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Abstract: Pine wilt disease (PWD) is the most dangerous biohazard of pine species and poses a serious
threat to forest resources. Coupling satellite remote sensing technology and deep learning technology
for the accurate monitoring of PWD is an important tool for the efficient prevention and control
of PWD. We used Gaofen-2 remote sensing images to construct a dataset of discolored standing
tree samples of PWD and selected three semantic segmentation models—DeepLabv3+, HRNet, and
DANet—for training and to compare their performance. To build a GAN-based semi-supervised
semantic segmentation model for semi-supervised learning training, the best model was chosen as the
generator of generative adversarial networks (GANs). The model was then optimized for structural
adjustment and hyperparameter adjustment. Aimed at the characteristics of Gaofen-2 images and
discolored standing trees with PWD, this paper adopts three strategies—swelling prediction, raster
vectorization, and forest floor mask extraction—to optimize the image identification process and
results and conducts an application demonstration study in Nanping city, Fujian Province. The results
show that among the three semantic segmentation models, HRNet was the optimal conventional
semantic segmentation model for identifying discolored standing trees of PWD based on Gaofen-2
images and that its MIoU value was 68.36%. Additionally, the GAN-based semi-supervised semantic
segmentation model GAN_HRNet_Semi improved the MIoU value by 3.10%, and its recognition
segmentation accuracy was better than the traditional semantic segmentation model. The recall
rate of PWD discolored standing tree monitoring in the demonstration area reached 80.09%. The
combination of semi-supervised semantic segmentation technology and high-resolution satellite
remote sensing technology provides new technical methods for the accurate wide-scale monitoring,
prevention, and control of PWD.

Keywords: pine wilt disease (PWD); semi-supervised; semantic segmentation; satellite remote
sensing; accurate monitoring

1. Introduction

Pine wilt disease (PWD) is one of the most dangerous forest biohazards in China.
PWD is also known as the “cancer of pine trees” because of its highly infectious and lethal
characteristics and is a devastating disease for pine species. The pine wood nematodes
(Bursaphelenchus xylophilus) that cause the disease are native to North America and have
spread to other regions [1,2]. Currently, PWD is mainly located in China, Korea, and Japan
in East Asia; Portugal and Spain in Europe; and the United States, Mexico, and Canada
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in North America [3]. PWD was first detected in mainland China in 1982 in Nanjing,
Jiangsu Province [4], after which the disease continued to spread outward, with Jiangsu,
Guangdong, Shandong, and Zhejiang Provinces consecutively discovering PWD in sub-
sequent years [5,6]. By the end of 2021, the PWD epidemic had occurred in 742 counties
(districts and cities) of China’s 19 provinces (districts and cities) and 5530 townships and
34.05 million sub-compartments of pine forests [7], thus seriously undermining the ecolog-
ical security of pine forests, threatening national forest resources, and causing immense
economic losses.

Presently, the prevention and control of PWD are becoming increasingly difficult;
traditional monitoring mainly uses field surveys, which are time-consuming and laborious;
furthermore, some areas have dense forests and treacherous terrain, hindering the ability
to accurately monitor and master PWD epidemic information [8]. Remote sensing images
have the unique advantages of real-time dynamics, large area coverage, low susceptibility
to environmental interference, and short cycle time, which are conducive to the monitoring,
localization, and evaluation of variegated pine trees and provide a new and effective way
to monitor PWD.

The canopies of pine wood nematode-susceptible pine trees and healthy pine trees
show different reflectance spectral characteristics, and the different stages of the chlorophyll
content and leaf water content of susceptible pine trees show different reflectance spectral
characteristics, which supports early monitoring of these trees based on remote sensing
images [9,10]. Earlier use of remote sensing images for monitoring PWD was mainly
based on the analysis of different spectral values exhibited by susceptible trees and healthy
pine trees [11,12]. Subsequently, researchers investigated the identification of typical band
features, the construction of spectral feature indicators, and the determination of the
relationship between spectral features and plant physiological characteristics, revealing the
characteristics of PWD via actual spectral observations [13–15] and applying this property
to PWD monitoring using satellite remote sensing images [16–18].

Since the 21st century, an increasing number of scholars have carried out research on
forest disease and pest monitoring based on sub-meter-resolution satellite remote sensing
images [19]. Meanwhile, the application of machine learning techniques in high-resolution
satellite imagery ensures the advantages of satellite image monitoring. Decision trees,
support vector machines, and other machine learning techniques were used to identify
PWD based on the spectral features of pine trees susceptible to pine wood nematode
disease [20–22], and image enhancement techniques such as panchromatic sharpening
methods were utilized to improve the image feature display of discolored standing trees
with PWD while machine learning techniques were used for classification, both of which
achieved high monitoring accuracy [22,23]. Additionally, some scholars have conducted
research on the possibility of detecting PWD using remote sensing data under multi-
resolution multi-sensor conditions; verified the feasibility of PWD detection by high-
resolution images [14,24]; and identified areas of PWD in true color, high-resolution images
using a decision tree algorithm [25].

Deep convolutional neural networks have been widely employed in computer vision
and other fields in recent years by virtue of their accurate and efficient image recognition
capabilities and have been introduced into the field of remote sensing for remote sensing
big data analysis [26,27]. Based on numerous samples, multiple implicit layer neurons
were used to meet the needs of remote sensing technology for disease and pest monitoring.
However, the current remote sensing processing methods based on deep convolutional
neural networks are mostly applied in the fields of land use type classification and vehicle-
ship target recognition [28,29], while only a few studies have involved PWD monitoring and
control, and most of them investigated the monitoring of PWD incidence areas. Huang et al.
(2022) constructed a pine nematode disease sample dataset based on enhanced Gaofen-2
images, used a deep convolutional neural network model for the identification of PWD
incidence areas, and achieved an accuracy of 94.90% [30]. Zhou et al. (2022) rapidly located
PWD-infected areas by classifying and identifying high-resolution satellite remote sensing
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images with a deep convolutional neural network technique [31]. Zhang et al. (2021)
applied spectral indices combined with spatial convolution image enhancement techniques
to achieve a monitoring method for spatiotemporal variation with a 13.5% improvement in
direct classification accuracy compared with the use of a single date image [18]. To find the
area of PWD incidence in a wide range of detection, the disease needs to spread to a certain
extent before it is easy to detect as it is very easy to miss new occurrences of PWD, which
offers limited assistance to the actual control work.

Most existing studies on satellite image-based PWD surveillance are conducted at
the regional scale, and traditional deep learning techniques have the disadvantage of
requiring the construction of large sample datasets. There are few studies on deep learning
techniques in the PWD surveillance of discolored standing trees, especially semi-supervised
learning. This study investigates a semi-supervised deep semantic segmentation model
suitable for remote sensing image recognition and monitoring of discolored standing trees
with PWD. First, a sample dataset is established by using diseased standing trees with
PWD in Gaofen-2 remote sensing images. Second, three semantic segmentation models
(DeepalBV3+, HRNet, and DANet) are trained based on the sample datasets, the model
with the best effect is selected as the generator, and a GAN-based semi-supervised semantic
segmentation model is built. After model optimization, a semi-supervised deep semantic
segmentation model suitable for identifying PWD-inflicted trees in satellite remote sensing
images is formed. The model obtained in this study can compensate for the lack of accuracy
in identifying disease-susceptible pine trees in remote sensing images for PWD surveillance
and the labor and time costs of building a training sample set in traditional deep learning.
Thus, this study aims to provide a technical method reference for accurate and efficient
monitoring of discolored standing trees with PWD from satellite remote sensing images.

2. Material and Methods
2.1. Study Area

The study area of this paper includes Luotian County in Hubei Province (Figure 1a);
Shunchang County, Jianou city, and Yanping District in Fujian Province (Figure 1b);
Chun’an County in Zhejiang Province (Figure 1c); and Gan County in Jiangxi Province,
for a total of four areas (Figure 1d). Luotian County (115◦06′–115◦46′E, 30◦35′–31◦16′N)
is part of Huanggang city, Hubei Province; it was officially declared a PWD epidemic
area by the State Forestry Administration of China in February 2018. Shunchang County
(117◦30′–118◦14′E, 26◦39′–27◦12′N), Jianou city (117◦58′–118◦57′E, 26◦38′–27◦20′N), and
Yanping District (117◦50′–118◦40′E, 26◦15′–26◦52′N) are part of Nanping city, Fujian
Province, and PWD has occurred there for many years since 2008. Chun’an County
(118◦20′–119◦20′E, 29◦11′–30◦02′N) is part of Hangzhou city, Zhejiang Province, and forest
cover comprises 76.89% of this region [32]. In addition, PWD occurred in 139.47 hectares,
with 2769 diseased trees in 2018 [33]. Ganxian District (114◦42′–115◦22′E, 25◦26′–26◦17′N)
is part of Ganzhou city, Jiangxi Province, where 326.43 hectares of pine nematode disease
incidence and 878 dead pine trees were detected in 2014.
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Figure 1. Study area (red dots indicate PWD infestation sites).

2.2. Remote Sensing Image Data

In this study, 21 scenes of Gaofen-2 images of product grade 1A, covering a total of six
districts and counties in four provinces, namely Hubei, Zhejiang, Jiangxi, and Fujian, were
employed (Figure 1). Among them are Luotian County, Hubei Province; the junction of
Shunchang County, Jianou city, and Yanping District, Fujian Province; An County, Zhejiang
Province; and Gan County District, Ganzhou City, Jiangxi Province. Details of the data are
shown in Table 1.

Table 1. Remote sensing image data details.

Province Numbers
/Scenes Resolution/m

Cloud
Percent
/%

Receive
Time

Coverage
Area /km2

Hubei 3 1 m <5 2018.10.04 1193.87
Fujian 3 1 m <5 2019.09.19 1229.23
Zhejiang 2 1 m <5 2022.05.12 770.58
Jiangxi 13 1 m <5 2019.09.24 4162.13

2.3. Ground Survey Data and Woodland Distribution Data

Based on high-resolution satellite images and unmanned aerial vehicle (UAV) im-
ages, visual interpretation was conducted to discover suspected PWD discolored standing
trees, and then, a ground investigation was conducted to verify and identify them as
ground investigation sites. Ground survey site data were obtained from the Center for
Biological Disaster Prevention and Control of the State Forestry and Grassland Adminis-
tration of China (https://www.bdpc.org.cn/ (accessed on 16 January 2022)). Within the
image coverage, there are 153 locations in Luotian County, Hubei Province; 119 locations

https://www.bdpc.org.cn/
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in Nanping City, Fujian Province; 110 locations in An County, Zhejiang Province; and
959 locations in Gan County District, Jiangxi Province (Figure 1).

Woodland distribution data from the 10 m resolution land cover data
FEOM_GLC10 [34], ground survey data, and forest distribution data can assist in the visual
interpretation, image annotation, and result optimization of PWD discolored
standing trees.

2.4. Construction of a Semantic Segmentation Sample Dataset for PWD Discolored Standing Trees

In this study, based on Gaofen-2 satellite image data, ground survey point data, and
woodland distribution data, the construction of a sample dataset for semantic segmenta-
tion of PWD discolored standing trees was carried out, and ArcGIS 10.4 software (ESRI,
Redlands, CA, USA) and the Python GDAL library (https://gdal.org/ (accessed on 14
September 2020)) were utilized to construct a sample dataset.

The raster labels were made by manually labeling some areas of discolored standing
trees with PWD using ArcGIS 10.4 software. To avoid the problem of memory overflow due
to the direct input of the whole scene image into the deep learning network, the whole scene
image needed to be cropped into image blocks. Python was used to build a sliding window
algorithm to crop the original image and raster labels with a sliding step of 256 pixels, and
the cropped original image corresponded to the raster label image. A small number of
manually labeled PWD discolored standing trees were selected as labeled sample data,
which could be applied for supervised learning and semi-supervised learning experiments.
Numerous unlabeled samples served as unlabeled sample data only for semi-supervised
learning experiments.

2.5. Construction of the Deep Semantic Segmentation Model

In this study, DeepLabv3+, HRNet, and DANet models were built using the Ten-
sorFlow framework with superior performance for deep semantic segmentation network
models. According to the Gaofen-2 remote sensing image and sample size characteristics
and recognition results, which only contained discolored standing trees and background
requirements, the input size of the three models was set to (256 × 256 × 4), and the output
size of the models was set to (256× 256× 2). Fifty-fold cross-validation of the DeepLabv3+,
HRNet, and DANet models was performed based on 2288 training validation sample
datapoints from the Gaofen-2 PWD semantic segmentation sample dataset. The model
performance was evaluated by (i) the validation set MIoU (mean intersection over union),
(ii) the number of model parameters, (iii) the convergence speed (the number of training
rounds where the model reaches the maximum MIoU), and (iv) the training time. The
four evaluation indices were comprehensively compared to obtain the model with the best
performance in identifying discolored standing trees with PWD.

MIoU is the mean value of IoU for each category of objects, which is the most important
evaluation index in semantic segmentation for evaluating the accuracy of the semantic
segmentation model for image segmentation. In this study, the mean value of IoU was
determined for the two categories of PWD discolored standing trees and background.

MIOU =
1

K + 1∑K
i=0

Pii

∑K
j=0 Pij + ∑K

j=0 Pji − Pii
(1)

where Pij is the number of true values of i that are predicted to be j, Pii is the number of true
values of i that are predicted to be i, Pji is the number of true values of j that are predicted
to be i, and K + 1 is the number of categories. In this study, the value of K is 1 and the
value of K + 1 is 2, representing the two categories of PWD discolored standing trees and
background, respectively, in this study.

2.6. Semi-Supervised Semantic Segmentation Model Construction Based on GANs

The generative adversarial network (GAN) model was proposed in 2014 [35]; its
network structure is divided into two main parts: the generator and the discriminator. The

https://gdal.org/
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input to the generator is a random value that generates pseudo-sample data, with the goal
of minimizing the difference between the distribution of pseudo-sample data and that of
real data. The inputs to the discriminator are the real sample data and the pseudo-sample
data from the generator. The two kinds of data are discriminated, and the discriminant
result is fed to the generator model to train the generator, whose goal is to maximize the
distribution gap between the pseudo-sample data and the real data. In the whole network
training process, the two are implemented through a dynamic adversarial game so that the
whole network continuously enhances optimization and achieves a Nash equilibrium. In
semi-supervised learning, the model is trained to learn based on labeled sample data and
unlabeled sample data. The model utilizes unlabeled sample data, which allows the model
to fully learn the data and enhances the model generalization performance.

2.6.1. GAN-Based Supervised Semantic Segmentation Model

The best performing models selected from the recognition performance analysis of
three deep semantic segmentation models, DeepLabv3+, HRNet, and DANet, were chosen
as the generators of GANs, and a convolutional neural network model including 3 con-
volutional layers and 1 upsampling layer was constructed as a discriminator to construct
a GAN-based semantic segmentation model. The convolutional neural network model
of this discriminator was set to a step size of 2 for the first 3 convolutional operations for
downsampling, and the feature map size was reduced by half to enable the discriminator to
extract more contextual information. The last upsampling made the output bit space proba-
bility map size and the input classification map size consistent, and the pixel classification
was performed by the sigmoid activation function (Figure 2). The generator was a semantic
segmentation network that was used to generate the classification map of an image. The
input of the generator was a labeled sample image with an input size of (256 × 256 × 4),
and the output of the generator was a classification map with a size of (256 × 256 × 2). The
discriminator was used to discriminate whether each pixel in the classification graph input
to the discriminator was a real label or a classification result generated by the generator.
The input to the discriminator was a (256 × 256 × 2) classification graph and real labels,
and the output was a (256 × 256 × 1) bit-space probability graph. The value of each pixel
point in the spatial probability map ranged from 0 to 1, representing the confidence that
this pixel point is the true label. If the value of this pixel point is closer to 1, then the pixel
point at the corresponding position in the input classification map is the true label, and the
discriminator judges that the pixel point at the corresponding position is the classification
result generated by the generator.
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The GAN-based supervised semantic segmentation model is not applicable to unla-
beled data; it is a supervised learning method, and only labeled sample images were used
for training. The loss of the generator of this model consists of two parts. The first part
is the cross-entropy loss of the classification result and the true label obtained from the
labeled sample images passing through the generator. The second part is the discriminant
result of the discriminator and the adversarial loss of the generator.

2.6.2. Semi-Supervised Semantic Segmentation Model Based on GAN

In this study, we have constructed a semantic segmentation model suitable for iden-
tifying discolored standing trees with PWD based on the GAN-based semi-supervised
semantic segmentation method proposed by Hung [36] (Figure 3). The model adds the
learning mechanism of unlabeled sample images to the former, which can be learned for
both labeled sample images and unlabeled sample images. The core of the model is that the
discriminator identifies plausible regions in the classification results of unlabeled images,
i.e., the pixel regions of discolored standing trees, thus providing additional supervised
signals for the training of the generator to achieve semi-supervised learning and to enhance
the semantic segmentation performance of the generator. The structure of the model is
basically similar to the former. The main difference is that the input of the generator varies,
the input of the semi-supervised semantic segmentation model generator is labeled sample
images and unlabeled sample images, the sizes of the input and output results are the
same as the former, and the input and output results of the discriminator are the same as
the former.
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The loss function of the generator of this model differs from the former in that its
loss consists of three parts. The first part is the cross-entropy loss of the classification
result and the true label obtained from the labeled sample image after the generator.
The second part is the discriminant result of the discriminator and the adversarial loss
of the generator. The third part is the semi-supervised loss of plausible regions. After
adding the unlabeled sample images, the generator identifies and classifies them, obtains
the classification results and the plausible regions of the recognition results through the
discriminator (the discriminator discriminates the pixel points in the classification map as
the regions composed of the true labeled pixel points), keeps the plausible regions as the
true labels of the unlabeled sample images, and thus obtains the cross-entropy loss function
values of the unlabeled sample images (semi-supervised loss of plausible regions).
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2.7. Semi-Supervised Semantic Segmentation Model Optimization Based on GANs
2.7.1. Model Macro Restructuring

In this study, the structure of the GAN-based semi-supervised semantic segmentation
model was improved to enhance the recognition capability of the model. Based on the dis-
criminator constructed by three convolutional downsampling layers and one upsampling
layer at the beginning, we tried two structural ways to increase the semantic segmentation
accuracy of this model by structural adjustment. The first discriminator structure removed
the downsampling and upsampling layers based on the original discriminator structure,
and the discriminator consisted of 4 convolutional layers. The step size was set to 1 during
the 4 convolutional operations without downsampling, and the size of the feature map
remained unchanged during the calculation. The second type added two convolutional
layers to the original discriminator structure, and the discriminator consisted of five con-
volutional downsampling layers and one upsampling layer. The first five convolutional
operations were set to 2 steps for downsampling, and the last upsampling operation made
the output layer size and the input map size consistent [36].

2.7.2. Model Hyperparameter Optimization

In addition to the structure of the deep convolutional neural network, the hyperpa-
rameters set when training the model have a direct impact on the knowledge effect of the
semantic segmentation model. The hyperparameters that have an important role in the
network feature learning performance are batch size and learning rate.

For batch size, augmentation within a reasonable range can improve the efficiency of
hardware memory usage, reduce the number of parameter updates during each round of
sample training, increase the processing speed of the same data volume, stabilize the
model training process, and improve the accuracy of the stochastic gradient descent
direction [37,38]. However, a batch size beyond a reasonable range may degrade the
generalization performance of the model and may cause the model to be untrained due to
insufficient hardware memory capacity. The batch size is generally set to the nth power
of 2 to adapt to the storage and computation methods of the computer hardware. In this
study, the batch size was set to 2, 4, and 8 to identify the most suitable batch size for the
constructed semi-supervised semantic segmentation model.

For the learning rate, an excessively high value will cause the gradient of the model
to fall too fast in backpropagation, thus missing the solution of the minimization loss
function, which will limit or even reduce the accuracy of the model in segmenting the
discolored standing trees with PWD. However, excessively low values make the correction
of the weight parameters slow and may make the model fall into the local optimal solution
of the minimization loss function instead of the global optimal solution, which not only
reduces the speed of network convergence but also leads to poor model accuracy. A smaller
learning rate is generally utilized in deep learning to train the network, allowing the model
to fully learn the features of the dataset. In this study, we set 6 learning rates with sizes of
1.0 × 10−1, 1.0 × 10−2, 1.0 × 10−3, 1.0 × 10−4, 1.5 × 10−5 and 1.0 × 10−5 and compared
the training effects of the models with different learning rates to identify the most suitable
learning rate for the constructed semi-supervised semantic segmentation model.

2.8. Optimization and Evaluation of Discolored Standing Tree Identification Results of PWD
2.8.1. Swelling Prediction

When using a sliding window for traversal cropping of remotely sensed images, it will
affect the recognition of discolored standing trees with PWD at the edges due to there being
less contextual information in the edge area of each image block obtained by cropping.
To solve this problem, this study adopted the method of expansion prediction for image
recognition with swelling prediction. The sliding window size was set to 256 × 256, the
sliding step size was set to 128 each time, and only the recognition result of the center part
of 128 × 128 size was retained for each recognition, thus avoiding inaccurate recognition
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results of discolored standing trees with PWD caused by the feature extraction problem of
the boundary.

2.8.2. Woodland Mask Extraction

Satellite remote sensing feature types are complex, and red houses, bare ground,
and other features can interfere with the predicted recognition of PWD discolored stands,
producing false recognition results such as red houses in the recognition results of PWD
discolored stands. The PWD discolored standing trees were distributed in forests, and the
point file after vectorization of the model recognition results was extracted by masking
using the forest distribution data, which can remove some incorrect recognition points and
improve the accuracy of PWD discolored standing tree recognition.

2.8.3. Evaluation of Results

Manual labeling results of PWD discolored standing trees were obtained based on
manual visual interpretation, and the model recognition results were compared with
the former. The model recognition results were evaluated using the precision rate P,
recall rate R, and F1 score. The precision rate P is used to measure the accuracy of the
model in identifying PWD discolored trees. The recall rate was applied to assess the
comprehensiveness of the model in identifying PWD discolored standing trees. The F1
score was the summed average of the precision rate P and the recall rate R, taking both into
account. The indicators were calculated as follows:

P =
TP

TP + FP
(2)

R =
TP

TP + FN
(3)

F1 =
2× P× R

P + R
(4)

where TP represents the number of correctly identified PWD discolored stands, FP rep-
resents the number of other features that were incorrectly identified as PWD discolored
stands, and FN represents the number of PWD discolored stands that were incorrectly
identified as other features.

3. Results
3.1. Sample Dataset for Semantic Segmentation of PWD Based on Gaofen-2 Images

A total of 438,342 sample images were obtained based on the Gaofen-2 images, from
which 8615 samples containing pine nematode discolored standing trees were selected,
and 2099 samples out of these had real labels. In order to enhance the generalization
performance of the model, we added 1385 samples of other various feature types (houses,
water bodies, bare ground, grassland, etc.), of which 952 samples had real labels.

The sample dataset of this study consisted of 10,000 samples, divided into 3051 labeled
samples and 6949 unlabeled samples. The 3051 labeled samples were used for supervised
learning and semi-supervised learning experiments, and the other 6949 unlabeled samples
were used for semi-supervised learning experiments only (Figure 4).
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3.2. Analysis of Recognition Performance of Three Traditional Semantic Segmentation Models

Fine identification of PWD discolored standing trees was performed by the
DeepLabv3+, HRNet, and DANet models based on 2288 training sample datapoints from
the semantic segmentation sample dataset of Gaofen-2 images. The study results show that
HRNet was the most suitable semantic segmentation model for PWD discolored standing
tree identification, which showed an optimal performance with the highest MIoU values
and the lowest number of parameters (Table 2). Compared with DeepLabv3+, HRNet
improved the MIoU by 10.78% and reduced the number of parameters to 41.37% of that
of the former at the cost of 4.76 h of training time and four rounds of convergence speed.
Compared with DANet, HRNet’s MIoU was 7.9% higher, the number of parameters was
only 23.79% of that of the former, and the training time was 6.95 h less than that of the
former. Only the convergence speed was 21 rounds greater than that of the former, and
the overall performance was much better than that of the former. The HRNet model was
selected to build a semi-supervised semantic segmentation model based on GANs, taking
into account the results of the four evaluation indices: MIoU, number of model parameters,
convergence speed, and training time.

Table 2. Performance comparison of three semantic segmentation models.

DeepLabv3+ HRNet DANet

MIoU (%) 55.55 66.33 58.43
Parameters 41,253,618 17,066,874 71,730,442

Convergence rate (time) 28 34 13
Training time (s) 29,686 46,824 71,859

3.3. Analysis of the Recognition Effect of the GAN-Based Semi-Supervised Semantic
Segmentation Model

GAN_HRNet_Semi, a semi-supervised semantic segmentation model based on GANs,
improved the semantic segmentation accuracy of PWD discolored standing trees by adding
unlabeled data (Table 3). As the GAN-based semi-supervised semantic segmentation
model GAN_HRNet_Semi added discriminators, the number of parameters increased by
500,000 compared with HRNet. The training time of GAN_HRNet_Semi increased due to
the addition of numerous unlabeled image data, which increased the computational load of
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the model. Additionally, the training time of GAN_HRNet_Semi was 1.6 times longer than
that of HRNet and 1.2 times longer than that of GAN_HRNet, but its semantic segmentation
accuracy improved, and the MIoU in the test set reached 68.36%, which is 3.10% higher than
that of HRNet and 1.81% higher than that of GAN_HRNet. The MIoU value of HRNet in the
test set was 65.26%, which is lower than that of both GAN_HRNet and GAN_HRNet_Semi,
but the convergence speed was the fastest, the number of parameters was the lowest,
and the training time was the shortest among the three models. GAN_HRNet added the
idea of a GAN to HRNet, following which the MIoU value increased by 1.29% compared
with HRNet, the model convergence speed was slower than HRNet, and the training time
increased by 1.037 h compared with HRNet.

Table 3. Experimental results of the GAN-based semi-supervised semantic segmentation model.

HRNet GAN_HRNet GAN_HRNet_Semi

MIoU (%) 65.26 66.55 68.36
Parameters 17,066,874 17,599,749 17,599,749

Convergence rate (time) 23 46 48
Training time (s) 9846 13,580 15,809

3.4. Optimization Results of the GAN-Based Semi-Supervised Semantic Segmentation Model
3.4.1. Analysis of Model Macrostructural Adjustment Results

Based on the semantic segmentation sample dataset of Gaofen-2 PWD images, an
experimental study of discriminator structure adjustment was conducted. The results of
the study showed that the discriminator consisting of the structure of three convolutional
layers and one upsampling layer, constructed at the beginning, was most suitable for the
GAN_HRNet_Semi model to recognize the discolored standing trees with PWD (Table 4).
Structure Adjustment 1: The downsampling operation of the starting structure was adjusted
to an ordinary convolution operation without downsampling, and the size of the feature
map was kept unchanged, which increased the computational load of the model and
increased the training time by 0.7 times. The model converged eight rounds at a faster
rate, but the speed of convergence and the increase in training time did not improve the
MIoU value. The MIoU decreased by 0.54% after the structure adjustment. Structure
Adjustment 2: Two downsampling layers were added to the starting structure, resulting in
the size of the feature map becoming one-thirtieth of a second of the original size after the
discriminator performed five downsampling operations. The proportion of pixels occupied
by PWD discolored stands in the input map was too small, causing the loss of pine wood
nematode variegated stand information and making it difficult for the discriminator to
extract the feature information of discolored stands, thus resulting in the adjusted MIoU
being 4.09% lower than before adjustment. In summary, both structural adjustments failed
to improve the image segmentation ability of the original model for the discolored standing
trees with PWD, and so the discriminator structure designed at the beginning was the most
suitable for this research task.

Table 4. Results of discriminator structure adjustment.

Start Structure Structure
Adjustment 1

Structure
Adjustment 2

MIoU (%) 68.36 67.82 64.27
Parameters 17,599,749 17,267,845 19,830,597

Convergence rate (time) 48 40 50
Training time (s) 15,809 26,979 15,773

3.4.2. Analysis of Model Hyperparameter Optimization Results

The batch size comparison results (Table 5) showed that a batch size of two is the
appropriate batch size for GAN_HRNet_Semi for PWD discolored standing tree extraction.
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Compared with a batch size of four, when the batch size was reduced to two, the perfor-
mance balance of the generator and the discriminator in the model was easier to maintain
as the batch size was smaller, and the adversarial loss in the training process accelerated the
training of the generator, which increased the convergence speed of the model by 25 rounds,
caused the generator to extract more feature information, and enhanced the generalization
performance of the model, thus increasing the MIoU value of the model by 2.06% to 70.42%.

Table 5. Model training results under different batch size conditions.

bt2 bt4

MIoU (%) 70.42 68.36
Parameters 17,599,749 17,599,749

Convergence rate (time) 23 48
Training time (s) 18,899 15,809

The learning rate comparison results (Table 6) showed that a learning rate of 1.0× 10−3

is the appropriate learning rate for GAN_HRNet_Semi for PWD discolored standing tree
extraction. First, when the learning rate was set to 1.0 × 10−1, an explosion of loss values
occurred, and the model could not converge. When the learning rate was reduced from
1.0 × 10−1 to 1.0 × 10−3, the results showed that the learning rate was reasonably reduced
to increase the accuracy of model recognition, the convergence speed was accelerated,
and the model stability and generalization performance were enhanced. When the learn-
ing rate was set to 1.0 × 10−3, the MIoU value reached the maximum value of 72.02%,
and the model recognition accuracy was the highest. Second, when the green learning
rate decreased from 1.0 × 10−3 to 1.0 × 10−5, the recognition accuracy of the model
gradually decreased.

Table 6. Model training results under different learning rate conditions.

1.0 × 10−1 1.0 × 10−2 1.0 × 10−3 1.0 × 10−4 1.5 × 10−5 1.0 × 10−5

MIoU (%) 61.11 71.68 72.02 71.44 70.42 69.41
Parameters 17,599,749 17,599,749 17,599,749 17,599,749 17,599,749 17,599,749

Convergence rate (time) N/A 48 23 40 23 49
Training time (s) 18,315 18,576 18,953 18,935 18,899 18,720

3.5. Identification Results of Gaofen-2 Remote Sensing Monitoring Application Demonstration
of PWD

Through the model structure adjustment experiment and the optimization
of hyperparameters, the GAN-based semi-supervised semantic segmentation model
GAN_HRNet_Semi was trained to identify pine nematode discoloration standing trees with
the best performance. Based on the model, the three methods of swelling prediction, raster
vectorization, and forest floor mask extraction were combined to optimize the results of
PWD discolored tree identification and monitoring and to identify discolored trees covering
the occurrence of PWD in three Jing Gaofen-2 remote sensing shadows in Nanping city,
Fujian Province. Nanping city is located in a subtropical, maritime monsoon climate, which
is suitable for the growth and reproduction of PWD. The region is a heavy epidemic area,
with the onset of PWD in the three districts and counties occurring at different times and
having a strong representation.

The experimental results showed that under the premise of focusing on the recall
rate index in PWD discolored tree monitoring, two methods of optimization of the PWD
discolored tree identification results—swelling prediction and stand extraction—had the
best identification effect, with 69.61% identification accuracy, 80.09% recall rate, and 74.48%
F1-score (Table 7, Figure 5). Compared with the inflated prediction process for recognition
results only, adding the forestland extraction optimization method improved the accuracy
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and F1-score of this model by 0.51% and 0.24%, reaching 69.61% and 74.48%, respectively,
while the recall rate was reduced by only 0.03%.

Table 7. Monitoring results of pine wilt nematodes in Shunchang County, Jianou city, and
Yanping District.

Inflation Prediction Inflation Prediction + Extract
by Woodland

Manual labeled (number) 2596 2586
Model prediction (number) 3010 2975

Correct identification (number) 2080 2071
Precision (%) 69.10 69.61

Recall (%) 80.12 80.09
F1-score (%) 74.20 74.48
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city, and Yanping District. (a) Results of selected swelling prediction, (b) results of manual labeling,
(c) results of selected swelling prediction combined with extraction by stand, and (d) results of manual
labeling combined with extraction by stand.

4. Discussion

This study used a semi-supervised deep learning semantic segmentation technique
to monitor and identify discolored standing trees with PWD in high-resolution remote
sensing images. First, a sample dataset for semantic segmentation of PWD was con-
structed based on discolored trees with PWD in Gaofen-2 images, and three deep learning
semantic segmentation models with superior performance—DeepLabv3+, HRNet, and
DANet—were constructed for five-fold cross-validation. HRNet was determined to be the
most suitable semantic segmentation model for identifying discolored trees with PWD.
Then, a GAN-based semi-supervised semantic segmentation model, GAN_HRNet_Semi,
was constructed with HRNet as the generator and a convolutional neural network model,
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including three convolutional downsampling layers and one upsampling layer as the
discriminator to achieve semi-supervised training learning of discolored standing trees
with PWD. Furthermore, the constructed GAN-based semi-supervised semantic segmen-
tation model was optimized by improving the structure through adjustment and the two
hyperparameters of batch size and learning rate. The generator structure of 3 convolutional
downsampling layers and 1 upsampling layer, a batch size of two, and a learning rate of
1.0 × 10−3 were determined as the optimal settings for this model. The results of the study
showed that the model implemented with the optimization strategy can be employed to
monitor and identify discolored standing trees with PWD, providing an important technical
tool for the monitoring and control of PWD.

In this study, three deep learning semantic segmentation models with superior per-
formance, namely DeepLabv3+, HRNet, and DANet, were constructed to obtain the most
suitable model for this research task. HRNet can retain high-resolution feature information
while performing repetitive fusion of multi-scale feature maps due to its feature extrac-
tion [39]. The discolored standing trees with PWD in the Gaofen-2 image provide some
detailed information, prompting HRNet to achieve optimal results in this research task
with a small number of parameters.

The GAN-based semantic segmentation model GAN_HRNet was constructed by
integrating the idea of a GAN on the basis of HRNet, and the accuracy of the semantic seg-
mentation of the generator was improved by adding the discriminator and the adversarial
information generated by the generator composed of HRNet.

GAN_HRNet_Semi learns and extracts features from labeled image samples and
unlabeled image samples by semi-supervised learning. By adding unlabeled data, the
generalization performance of the GAN_HRNet_Semi generator (semantic segmentation
model) can be improved, and the model’s ability to extract and segment discolored standing
trees with PWD is enhanced. The increase in discriminators and unlabeled data leads to
an increase in computation and thus a longer training time for the model and may cause
interference with the generator due to the increased adversarial loss of the discriminators.
Therefore, the generator is not able to sufficiently learn the data features during the initial
training, thus reducing the convergence speed of the model. The results demonstrated
that the GAN-based semi-supervised semantic segmentation model GAN_HRNet_Semi
improved the segmentation accuracy of PWD discolored standing trees compared with
the traditional semantic segmentation model, although it sacrificed the training time and
model convergence speed within an acceptable range.

Few studies have applied semi-supervised deep semantic segmentation techniques
to remote sensing images for standing tree identification and monitoring of PWD. Of
these studies, deep learning techniques have only been applied to UAV remote sensing
images for PWD monitoring and classification [40] or to satellite remote sensing images
for area identification of PWD [30,31], while research based on semi-supervised deep
semantic segmentation of satellite remote sensing images for PWD discolored standing
tree identification and monitoring is lacking. Based on Gaofen-2 satellite images, this study
used deep learning technology to achieve single location identification of PWD discolored
standing trees. The identification results are finer than area identification, which improves
the accuracy of PWD satellite remote sensing identification. In this study, a GAN-based
semi-supervised semantic segmentation method was applied for the recognition of PWD
discolored standing trees, which fully utilized numerous unlabeled sample data from a
small amount of manually labeled sample data to reduce the workload of building sample
datasets and to further improve the semantic segmentation accuracy of PWD discolored
standing trees.

From the semi-supervised deep semantic segmentation technique applied here to the
segmentation of discolored standing trees with PWD in satellite remote sensing images,
good results were achieved. However, some aspects of this study still need to be improved
and extended. First, the accuracy of sample labeling was not sufficient when constructing
the sample datasets as the remote sensing feature types and weather conditions in different
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areas vary; furthermore, the onset of PWD is a gradual process, and the onset characteristics
at different stages vary. Second, verification of the results of the identification of discolored
standing trees with PWD in the demonstration area was carried out by manual visual
interpretation for comparative verification, and the verification results were not very
accurate. Third, although the highest spatial resolution of the Gaofen-2 remote sensing
images used in this study reached 0.8 m, the spatial resolution was still relatively coarse for
the segmentation of PWD discolored trees. Due to the existence of mixed image elements,
some discolored trees with small canopy widths might have been missed in the images.

5. Conclusions

Current satellite remote sensing image processing methods based on semi-supervised
deep semantic segmentation are less applied to the field of forest diseases and pests, espe-
cially in the identification of PWD discolored standing trees. By applying semi-supervised
learning to disease and pest monitoring, we can reduce the cost of sample annotation
and obtain models with high generalization performance based on limited annotated
samples. In this paper, we constructed three semantic segmentation models based on a
PWD discolored standing trees dataset for training, selected the optimal model to build
the GAN-based semi-supervised semantic segmentation model GAN_HRNet_Semi, and
adjusted and optimized the model and its practical application results to perform the appli-
cation of semi-supervised deep learning for remote sensing recognition of PWD discolored
standing trees. The MIoU value in the test set reached 72.02%, and the recall rate in the
practical application reached 80.09% in the model. The experimental results show that
the GAN-based semi-supervised semantic segmentation model achieved good results in
satellite remote sensing image identification and monitoring of PWD discolored standing
trees, which can realize macroscopic and accurate monitoring of PWD discolored standing
trees, provide information and decision support for the monitoring and control of PWD,
and reduce the ecological and economic losses.
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