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Abstract: To improve the navigation accuracy for land vehicles during global positioning system
(GPS) outages, a machine learning (ML) aided methodology to integrate a strap-down inertial
navigation system (SINS) and GPS system is proposed, as follows. When a GPS signal is available, an
online sequential extreme learning machine with a dynamic forgetting factor (DOS-ELM) algorithm
is used to train the mapping model between the SINS’ acceleration, specific force, speed/position
increments outputs, and the GPS’ speed/position increments. When a GPS signal is unavailable, GPS
speed/velocity measurements are replaced with prediction output of the well-trained DOS-ELM
module’s prediction output, and information fusion with the SINS reduces the degree of system
error divergence. A land vehicle field experiment’s actual sensor data were collected online, and the
DOS-ELM-aided methodology for the SINS/GPS integrated navigation systems was applied. The
simulation results indicate that the proposed methodology can reduce the degree of system error
divergence and then obtain accurate and reliable navigation information during GPS outages.

Keywords: global positioning system (GPS) outages; strap-down inertial navigation system (SINS);
machine learning (ML); online sequential extreme learning machine with dynamic forgetting factor
(DOS-ELM); Kalman filtering (KF); SINS/GPS integrated systems

1. Introduction

To provide global and all-weather navigation information, a strap-down inertial navi-
gation system (SINS) relies only on a gyroscope and an accelerometer to sense the motion of
the carrier in the inertial frame; it is an independent and autonomous navigation system. It
has outstanding advantages, such as continuous output of the carrier’s position, speed, and
attitude information, high short-term navigation accuracy, and complete independence [1].
It is widely used in vehicle, ship, aircraft, tactical, and strategic navigation.

With the development of the global navigation satellite system (GNSS), represented by
a global positioning system (GPS), a SINS can provide high-precision global and all-weather
navigation and positioning services in which error does not accumulate over time. Satellite
navigation systems have played essential roles in military, aviation, economic construction,
and scientific fields [2]. However, because satellite signals are easily blocked and experience
regular interference, the data update rate of the navigation result is low, and there is no
attitude information output. Combined with the advantages of the SINS (short-term
positioning accuracy and high data sampling rate), the integrated navigation algorithm
can obtain the three-dimensional position, speed, stability, and reliability attitudes, good
accuracy, and a high data update rate. The integrated navigation algorithm facilitates
the complementary functioning of SINS and GPS systems [3]. First, inertial navigation
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results are corrected using satellite navigation results in which errors do not accumulate
over time; thus, avoiding the rapid accumulation of errors over time. Second, high-
precision and high-stability inertial navigation results in a short period can partially solve
the navigation and positioning problems when the satellite signal is blocked. The integrated
navigation systems improve the robustness of navigation results. In addition, integrated
navigation can estimate the constant errors of the inertial element and feedback, and correct
the accelerometer and gyroscope outputs to realize the online calibration of the inertial
element [4]. Therefore, the integration of satellite navigation and inertial navigation can
obtain stable and reliable three-dimensional position, speed, and attitude information with
good accuracy and a high data update rate.

Although integrated navigation systems can provide navigation information to users
in most locations on Earth, doing so requires capturing standard satellite signals. In
sheltered outdoor areas, such as cities, canyons, and forests, when satellite signals are
attenuated or lost due to occlusion by buildings, mountains, trees, etc., the errors of
using a pure inertial navigation system (INS) accumulates rapidly over time. This results
in decreased positioning accuracy and an inability to navigate properly [5]. In rapidly
changing cities, there are many large floors with dense forests, and an increasing number of
large and sealed indoor environments; as a result, the application of satellite and integrated
navigation systems in complex environments is minimal.

For the past few years, the rapid development of machine learning (ML) technology
has led many researchers to begin employing ML-aided SINS/GPS integrated navigation
systems to improve the SINS’ navigation performance during GPS outages [6–21]. The
specific working principle is that when the GNSS’s signal is available, an ML algorithm
trains the mapping model between the SINS’ acceleration, specific force, speed, and position
increments outputs and GNSS’s speed/position increments [6–13]. When GNSS data are
unavailable, the GPS’ speed/velocity measurements are replaced with the well-trained
ML module’s prediction outputs; information fusion with the SINS reduces the degree of
system error divergence [14–21]. ML technology has an excellent capability to learn and
reason in an inaccurate and uncertain environment, and in this way it corresponds to the
human brain. It can effectively compensate for the inherent flame of the traditional Kalman
filtering (KF) theory when integrated navigation data are fused. Even during GPS outages,
ML technology can aid KF in forecasting and estimating the navigation calculation error of
the SINS; the accuracy of the integrated system is improved through error compensation.
However, these ML methods are unsuitable for processing data streams in online learning
scenarios.

Therefore, this paper proposes an online sequential extreme learning machine with
a dynamic forgetting factor (DOS-ELM) aided methodology for a SINS/GPS integrated
navigation system during GPS outages is proposed. The main contributions of this paper
are summarized as follows: (1) The DOS-ELM algorithm is used to train the mapping
model between the SINS’ acceleration, specific force, speed, and position increments
outputs and the GPS’ speed/position increments. When the GPS’ signal is unavailable,
GPS speed/velocity measurements are replaced with the well-trained DOS-ELM module’s
prediction outputs, and information fusion with the SINS reduces the degree of system
error divergence. A semi-physical simulation was performed to verify the feasibility
and effectiveness of the proposed methodology. (2) Each time the proposed model is
updated, the DOS-ELM algorithm can adjust the forgetting factor according to the difference
between the prediction accuracies of the current and previous models. Thus, the model can
dynamically adjust the relative importance of contemporary and historical data according
to changes in the data flow. This allows the model to adapt faster and more accurately to
the current environment.
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The outline of this paper is as follows. After this introduction, Section 2 establishes the
KF model of the SINS/GPS loosely integrated navigation systems. Section 3 presents the
design process for the proposed DOS-ELM-aided methodology for SINS/GPS integrated
navigation systems during GPS outages. The actual vehicle-mounted experimental data is
used for semi-physical simulation in Section 4. Finally, Section 5 concludes.

2. KF Model of SINS/GPS Integrated Navigation Systems

Position and speed measurements are used in SINS/GPS loosely integrated navigation
systems. The difference between the position/speed obtained by the GPS receiver and
the position/speed calculated by the SINS are directly used as Kalman filter inputs. The
Kalman filter output adopts feedback correction; the drift error correction of the gyroscope
and accelerometer are corrected in SINS. In contrast, the position and speed information
directly correct the SINS’s calculation results. Thus, the integrated method’s advantages are
its simple structure and easily implemented engineering. The two navigation subsystems
are independent, and the navigation information has a certain degree of redundancy.

The state equation of the SINS/GPS integrated navigation systems is as follows:

.
X(t) = F(t)X(t) + G(t)W(t) (1)

where X(t) is the state vector; it is as follows:

X(t) = [δVE δVN δVU φE φN φU δL δλ δh ∇x∇y∇z εxεyεz]
T (2)

where δV denotes the SINS speed error, and δV = [δVE δVN δVU ]
T . E, N, and U are

the eastward, northward, and upward axes of the n coordinate system, respectively. φ

represents the attitude error, and φ = [φE φN φU ]
T . δL, δλ and δh are the system’s

latitude, longitude, and altitude errors, respectively. ∇b denotes the accelerometer bias, and
∇b = [∇x ∇y ∇z]

T . x, y, and z are the three axes of the b coordinate system, respectively.

εb is the gyroscope drift, and εb = [εx εy εz]
T .

The system noise vector W(t) is as follows:

W(t) = [ωx ωyωz ax ay az]
T (3)

where ωx, ωy, and ωz represent the noise of the x axial, y axial, and z axial gyroscope, re-
spectively. ax, ay, and az represent the noise of the x axial, y axial, and z axial accelerometers,
respectively. Their means are all zero, and they obey the standard Gaussian distribution.

The system state transition matrix F(t) can be derived according to the attitude error
equation, velocity error equation, and position error equation [1,2]; it is as follows:
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The system process noise transfer matrix is as follows: 

where Cij(i, j = 1, 2, 3) is the element of the attitude matrix Cn
b . V denotes the SINS speed,

and Vn = [VE VN VU ]
T . f indicates the acceleration, and fn = [ fE fN fU ]

T . ωie is the
Earth’s rotation angular speed. RE and RN are the semi-major axis and radius of curvature
along the circle of the Earth, respectively. L is the geographic latitude. Other elements in
the matrix F(t) are represented as follows:
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The system process noise transfer matrix is as follows:

G(t) =

 Cn
b 03×3

03×3 Cn
b

09×3 09×3

 (5)

The system measurement equation is as follows:

Z(t) = H(t)X(t) + V(t) (6)

where H(t) is the observation vector, and V(t) is the observation noise vector.
It is supposed that the SINS’s speed/position information outputs are as follows:

VSE = VET + δVSE
VSN = VNT + δVSN
VSU = VUT + δVSU

(7)
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
LS = LT + δLS
λS = λT + δλS
hS = hT + δhS

(8)

where VSE, VSN , and VSU are the eastward, northward, and upward speeds of the carrier
calculated by the SINS, respectively. VET , VNT , and VUT are the actual eastward, northward,
and upward speeds of the carrier, respectively. δVSE, δVSN , and δVSU are the eastward,
northward, and upward speed errors of the SINS, respectively. LS, λS, and hS are the
latitude, longitude, and altitude of the carrier calculated by the SINS, respectively. LT , λT ,
and hT are the actual latitude, longitude, and altitude of the carrier, respectively. δLS, δλS,
and δhS are the latitude, longitude, and altitude errors of the SINS, respectively.

It is supposed that the speed/position information output by the GPS is as follows:
VGE = VET + δVGE
VGN = VNT + δVGN
VGU = VUT + δVGU

(9)


LG = LT + δLG
λG = λT + δλG
hG = hT + δhG

(10)

where VGE, VGN , and VGU are the eastward, northward, and upward speeds of the carrier
calculated by the GPS, respectively. δVGE, δVGN , and δVGU are the eastward, northward,
and upward speed errors of the GPS, respectively. LG, λG, and hG are the latitude, longitude,
and altitude of the carrier calculated by the GPS, respectively. δLG, δλG, and δhG are the
latitude, longitude, and altitude errors of the GPS, respectively.

The system observation vector is as follows:

Z(t) = H(t)X(t) + V(t) =



δVGE − δVSE
δVGN − δVSN
δVGU − δVSU

δLG − δLS
δλG − δλS
δhG − δhS

 (11)

Without considering the control action, it is supposed that the stochastic linear discrete
system’s equation is as follows [22,23]:{

Xk = Φk,k−1Xk−1 + Γk,k−1Wk−1
Zk = HkXk + Vk

(12)

where Xk is the system’s n-dimensional state matrix. Φk,k−1 is the system’s n× n-dimensional
state transition matrix and can be obtained by the discretization of F(t). Γk,k−1 is the n× p-
dimensional noise input matrix, and can be obtained by the discretization of G(t). Zk is
the system’s m-dimensional observation sequence, Hk is the m× n-dimensional observa-
tion matrix, Vk is m-dimensional observation noise sequence, and Wk−1 is the system’s
p-dimensional process noise sequence. Simultaneously, Wk and Vk satisfy the follow-
ing conditions:E[Wk] = 0, Cov[Wk, Wj] = E[WkWT

j ] = Qkδkj, E[Vk] = 0, Cov[Vk, Vj] =

E[VkVT
j ] = Rkδkj, and Cov[Wk, Vj] = E[WkVT

j ] = 0. Qk is the system’s noise variance
matrix, and Rk is the measurement noise variance matrix.

The KF prediction and update processes are then as follows:

(1) State one-step prediction
X̂k,k−1 = Φk,k−1X̂k−1 (13)

(2) State estimation
X̂k = X̂k,k−1 + Kk(Zk −HkX̂k,k−1) (14)
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(3) Filtering gain

Kk = Pk,k−1Hk
T(HkPk,k−1Hk

T + Rk)
−1

(15)

(4) One-step prediction mean square error

Pk,k−1 = Φk,k−1Pk−1ΦT
k,k−1 + Γk,k−1Qk−1ΓT

k,k−1 (16)

(5) Estimated mean square error

Pk = (I−KkHk)Pk,k−1 (17)

where X̂k−1 is the estimated state matrix at tk−1. Pk−1 is the error covariance matrix
of the optimal filter value at tk−1. Qk−1 is the system noise variance matrix at tk−1. I
is a unit matrix.

3. ML-aided Methodology during GPS Outages
3.1. Proposed System Structures

A novel ML-aided methodology is proposed and was introduced into the SINS/GPS
integrated navigation systems during GPS outages, shown in Figure 1.
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Figure 1. Schematic diagram of ML-aided SINS/GPS integrated navigation systems. ML is a machine
learning module; KF is a Kalman filtering module; ASINS, VSINS, and PSINS are the SINS’ attitude,
speed, and position, respectively; VGPS and PGPS are the GPS’ speed and position, respectively; and
V′GPS and P′GPS are the speed and position of pseudo GPS information forecasted using the ML
method, respectively.

The proposed ML-aided methodology operates as follows. The differences between
the speeds/positions of the SINS and GPS are input into the KF module as a measurement
value; the estimated attitude, speed, and position errors are fed back to correct the SINS.
The SINS’s accelerometer, gyroscope, and the speed/position information of SINS are
input into the ML module. After a certain amount of data are stored, the data set is
trained using a specific machine learning algorithm to obtain the mapping model between
the SINS’ acceleration, specific force, and speed/position increments outputs, and GPS’
speed/position increment. When the GPS signal is unavailable, SINS’ navigation data
are input into a trained ML model. The model’s output is used as the optimal estimation
of the actual navigation output. In the training procedure, the accelerometer, gyroscope,
and speed/position information of the SINS and GPS were input into the ML module
as predictors. The obtained mapping model was as the target variable. In the prediction
procedure, the SINS’ accelerometer, gyroscope, and speed/position information of the SINS
were input into as the ML module as predictors. The estimated pseudo speed/position of
the GPS was as the target variable.
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3.2. The Typical ML Algorithm

DOS-ELM [24] is a newly proposed single hidden-layer feedforward neural network.
The model’s updating error functions as the forgetting factor’s adjustment signal using
the DOS-ELM algorithm. If the accuracy rate drops after the model is updated, the algo-
rithm uses a custom formula to reduce the value of the forgetting factor according to the
magnitude of the decline. Compared with the backpropagation neural network (BPNN),
DOS-ELM has a higher learning speed, and its nonlinear approximation ability is not
reduced by this optimization method. The DOS-ELM algorithm’s forgetting factor can
be automatically and dynamically adjusted according to the iterative error, thus avoiding
instability [24]. Therefore, the DOS-ELM algorithm was chosen to aid SINS/GPS integrated
systems during GPS outages.

The main steps of the DOS-ELM algorithm can be summarized as follows: a training
dataset D = {(xi, ti)}N

i=1 ⊂ Rn × R, the activation function is G(ω, x, b), the number of
hidden layer neurons is L, and the initial forgetting factor λ = 1.

Step 1. Initialization Phase:
An initial model is obtained by training with the initial training set D0 = {(xi, ti)}N0

i=1
using the ELM algorithm [25]. Here, the output weight matrix of this initial model is
written as β0, and the output matrix of the hidden layer is written as M0. The data block
identifier is set as k = 0, and a transition variable P0 = (MT

0 M0)
−1. The initial model’s

accuracy using the current initial training set is calculated and labeled ACC0.
Step 2. Online Sequential Learning Phase:

(1) When a new data block Dk+1 = {(xi, ti)}

k+1
∑

j=0
Nj

i=(
k
∑

j=0
Nj)+1

identified as (k + 1)th begins

processing, the output matrix of the model’s hidden layer is updated as follows:

Mk+1 = [λMT
k MT

k+1]
T (18)

where Mk+1 denotes the output matrix of the hidden layer corresponding to the new
data block.

(2) The model’s output weight matrix at the moment is calculated as follows:

βk+1 = βk + Pk+1MT
k+1(Tk+1 −Mk+1βk) (19)

where Pk+1 = λ−2Pk − λ−4PkMT
k+1(I + λ−2Mk+1PkMT

k+1)
−1Mk+1Pk. Tk+1 denotes

the labels of the new dataset, and Tk+1 = Mk+1βk+1.
(3) The prediction accuracy of the current model using the new data block is calculated

and labelled ACCk+1. The accuracy difference between the current model and the
model before it was updated is compared as follows:

E = ACCk+1 − ACCk (20)

(4) The forgetting factor is updated as follows [25]:{
λ = λ− 1

5π atan(E)
s.t. i f λ > 1 then λ = 1

(21)

where atan() is an arctangent function. λ ∈ [0, 1], and λ = 1 indicates that the
importance of new data is the same as that of historical data. λ < 1 indicates that the
relative importance of historical data is lower than that of furture data.

The DOS-ELM algorithm takes the model’s update error as the adjustment signal for
the forgetting factor. If the accuracy rate decreases after the model is updated, the algorithm
will use the above equation to reduce the value of the forgetting factor according to the
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extent of the decline. This means that the volume of historical information is reduced and
the importance of new data is relatively increased, and vice versa.

(5) Check if there are any new data that have not been trained. If so, set k = k + 1, return
to (1) in Step 2, and the model’s training continues. Otherwise, the model training is
stopped, and the model parameters are output. At this point, the DOS-ELM-aided
methodology for SINS/GPS integrated navigation systems during GPS outages has
been implemented.

4. Simulation Results

To verify the feasibility and effectiveness of the proposed methodology, actual vehicle-
mounted experimental data were used in an offline semi-physical simulation. A SINS
prototype, with fiber-optic gyroscopes and quartz accelerometers as its sensors, was used
in the experiment. The specific parameters of the inertial measurement unit (IMU) and GPS
are shown in Table 1. The vehicle-mounted experiment used the PHINS [26] developed and
produced by the French iXBlue company. The prototype’s IMU was fixed to a transition
board and placed inside the experimental vehicle. The PHINS was set to GPS integration.
The attitude, speed, and position information output after integrating the PHINS and GPS
were used as the reference for vehicle navigation information. The installation and structure
diagrams of the vehicle experiment are shown in Figures 2 and 3, respectively.

Table 1. Specific of IMU and GPS parameters.

Sensors Parameters Accuracy

IMU

Gyroscope Constant Drift 0.02◦/h
Gyroscope Random Drift 0.02◦/

√
h

Accelerometer Constant Bias 50 µg
Accelerometer Random Walk 50 µg

Frequency 200 Hz

GPS
Position 1 m

Frequency 1 Hz
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The whole experiment lasted approximately 5700 s; initial SINS alignment occurred
during seconds 0–900, and SINS/GPS loosely integrated navigation occurred during sec-
onds 1800–5700. Data for seconds 1100–3100 were stored as the training data set for the
DOS-ELM algorithm. When training was finished, the system entered the prediction phase.
Three stages of GPS outages (from the 3500 s to 3800 s; 4100 s to 4300 s; and 4500 s to 4700 s)
were artificially set. The navigation track and experimental vehicle trajectory are shown in
Figures 4 and 5, respectively. Here, three sections of GPS outages are marked by the red
lines.
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The vehicle’s dynamic characteristics during the experiment are shown in Figure 6,
which illustrates that the vehicle’s driving state is complex and repetitive, which met
the requirements for ML algorithms training data sets. Figure 7 presents an intelligent
estimation process of the pseudo GPS speed/position. The predicted values were very
close to the actual speed/position information. To demonstrate the proposed method’s
advantage, it was compared with the pure INS method. During GPS outages, the system
operated in pure INS mode.
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Figure 7. Intelligent estimation process of pseudo GPS speed/position.

Figures 8–10 show the speed/position errors of both east and north directions of the
DOS-ELM-aided method, the pure INS method, and the high-precision reference during
GPS outages #1, #2, and #3, respectively. In these three figures, the red and blue lines
correspond to the results of the pure INS and DOS-ELM-aided methods, respectively.
The error of the pure INS method generally oscillated sharply and quickly diverged.
Although the error correction of the DOS-ELM-aided method to the navigation solution
could not achieve an effect similar to the complete convergence of the filter on the error, it
dramatically reduced the error value. Table 2 presents the mean and standard deviation
(SD) of speed/position errors during GPS outages #1, #2, and #3.

Table 2’s comparison of the information fusion algorithm using the DOS-ELM-aided
and pure INS methods shows that the DOS-ELM-aided algorithm’s navigation calculation
error was lower than the pure INS calculation error. The DOS-ELM-aided algorithm’s
calculation result was very close to the reference value of the integrated system navigation
solution. The error values of the pure INS solution were different during GPS outages #1,
#2, and #3, indicating that, in the several calculation epochs before the GPS signal failure,
the filtering estimation had other correction effects on the INS navigation calculation under
normal GPS measurement update conditions. In addition, integrated factors, such as the
uncertainty of the IMU device’s error drift, affected the GPS. When the GPS signal failed,
the INS calculation error was uncertain, whereas the DOS-ELM-aided method realized a
partial correction of the INS navigation calculation error.
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Figure 8. Comparison of speed/position errors between DOS-ELM-aided and pure INS methods
during GPS outage #1 in the vehicle-mounted experiment. (a) Eastern and northern speed errors of
DOS-ELM-aided and pure INS methods during GPS outage #1 in the vehicle-mounted experiment.
(b) Eastern and northern position errors of DOS-ELM-aided and pure INS methods during GPS
outage #1 in the vehicle-mounted experiment.
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Figure 9. Comparison of speed/position errors between DOS-ELM-aided and pure INS methods
during GPS outage #2 in the vehicle-mounted experiment. (a) Eastern and northern speed errors of
DOS-ELM-aided and pure INS methods during GPS outage #2 in the vehicle-mounted experiment.
(b) Eastern and northern position errors of DOS-ELM-aided and pure INS methods during GPS
outage #2 in the vehicle-mounted experiment.
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Figure 10. Comparison of speed/errors between DOS-ELM-aided and pure INS methods during
GPS outage #3 in the vehicle-mounted experiment. (a) Eastern and northern speed errors of DOS-
ELM-aided and pure INS methods during GPS outage #3 in the vehicle-mounted experiment. (b)
Eastern and northern position errors of DOS-ELM-aided and pure INS methods during GPS outage
#3 in the vehicle-mounted experiment.

Table 2. Navigation results of pure INS and DOS-ELM-aided methods.

Time Periods (s) Errors Pure INS DOS-ELM/KF

Mean SD Mean SD

3500–3800

δVE (m/s) −0.1765 0.01082 0.01456 0.004233
δVN (m/s) 0.4611 0.4611 −0.002335 0.004276

δL (m) 289.3 289.3 −0.1713 0.1351
δλ (m) 21.99 21.99 0.1889 0.4178

4100–4300

δVE (m/s) 0.3112 0.3112 −0.0008012 0.005923
δVN (m/s) 0.04615 0.04615 0.009456 0.003912

δL (m) 15.75 15.75 −0.1452 0.1816
δλ (m) 23.97 23.97 −0.08098 0.2943

4500–4700

δVE (m/s) 0.1217 0.1217 −0.01169 0.014
δVN (m/s) 0.09978 0.09978 −0.009198 0.009154

δL (m) 82.41 82.41 0.3404 0.7681
δλ (m) 56.43 56.13 0.01158 0.561
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5. Conclusions

In this paper, a novel DOS-ELM-aided methodology for SINS/GPS integrated nav-
igation systems was proposed to improve navigation accuracy for land vehicles during
GPS outages. Data from an actual road vehicle experiment were collected for simulation
experiments to verify the feasibility and effectiveness of the proposed methodology. The
results showed that the values predicted using DOS-ELM-aided methodology were very
close to the actual speed/position information. The proposed method could reduce the
divergence of inertial navigation errors and achieve higher positioning accuracy compared
to the pure INS algorithm during GPS outages.

In future research, we will investigate the influence of the number of satellites on the
DOS-ELM-aided SINS/GPS integrated navigation system. Meanwhile, we will strive to
carry out real-time vehicle experiments to make the proposed methodology available in
practice.
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