of the proposed JCBF.
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3.2.1. Time Costing

Above experiments are performed on a workstation with the i5-10500 3.10 GHz CPU
and 24 GB RAM. The costing time per target per frame is recorded in Table 4. For every
target, the proposed method costs 0.275 s per frame, which costs more time than others for
the reason that two filters are utilized in JCBF.

Table 4. Cost time per frame.

Methods RM GGIW ASKCF EKF KCF JCBF

Cost time 0.027 0.029 0.223 0.018 0.167 0.275

3.2.2. Error and Precision

Tables 5–7 compare the center location error, location precision and overlap precision
of the results obtained from six trackers, respectively. Additionally, the average location
precision curves and average overlap precision curves are displayed in Figure 5a,b, respec-
tively, which present the results more visually. The larger values of the location precision
and the overlap precision mean the more accurate result.

Table 5. Center location error (CLE ↓, ↓means lower is better).

Targets RM GGIW ASKCF EKF KCF JCBF

target1 11.9 34.3 7.8 34.5 32.7 7.3
target2 23.6 17.4 21.5 30.3 145.0 4.8
target3 235.4 2.3 300.0 2.3 2.0 1.8
target4 6.6 6.5 26.6 6.5 16.5 4.3
target5 36.3 5.9 10.5 33.8 46.4 4.0
target6 5.6 5.9 7.9 7.3 6.0 4.2
target7 2.6 2.6 9.6 5.2 5.6 2.6
target8 6.8 6.8 32.9 5.9 4.5 5.9
target9 4.1 4.3 318.2 3.8 3.3 4.2
target10 5.4 5.6 12.8 5.6 5.1 5.2
target11 88.9 2.4 267.7 61.9 30.1 2.0
target12 44.1 3.1 296.8 6.5 12.5 3.5

Average 39.3 8.7 109.4 16.7 25.8 4.1

Table 6. Average location precision (LP ∈ [0, 1] ↑, ↑means higher is better).

Targets RM GGIW ASKCF EKF KCF JCBF

target1 0.750 0.648 0.834 0.645 0.688 0.844
target2 0.773 0.768 0.681 0.727 0.330 0.895
target3 0.106 0.944 0.177 0.943 0.948 0.954
target4 0.858 0.860 0.459 0.861 0.716 0.905
target5 0.629 0.871 0.778 0.664 0.538 0.910
target6 0.879 0.873 0.831 0.879 0.871 0.908
target7 0.938 0.939 0.798 0.888 0.876 0.939
target8 0.852 0.853 0.519 0.897 0.899 0.875
target9 0.910 0.904 0.053 0.912 0.924 0.911
target10 0.883 0.877 0.733 0.880 0.886 0.888
target11 0.390 0.941 0.125 0.424 0.648 0.951
target12 0.569 0.928 0.243 0.861 0.739 0.919

Average 0.711 0.867 0.519 0.798 0.755 0.908
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Table 7. Average overlap precision (OP ∈ [0, 1] ↑, ↑means higher is better).

Targets RM GGIW ASKCF EKF KCF JCBF

target1 0.227 0.271 0.603 0.449 0.473 0.653
target2 0.210 0.326 0.331 0.469 0.192 0.635
target3 0.048 0.618 0.105 0.776 0.785 0.774
target4 0.443 0.504 0.312 0.606 0.534 0.647
target5 0.291 0.463 0.514 0.504 0.350 0.700
target6 0.374 0.407 0.597 0.666 0.581 0.687
target7 0.322 0.519 0.519 0.637 0.562 0.681
target8 0.320 0.359 0.253 0.618 0.605 0.621
target9 0.160 0.404 0.040 0.668 0.686 0.672
target10 0.245 0.299 0.530 0.687 0.704 0.722
target11 0.100 0.570 0.073 0.317 0.433 0.751
target12 0.159 0.534 0.149 0.591 0.326 0.670

Average 0.241 0.439 0.335 0.584 0.519 0.684

0 10 20 30 40 50
Location error threshold

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ca

tio
n 

Pr
ec

is
io

n

 Average Location Precision

RM[0.711]
GGIW[0.867]
ASKCF[0.519]
EKF[0.798]
KCF[0.755]
JCBF[0.908]

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Overlap threshold

0.0

0.2

0.4

0.6

0.8

1.0

O
ve

rla
p 

Pr
ec

is
io

n

 Average Overlap Precision
RM[0.241]
GGIW[0.439]
ASKCF[0.335]
EKF[0.584]
KCF[0.519]
JCBF[0.684]

(b)

Figure 5. Average location precision and overlap precision of twelve targets. (a) Average location
precision curves (DP ∈ [0, 1]) of twelve targets. (b) Average overlap precision curves (OP ∈ [0, 1]) of
twelve targets.

As can be seen from Tables 5 and 6, the proposed JCBF with the lowest average
location error and highest average location precision can accurately capture the center of
the target. It can be seen from the results in Figure 5 and Tables 6–7 that the proposed
method performs better than others in estimating the size of the target.

GGIW and RM are easy to misclassify measurements when the shape of the target
changes or the target is disturbed by clutter. In addition, the scaling pool used by ASKCF is
not suitable for radar targets as discussed in Section 2.5.2, which results in location and
shape estimation errors. Moreover, the scaling pool used in ASKCF is easier to introduce
the clutter into the sampling area. Furthermore, the difference between the target and
clutter is most reflected in the phase of radar’s echo, but not the amplitude of the radar’s
echo. Therefore, the clutter is easy to be regarded as the target by ASKCF, which will lead
to the decline in the performance. Therefore, ASKCF is not suitable for radar targets. It’s
noting that although the OP of KCF and EKF is shown to demonstrate the performance
improvement of the JCBF relative to them, it does not mean that they have the ability to
estimate the size of targets.

Comparing the above results, it can be seen that the proposed JCBF has the significantly
improved performance over other tracking algorithms. The reason is that the proposed
JCBF exploits both the motion and appearance features of the target, which improves
the algorithm’s ability to distinguish between targets and clutter. Moreover, the feedback
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strategy improves the stability of the trackers and the proposed scaling pool is more suitable
for radar targets.

3.3. Tracking Results Analysis

Table 8 lists the challenging situations in the date sets. Some typical targets can be
seen in Figure 6 are selected to visually show these situations, where the white boxes in
figures indicate the position of the target and the white arrows indicate the direction of
the target movement. When the maritime radar is working at scanning mode, target 1
produces different azimuthal expansion at each time due to radar’s beam width, as shown
in Figure 6a–d. Target 2 is obscured (see Figure 6e–g) or interfered with (see Figure 6h)
by ground clutter. Furthermore, target 12 is a weak target with low SNR at most frames,
whose SNR is statistically 7.3 dB. The top four best performing algorithms (JCBF, EKF, KCF,
GGIW) in Section 3.2 are selected for detailed analysis.

Table 8. Some challenging targets in monitor scenarios.

Challenging Situations Targets

Shape or appearance changing target1,target4,target5
Multiple scattering points target1,target4,target5

Interferenced by clutter target1,target2,target3
Weak target target12

Maneuvering targets target1, target2

Figure 6. Some challenging targets in monitor scenarios. (a–d) Shape or appearance changing.
(e–h) Targets interferenced by clutter. (i,j) Weak targets.

3.3.1. Shape or Appearance Changing

Figure 7 shows the tracking bounding boxes of target 1 given by JCBF and those
of others in some key frames, where red boxes denote the JCBF, pink boxes denote the
KCF, yellow boxes denote the EKF, and blue boxes denote the GGIW. Missing trackers are
denoted by an ’×’.
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Figure 7. Tracking results of target 1 at some key frames. (a–f): Tracking results for each filter when
the shape of target 1 changes .

Due to azimuthal scaling, the target tends to produce multiple measurements, which
can easily lead to association errors during tracking. It can be seen from the results in
Figure 7 that EKF estimates the position of the target incorrectly and gradually loses it
when the target’s shape changes, because EKF only selects the measurement closest to
the prediction. In addition, the measurements are so dispersed in azimuth, which causes
the GGIW clusters incorrectly. KCF tracks reasonably well in the first few frames when
target scales not obviously, but loses the target in both Figure 7e,f because the template
size cannot change with the scaling of the target. In comparison, the proposed JCBF can
capture the changing of the target’s size precisely.

In order to illustrate the advantages of the proposed algorithm in dealing with targets’
deformation more directly, the response maps of KCF and JCBF at frame 23 are compared
in Figure 8. It can be seen that the response map of KCF fluctuates intensely because the
target has multiple strong scattering points, while that of JCBF has high-confidence due to
the high PSR.

Figure 8. The response maps of (a) KCF and (b) JCBF (target 1 in frame 23).

3.3.2. Targets Interferenced by Clutter

Figure 9a–c compare the results of target 2 given by all trackers when the target is
briefly obscured by clutter. Figure 9d–f show the results of target 2 under the circumstance
that it approaches land at high speed and is interferenced by ground clutter.

It is seen from Figure 10 that the false sharp peak of the response map of KCF is
within the clutter region, because the target is obscured by a stationary clutter from frame
94 to frame 96, which results in an incorrect position of KCF, as shown in Figure 9b,c.
However, the target’s motion model is not affected by the clutter and when the target
reappeared, the EKF module in the proposed JCBF can correctly track the target using
real-time measurements, as shown in Figure 9c.
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Figure 9. Tracking results of target 2 at some key frames. (a–f) Tracking results for each filter when
target 2 is obscured by clutter.

Figure 10. The response maps of KCF (target 2 in frame 95 and frame 96). (a) The response maps in
frame 95. (b) The response maps in frame 96.

After frame 120, target 2 maneuvers closer to land and swerves quickly, whose motion
model is not conforming to the preset uniform linear motion model and measurements are
interferenced by clutter. It causes the wrong association and results in traditional trackers (EKF,
GGIW) drifting, as shown in Figure 9d–f. However, response maps with high confidence are
still obtained in JCBF, as the appearance of the target remains intact, as shown in Figure 11.
As a result, the proposed JCBF is precise on locating the centroid of the target.

Figure 11. The response map of JCBF (target 2 in frame 131).
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3.3.3. Weak Targets

Figure 12a–c give the results of target 12 given by all trackers. Under a low signal-
to-clutter/noise ratio (SCR/SNR) environment, the existing detectors have poor detection
performance and cannot provide effective measurements for trackers, which results in
tracking errors of traditional tracking-by-detection tracker (EKF, GGIW). As Figure 12
shown, EKF is prone to produce location errors and GGIW incorrectly estimates the target’s
size due to the obtained valid measurements. However, as displayed in Figure 12d–f, the
JCBF is still able to accurately capture target 12 because of the high-confidence responses
of the KCF module. Moreover, the feedback strategy continuously feeds repositioned
high-confidence measurements and samples to the EKF and KCF modules, which improves
the stability of the proposed JCBF at low SNR.

Figure 12. Tracking results of target 12 at some key frames. (a–c) The rusults of four trackers. (d–f)
The responses of the proposed JCBF.

According to the above analysis, the performance of the JCBF is significantly bet-
ter than the traditional methods since both the appearance information and the motion
information of the target are utilized.

4. Discussion
4.1. Associations with Previous Research

Traditional radar target tracking algorithms rely on temporal evolution models and
observation models, using the accumulated detector measurement as input with the aim of
iteratively calculating the posterior PDF of the target’s kinematic state. These techniques
can be described within unified Bayesian formalism [4]. With the improvement of modern
radar resolution, the extended characteristics of targets have received more attention, while
a number of extended target tracking algorithms within the Bayes framework have been
proposed [5].

In the field of visual target tracking, the specificity of the target’s appearance features make
it important for specific target discrimination. At the same time, the complexity of appearance
features also make them intractable to model statistically, leading to a range of data-driven
learning-based algorithms [18,20]. These algorithms allow for the efficient extraction and char-
acterization of the target’s appearance information, but also directly lead to the representation
of the appearance features being hard to include in the unified Bayesian formalism.

This paper proposes a method that incorporates the output of CF into a BF formalism,
thus providing a scheme combining the appearance information extracted by learning-
based algorithms with the motion information of the target, which is derived from the
idea of regarding the output of the CF as a PDF of the target position in [23]. Through
this, the proposed method would combine the specificity of the appearance representation
provided by learning-based algorithms with the memorability of motion properties offered
by Bayesian approach. The experimental results demonstrate the effectiveness of the
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proposed method, which has significant advantages over the traditional BF and CF in
scenarios of clutter interference, target’s shape changing, and low SNR.

Based on the unity of the Bayesian formalism, it is reasonable to believe that most
tracking algorithms which can be described within Bayesian formalism have the potential
to be combined with CF using the method proposed in this paper.

4.2. Suggestions for Future Work

On the one hand, the CF relies on labeled data for initialization, which makes the
proposed method’s automatic initiation become problematic. It is essential to address the
tracker’s automatic initiation. On the other hand, the combination of other data-driven
algorithms with Bayesian formalism and the extension of this method to multi-target
scenarios are also subject to further research.

5. Conclusions

This paper proposes a new tracking framework based on correlation filter and Bayes filter
for marine radar single-target tracking. The proposed JCBF is able to track the motion state and
appearance of the target simultaneously by fusing the correlation filter and Bayes filter. Taking
into account more available information of the radar target, the proposed method maintains
robustness in the complex environment. The feedback structure improves the tracker’s stability
and the scale adaptive strategy enables the tracker to adapt to the targets’ shape changing.
Experiments on X-band marine radar data demonstrate that the JCBF performs better than
traditional methods in some complex situations such as clutter interference, target’s shape
changing, and low SNR. The experiments also indicate that statistical learning methods like
KCF have the potential to be used widely in radar target tracking.

There is still some room for improvement of multi-target tracking in the proposed method.
Further, a JCBF-based multi-target tracking framework will be investigated in depth.
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Appendix A. The Process of EKF

This paper uses the first-order extended Kalman filter to deal with the nonlinear
filtering problems:

xk+1 = fk(xk) + uk, (A1)

zk = Hkxk + nk. (A2)

where xk = [r, θ, νr, νθ ]
T , uk and nk are additive Gaussian white noise, and E

{
ukuT

i
}
=

Qkδki, E
{

nknT
i
}
= Rkδki.

The main steps are as follows:

1. Assuming that the estimation x̂k−1 and the covariance matrix of the estimation errors
∑k−1 have been obtained at time k− 1.

2. Calculating the Jacobi matrix F(xk) of fk(·):

https://radars.ac.cn
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F(xk) =


r+νrT√

r2+2rνr+(νr2+νθ
2)T2

0 (r+νrT)T√
r2+2rνr+(νr2+νθ

2)T2
νθ T2√

r2+2rνr+(νr2+νθ
2)T2

− νθ T
r2+2rνr+(νr2+νθ

2)T2 1 − νθ T2

r2+2rνr+(νr2+νθ
2)T2

(r+νrT)T
r2+2rνr+(νr2+νθ

2)T2

0 0 1 0
0 0 0 1

. (A3)

3. Predicting the state x̂−k−1 at time k:

x̂−k = fk−1(x̂k−1). (A4)

4. Calculating the covariance matrix:

∑−
k = F(x̂k−1)∑k−1FT(x̂k−1) + Qk−1 (A5)

5. Calculating the Kalman gain matrix:

Kk = ∑−
k HT

k

(
Hk∑−

k HT
k + Rk

)−1
(A6)

6. Updating the state estimation:

x̂k = x̂−k + Kk
(
zk − Hk x̂−k

)
(A7)

7. Calculating the covariance matrix:

∑k = (I − Kk Hk)∑−
k (A8)

x̂k and ∑k denote the mean mx and the covariance matrix ∑x in (23), respectively:

mx = x̂−k + Kk
(
zk − Hk x̂−k

)
, (A9)

∑x = (I − Kk Hk)∑−
k . (A10)

Appendix B. The Derivation of Motion Model

In the Cartesian coordinate system, the state of the target can be expressed as[
x, y, νx, νy

]T , where x and y denote the target’s position, νx and νy denote the target’s
velocity. Assuming that the radar’s scanning period is T, the CV motion model can be
expressed as: 

x
y
νx
νy


k+1

=


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1




x
y
νx
νy


k

. (A11)

In the polar coordinate system, the motion state of the target can be represented by
xk = [r, θ, νr, νθ ]

T , where r denotes the radial range between the target and the radar, θ
denotes the azimuth, νr denotes the radial velocity and νθ denotes the tangential velocity.
As shown in Figure A1, the parameters of the polar and Cartesian coordinate systems
conform to the following transformation relationship [31]:

r =
√

x2 + y2

θ = arctan
( y

x
)

νr =
xνx+yνy√

x2+y2

νθ =
xνy−yνx√

x2+y2

. (A12)
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Figure A1. Geometric relationship between the target and the radar.

According to (A12), the motion model (A11) in the polar coordinate system can be
expressed as: 

r
θ
νr
νθ


k+1

= f




r
θ
νr
νθ


k

, (A13)

where

f (·) =


√
(r cos θ + (νr cos θ − νθ sin θ)T)2 + (r sin θ + (νr sin θ + νθ cos θ)T)2

arctan
(

r sin θ+(νr sin θ+νθ cos θ)T
r cos θ+(νr cos θ−νθ sin θ)T

)
(νr sin θ + νθ cos θ) sin θ + (νr cos θ − νθ sin θ) cos θ
(νr sin θ + νθ cos θ) cos θ − (νr cos θ − νθ sin θ) sin θ

. (A14)
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